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Abstract

Automatic data compression in the web proxy server is
an important mechanism that can potentially reduce
network bandwidth consumption and web access
latency significantly. However, unlike traditional data
compression, web protocols and data have unique
characteristics that make compression challenging.
These include data block streaming, wide range of
data object sizes and types, and real-time response. In
this paper, we focus on automatic web data
compression in the HTTP proxy server. A new
classification of web data compression based on
system complexity and HTTP requirements is
proposed: stream, block and file compression. Then,
the concept of hybrid web data compression is
introduced. To understand the potentials of web data
compression better, an implementation of the proposed
hybrid compression in the Squid proxy server is
described. The result is very promising, as about 30%
of the bandwidth can be saved easily. Furthermore,
even with a low end Pentium 266 MHz PC as the
proxy machine, the compression overhead is less than
1% of the transfer time.

1. Introduction

With the popularity of the Internet and the world
wide web from academia to home and entertainment,
network bandwidth has already become a scarce,
valuable resource and an important obstacle to WWW
surfing. Networks are getting more congested with an
increasing amount of multimedia data, thus resulting
in slower web response time and the comment of
"World Wide Wait". To address this WWW
bandwidth problem, one good approach is to compress
web multimedia data on the network.

Compression of web multimedia data can be
achieved in one of two ways: explicit and implicit. In
the explicit case, it is the responsibility of the web data
owner to store the compressed version of the data in
the web server. Since HTTP 1.1 provides a
compression data MIME type [12], any client browser
that supports HTTP 1.1 can view the compressed data

automatically. For network management, this is the
simplest approach, because compression is completely
transparent to it. However, this causes inconvenience
to content management because any maintenance or
update of web information must perform explicit data
decompression. More importantly, unless the
compression format is a standard type supported by
HTTP, implicit collaboration between the web client
and server for compression might have a certain
degree of difficulty. The existence of a tremendous
amount of uncompressed web data also raises the
demand for automatic web data compression. Finally,
non-standard and older versions of browsers might not
support automatic decompression.

 Under the implicit model, it is the web server and
proxy server that will handle web data compression
automatically. The price for this shifting, however, is a
new technology and system architecture design that
can overcome the inherited problems of web data
compression such as data block streaming, the wide
range of data object sizes and types, and real-time
response. Just like the situation in the operating system
and the hard-disk storage, automatic web data
compression is possible, but is not as trivial as it
appears.

In this paper, we will investigate the system
architecture design and support for automatic web data
compression in the HTTP proxy server. Due to the
unique environment of the web, new requirements and
constraints for web data compression will be identified
first. In particular, the implications of data block
streaming of web information will be investigated.
Then, hybrid data compression will be proposed. This
hybrid compression will be implemented in the Squid
proxy server architecture for the evaluation of
bandwidth reduction and the overhead incurred. The
result is very promising, as about 30% of the
bandwidth can be saved easily. Furthermore, even
with a low end Pentium 266 MHz PC as the proxy
machine, the compression overhead is less than 1% of
the transfer time. This is important because
compression is completely transparent to the web
surfers and can work co-operatively with other
bandwidth saving mechanisms.



2. Constraints & Implications of Network
Compression

In the WWW environment, there are unique
characteristics of web information and constraints of
the proxy and web servers that make automatic
networked multimedia data compression challenging.
Some of the major ones are listed below and their
implications on web data compression are discussed.

Data Object Sizes

The size distribution of web objects ranges from a
few hundred bytes to tens/hundreds of thousand bytes.
More importantly, due to the practice of web page
design, there is a significant portion of the web objects
whose sizes are quite small. This makes web data
compression challenging. It is because traditional data
compression algorithms are much less effective
towards small sized files. It is also found that the
occurrence frequency of repeated character strings in a
web object (such as an HTML file) might not be very
high (because of the limited size). One the other hand,
this frequency turns out to be very high across
multiple web objects. A good example is HTML script
marks. The HTML language syntax has a very limited
set of character strings and they appear in almost every
web page. Hence, it will be beneficial to have a static
table that will map the frequently used HTML strings
into variable size tokens.

Data Object Types

Another unique characteristic of web objects is
the wide range of data types. There are simple HTML
text files, application/octet-streams, gif/jpeg images,
avi/asf/mpeg videos, JAVA applets, executables, etc..
With different data encoding formats and information
entropy, the compressibility of these object types
varies significantly. Furthermore, some object types
might allow lossy compression (e.g. images) while the
others insist on lossless compression (e.g. HTML
files). This feature makes a single universal data
compressor difficult to find (if at all possible). As a
result, hybrid data compression, with both lossy and
lossless compressors, is likely be the direction to
handle such a wide variety of object types.

Data Block Streaming

This is one of the toughest constraints that the
web imposes on networked multimedia data
compression. According to the current HTTP
protocols, data is streamed to the client in blocks. This
is to improve the client's perception of the web object

retrieval time and to reduce system resource
consumption. Data block streaming implies that the
compression/decompression process can only work on
those blocks that are in the buffer space of the HTTP
proxy (not necessarily the entire object). As a result,
for those data compressors that require multiple passes
on the object content, extra effort will be required to
save the data being streamed in the server before the
(de-)compression process can take place. Although
single-pass data compressors are available, their
compression effectiveness is not as good as those of
multi-pass ones.

3. Classification of Web Data Compression

In this section, we propose a new classification for
web data compression that is defined in terms of the
system resource requirements and data block
streaming in the current HTTP protocol. There are
basically three classes of compression approaches for
the web:

[1] Whole File Compression
Under this class, the compression needs to work
on the entire file of a web object. There is no
compression/decompression on the partial object
data.

[2] Data Block Compression
This class of compression processes the
information that is stored in the HTTP proxy
buffer. Since a web object is made up of one or
more data blocks, compression on a web object
implies individual compression and
decompression processes on data blocks that
appear in the proxy buffer.

[3] Data Stream Compression
As its name implies, this class of compression
treats data as a continuing stream. Whenever a
proxy server receives some data, it will
compress/decompress the data immediately and
the result will then be passed to the next level of
the network. There is no need to buffer data for
future compression/decompression.

Based on the different stages of triggering of the
compression process, each of these three approaches
have different implications on the complexity of the
proxy system and the compressor. This is given in
Table 1. From this table, we see that data block
compression is more suitable for web multimedia data
in the HTTP proxy than either the stream or whole file
compression approaches. Under this approach,



additional data buffering is minimal, as the proxy also
needs to keep the data of the currently transferred
blocks in the buffer anyway. The maximum data size
stored in the buffering space implies that data does not
need to be stored on disk; thus no additional disk
operation is expected. The extra access delay time, as
perceived by the web surfer, is also not important
because this delay time is defined by the fixed buffer
size.

Stream Block Whole File
Additional Memory
Buffering Req.

No No Resource to hold
entire web object

Additional Disk
Operations

No Not expected Yes

Partial Web Data
Transfer

Same In size of
proxy buffer

No

Implementation
Complexity

Slightly
increased

Most
complicated

Increased

Compression
Efficiency

Lowest Close of that
of whole file
compression

Highest

Choice of
Compression
Algorithms

Only
single pass

All kinds All kinds

Table 1: Comparison of Three Web Compression
Types (With Respect to the Current Proxy

Requirements)

As far as compression algorithms are concerned,
data block streaming can incorporate all kinds of
compressors, including multi-pass ones. The tradeoff,
however, is the complexity of the proxy server
architecture. Among these three classes, data block
compression interferes with the proxy data flow the
most, resulting in the most complicated system
structure. There will also be limitations to the
applicability of multi-pass compressors for web data: a
multi-pass algorithm can only work on the object that
can fit in the proxy buffer. If the object size is greater
than the buffer size, either one of these two situations
will happen. For web data objects whose blocks can be
compressed independently (e.g. text  files),
performance will be lost slightly. It is because a large
file is now divided into smaller segments, each of
which is compressed independently. However, for
those objects whose blocks cannot be compressed
independently (e.g. jpeg ), data block compression
will not work.

4. Algorithm Selection

In Section 2, we mentioned that it is important to
have hybrid compressors, each of which is optimized
for one predefined type of data object. In this section,
we would like to propose a sample selection of data
compressors for the three compression approaches

mentioned above. This will help in the testing and
evaluation of the compression proxy potentials. Note
that this is just a reasonable set of combinations and
may not be optimal. There is no intention in this paper
to define any optimal algorithms.

Let us look at each object type and see what kind
of compression can be performed under the three
approaches of web data compression:

gif  Objects

It is important to compress gif  objects because
about one third of the web bandwidth consumption is
due to gif . To compress these objects, we propose to
use the GIF-to-JPEG transformer with 25% lossy
factor. Lossy compression is used here because most
gif  objects are for decoration purposes and can
tolerate some degree of loss. Furthermore, the loss in
the image quality due to compression is very small to
be noticed by web surfers. Due to the multi-pass
nature of the gif-to-jpeg  transformer, it cannot be
used in data stream compression. Furthermore, for
data block compression, there are two additional
requirements:

•  If the gif  object size is greater than the proxy
buffer size, no gif-to-jpeg  compression will
be performed. This is because the transformer
cannot work on partial images.

•  If the gif  object size is less than 4 KBytes, no
gif-to-jpeg  compression will be performed.
Table 2 shows the compression ratio of the gif-
to-jpeg  transformer with 25% lossy factor.
From this table, we see that the gif-to-jpeg
transformer actually expands a gif  file if the file
size is between 0 and 4 KBytes.

gif  Object Size Range Compression Ratio
0 – 1 K 0.3322
1 – 4 K 0.7891
4 – 8 K 1.3136
8 – 16 K 1.9825
16 – 32 K 2.9885
32 – 64 K 5.6460
64 – 128 K 9.9781

> 128 k 18.6050

Table 2: Compression Ratio of gif-to-jpeg

text /octet-stream  Objects

The choice of compressors for these objects is
relatively simple because many text compressors can



work very well on them. The only complication is the
complexity of the compression algorithm: whether
multi-pass algorithms should be allowed. For data
block compression, we use the ZLIB library [5]; for
whole file compression, we suggest using GZIP. They
are some of the most common compressors for text.
For stream compression, LZW is used instead because
it is a single pass compressor. Furthermore, for HTML
objects, mapping of the HTML script marks to
variable size tokens is performed with the help of a
predefined table.

jpeg  Objects

Unlike gif  objects, no transcoding compression
is done on jpeg objects for all the three types of
compression. There are a few reasons for this. Firstly,
the jpeg  objects are already in compressed format. It
will be relatively difficult to compress the objects
further without losing image quality substantially.
Secondly, it is observed that on the web, jpeg  objects
are used much less often for decoration than gif
objects are; hence losing image quality for further
jpeg  transcoding might result in user dissatisfaction.
Thirdly, the algorithm to change from normal jpeg  to
progressive jpeg  is a multi-pass algorithm. Since the
size of a jpeg  object is usually larger than the size of
the HTTP proxy buffer, it will not have a significant
effect on data block compression. Note that just like
the gif-to-jpeg  compression, jpeg  transcoding
is possible as long as the user is willing to trade off the
image quality for bandwidth.

Others

For objects other than those mentioned above, no
compression will be performed. It is because the
percentages of their bandwidth consumption are not
high and their optimal compressors are unknown.

5. Proxy-To-Proxy Compression in Squid

To get a better understanding of the design
feasibility of automatic web data compression in the
proxy server, we are going to describe an
implementation of the block compression mechanism
between two Squid proxy servers in this section. In
this implementation exercise, the Squid proxy version
2.1 [23] is chosen to be the basic platform for
experimentation. In Squid, data is transferred block by
block. Whenever a Squid proxy receives data from its
upper web server or proxy level, it will send the data
to the client/proxy at the next network level as soon as
possible. To make our discussion easier, the following

terms are used. The "compression proxy" is the proxy
server that does the compression of web data and then
sends it to the decompression proxy server. The
"decompression proxy" is the proxy server that
receives the compressed data from the compression
proxy and decompresses it before it sends the data to
its client.

5.1. Implementation Considerations

During the implementation of data block
compression in the Squid proxy server, there are at
least three design issues that need to be handled
properly.

5.1.1. Encoding of Compression Messages

In the implementation of proxy data compression,
it is extremely important to handle the handshaking
mechanism between two proxy servers properly. On
one end, the decompression proxy needs to insert a
message into the request header to notify the
compression proxy that it has the decompression
capability. The compression proxy will also need to
write a message in the reply header to indicate that the
entity body is compressed. Furthermore, both proxies
need to delete these additional messages in the request
and reply headers before they pass the request to the
next level of the network. According to the HTTP/1.1
protocol [12], we propose the following solution:

•  The decompression proxy adds a "Transfer-
Encoding: Block-Decoding " field in the
request header to notify the compression proxy
what compression method(s) it supports.

•  The compression proxy sends a "Transfer-
Encoding: Block-Encoding " field in the
reply header to notify the decompression proxy
what compression method it uses to compress the
data.

One important set of parameters that needs to be
communicated between the two proxy servers is the
compressed block size and the uncompressed block
size. In the block compression on Squid, data will be
compressed in blocks; thus the decompression proxy
server will not receive the same number of bytes as in
the original uncompressed block. Even worse, it is
possible that the decompression proxy buffer might
receive more than one block of data at a time, or a
whole compressed data set is received in multiple
blocks. To solve this problem, we propose to add a



four bytes "block header " to each data set of
compressed blocks in the proxy buffer. The first two
bytes of the header record the size of the compressed
set while the last two bytes record the original
(uncompressed) data set size.

With this information, the decompression proxy
will use the first two bytes to separate each
compressed data set from the whole trunk of the
received data. It will also use the last two bytes of the
header for decompression. Furthermore, if the last two
bytes record "0", it will mean that the data block is not
compressed. This happens either when the
compression proxy cannot perform compression on
that data type or it is not beneficial to perform
compression on the given data (as we mentioned
previously in Section 4). With the two bytes
mechanism to record the data sizes, the maximum
working set size is bounded by 64 KBytes. As will be
shown later, the recommended buffer size for data
block compression is 32 Kbytes. Hence, the two bytes
mechanism should be sufficient in most practical
implementations. In the case where a really large
block size is used, more bytes can be allocated to hold
this information.

Another problem in the hand-shaking mechanism
is the length of the transfer file. The web server
records the length of the transfer file in the reply
header field "Content-Length ". Once the proxy
performs compression or decompression, the actual
length of the file will definitely be affected. To handle
this situation, our decompression proxy will not check
the incoming file length with the "Content-
Length " field. That is, even though the compression
proxy server transfers an object with file length less
than the value of the "Content-Length " field, no
error will be reported.

5.1.2. Memory Allocation

To call the "compress() " and
"uncompress() " functions in the proxy server,
some working memory will be required. Furthermore,
the decompression proxy also needs memory to keep
the compressed data block. All these can be handled
by the group of memory management functions
provided by Squid; we use the xmalloc()  and
xfree()  functions to allocate and free memory in
the compression process.

5.1.3. Data Structure

To complete the support for automatic web proxy
compression, the compression status information of a
web request needs to be reflected in its data structure
inside the proxy server. In Squid, the request data and
the reply data of a request are linked together through
the data structure "_HttpStateData ". It records all
the necessary information about the request and the
reply. This structure is generated when the proxy
processes a request and it will be used during the
entire request and reply processes. In the
implementation of our compression proxy, we added a
field "need_compress " in the
"_HttpStateData " structure to specify that this
reply can be compressed. We also added another field
"can_compress " in the _StoreEntry  structure
to indicate that if reply data type is actually in the
compressed format. On the decompression proxy side,
the "_StoreEntry " structure records the
information of the reply. It is linked to the structure
"_HttpStateData ". Another variable,
"can_decompress " is also added as the
compression flag in this structure. If the
decompression proxy finds that the incoming data is in
compressed format, the flag will be set.

5.2. Workflow of Squid Compression
Proxy

In this section, we would like to put together the
actual workflow path of a web request in the Squid
compression proxy environment. This not only helps
us to understand the complete design of the Squid
compression proxy server, but it also allows us to
appreciate the design decisions and to see how various
techniques fit together in a single system. The
modified workflow for Squid compression proxy is
summarized below.

Workflow in the Squid Decompression Proxy

Step A1: 
When the Squid decompression proxy receives a
request from a client, it will add a "Transfer-
Encoding: Block-Decoding " field in the
request header.
(Afterwards, it will wait for data to come back from
the compression proxy).

Step A2:
When the decompression proxy receives the reply data
from the compression proxy, it will analyze the reply



header. If it finds that a "Transfer-Encoding:
Block-Encoding " field is set and the "Content-
Type " matches its decompressor, it will set the
variable "StoreEntry->can_decompress ".

Step A3:
When the "StoreEntry->can_decompress "
field is set, the decompression proxy will read the
compressed and the uncompressed set sizes from the
"block header ". If the incoming data set size is
greater than or equal to the compressed block size, the
decompression proxy will extract one compressed
block, then call the function "uncompress() ", and
afterwards go back to step A3; otherwise the data will
be saved in StoreEntry->keep_buf .

Step A4:
If the can_decompress  field is set, the
decompression proxy will erase the "Transfer-
Encoding: Block-Encoding " field from the
reply header.

Workflow in the Squid Compression Proxy

Step B1:
If the request header has a "Transfer-Encoding:
Block-Decoding " field, the compression proxy
will set the variable "_HttpStateData-
>need_compress" . Then, it erases the
"Transfer-Encoding: Block-Decoding "
field from the request header.

Step B2:
The compression proxy checks the reply header field
"Content-Type ". If this field matches with the
proxy's supported compression data type(s), both the
"HttpStateData->need_compress " and
"StoreEntry->can_compress " variables will
be set.

Step B3:
When the "StoreEntry->can_compress " field
is set, the compression proxy will call the function
"compress() ". It also writes the set size of the
compressed and the uncompressed blocks in the
header of the data block.

Step B4:
It adds the "Transfer-Encoding: Block-
Encoding " field in the reply header and will then
send the compressed data block to the decompression
proxy.

6. Experimental Results

To measure the effectiveness of web multimedia
data compression in the HTTP proxy, we repeated the
web surfing pattern of the proxy trace that we
collected in a junior college in Singapore. The proxy
server used was the Squid proxy on a low-end DEC
Alpha workstation. The proxy trace log was collected
for about one year, and the standard proxy information
was recorded. The workload of the proxy was about
5,000 to 20,000 requests per day and the school had a
leased line of 128Kbps

Two sets of experiment were conducted with the
same sequence of web object references:

•  client browser ⇔  original SQUID proxy ⇔
original SQUID proxy ⇔  Web server

•  client browser ⇔  decompression SQUID proxy ⇔
compression SQUID proxy ⇔  Web server

Each of the four proxy servers (either with or without
compression) was Squid version 2.1 with 30 Mbytes
of allocated memory and 200 Mbytes of cache space.
The proxy server was run on a dual Pentium II 266
MHz PC with 64 MBytes memory and 128 MBytes
swap space and the operating system was LINUX. For
each set of experiments, both proxy servers were run
on the same machine. We did this because the
overhead of compression and decompression could be
estimated better by avoiding any data transfer between
the two testing proxy servers in the public network. In
our experiments, we used one day's web access
sequence, which consists of about 10,000 requests.
The access latency of the web object and the
bandwidth consumption were measured. The overhead
of compression/decompression in the proxy can be
estimated by comparing the time consumed by the two
sets of experiments.

Before we discuss the performance of the three
different compression approaches, it will be helpful to
have statistical data on the web objects that pass
through the proxy server.

6.1. Distribution of Web Object Types

Web objects have a wide variety of data types.  A
data type distribution of WWW objects provides hints
on what kind of compression algorithms should be
supported and how the proxy compression system
should be structured and optimized. We collected this
statistic by extracting the "file type " and "file



size " fields of entries in the proxy trace. The result is
shown in Figure 1. The percentage is defined in terms
of the bytes transferred instead of the number of
objects requested.

Figure 1: Distribution of Web Object Types (in terms
of the Bytes Transferred)

From the figure, we see that the main data types
of web objects are: gif  data (33%), all kinds of text
data (31%), octet-stream  data (13%), and jpeg
image data (12%).

6.2. Distribution of Web Object Sizes

Understanding the distribution of web object sizes
is important to estimate the overall benefits of web
data compression. Given a web object type, the size
distribution can indicate how effective the data
compression will be. Usually, small objects are much
more difficult to compress than large ones. Due to
data block streaming in the web environment, the
statistic also shows how often a web object can fit into
the HTTP proxy buffer.

File Size in Bytes Gif text octet

0 – 1 K 3.77% 1.32% 0.04%
1 – 4 K 15.25% 7.75% 0.66%
4 – 8 K 20.92% 16.96% 0.69%
8 – 16 K 28.89% 30.15% 1.14%
16 – 32 K 14.12% 28.75% 0.89%
32 – 64 K 8.44% 9.30% 1.53%
64 – 128 K 5.00% 2.79% 2.40%
> 128 K 3.60% 2.99% 92.66%

Table 3: File Size Distribution of gif , text , and
octet-stream  ( in terms of Bytes Transferred)

Table 3 shows the distribution of the amount of
data retrieved under an object size range for a given
object type (again, not the number of files). It shows
that for text  objects, most of the data are clustered in

the range of 4 KBytes to 32 KBytes. This is a good
range for most text compressors to have reasonable
performance. The size distribution of the gif  objects
is quite similar to that of text  objects except that
there is a higher percentage of data with file sizes
under 4 KBytes. As was discussed in the previous
section, no aggressive transformation or compression
will be done on this group of objects - the objects will
be expanded upon compression. Data distribution of
the octet-stream  objects is quite different from
the rest. Most of the objects are larger than 128
KBytes.

6.3. Compression Effectiveness

The results of compression effectiveness of the
proposed approaches are given in Figures 2-4. The x-
axis is the compression types: stream, block with
various buffer sizes, and file. The results are extremely
encouraging and illustrate the potentials of web data
compression.

Figures 2(a)-(d) show the bandwidth saved by the
three web data compression approaches. Overall, the
saving from whole file compression is still the highest,
with an average of about 37%. This is expected
because the whole file is available for compression.
With a reasonable HTTP proxy buffer size, the
performance of data block compression is actually
very impressive. For a block size of 32 KBytes, the
bandwidth reduction is 32%; and with a 64 KBytes
block size, the reduction is 34.39%. These are only a
few percent lower than the upper limit. Moreover, the
incremental performance gain in the bandwidth
reduction starts to level off when the block size is
greater than 32 KBytes. For data stream compression,
about 14.66% of bandwidth reduction can be expected.
This is quite good; however, it is only about half of
what can be obtained from data block compression
with 32 KBytes block size. This justifies our argument
that data block compression is worth the increase in
system design complexity.

Comparing Figure 2(a), 2(b) and 2(c), we see that
text  objects are the most compressible ones.
Usually, 50% to 70% of the bandwidth consumption
due to text  objects can be saved. Also, it is
interesting to notice that there is practically no
difference in bandwidth saving for buffer sizes larger
than 4KBytes. This further supports our choice for
data block compression. For gif  objects, the situation
is completely different. With buffer size less than 4
KBytes, there is no bandwidth saving. This is expected
because no compression takes place; compression only

Data Type Distribution in WWW
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13%
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31% (text)

33% (gif)

image/gif

image/jpeg
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stream
text

audio/mpeg

audio/midi

others



increases the object size. With buffer size greater than
4 KBytes, the bandwidth reduction increases quite
rapidly with the buffer size and then levels off after 64
KBytes. Note that although the compression ratio of
gif  to jpeg is very high, the bandwidth reduction is
still bounded by about 43%. This is because there
exists a set of gif  objects (with size less than 4
KBytes) that will not benefit by the gif-to-jpeg
transformation. The contribution of the octet-
stream  compression to the bandwidth reduction is
the least. This is probably due to the lesser
compressibility of the octet-stream  objects.

Figure 3 shows the average time required to
perform compression and decompression in the Squid
proxy server. It shows that the compression overhead
is actually quite small, with an average of about 5
milli-seconds per KBytes. Note that there is a drop in
compression/decompression time for octet objects
from data stream compression to 1 Kbytes data block
compression. Careful investigation shows that this is
due to the change of compressors from LZW to ZLIB.
Furthermore, by the nature of the ZLIB algorithm, its
decompression time is smaller than its compression
time. Similar situation happens to text objects from 64
KBytes data block compression to whole file
compression. Despite the similar cascading concept
used by ZLIB and GZIP, the implementation of GZIP
is more efficient than that of ZLIB.

Figure 4 shows the ratio of the compression time
overhead to the original access latency (before
compression). The overhead is indeed very small; the
average is only about 0.6% of the access latency. With
the consideration of a 30% reduction in the network
bandwidth, the overall web access latency will
definitely improve. Furthermore, the proxy machine
used in the experiment is an outdated one. With a
reasonable machine configuration for the proxy server,
the compression overhead will be reduced further.

Finally, we estimated the improvement of web
access latency due to data compression. The testing
was done on a network segment that covered two local
internet service providers and their internet exchange
gateway. The result is shown in Figure 5. Stream data
compression improves the web access latency by
about 10%, which is quite good. With block data
compression, the improvement goes up to about 25%-
30%.  This is expected because more data can be
compressed and more effective two-pass compressors
can now be used. However, for whole file
compression, the improvement drops back to about
18%. This is mainly due to the buffering of the whole

object for compression before it is sent to the
decompression proxy server.

7. Related Work

Data compression [14,17,21] is a fundamental
area of research in information theory. Traditional
system design (including the operating system) and
disk controllers provide a good foundation for
supporting automatic data compression [3,6,7].

Despite the long history of data compression, the
application of data compression to the web
environment is relatively new. Nielsen et al. [18]
investigated deflate data compression [8] from the
viewpoint of a web server. Both Mogul et al. [16] and
Velasco et al. [24] realized the potential benefits of
compression in the HTTP proxy by compressing the
web objects with text compressors such as GZIP.
Santos et al. [22] looked at mechanisms to suppress
the transfer of replicated data in the web environment.
While their studies gave a good foundation for web
data compression, there was no discussion on the
constraints of the web environment, the design
considerations of the compression proxy, and the
implementation issues.

In the wireless mobile environment, there are
research efforts to reduce the network bandwidth
requirements for mobile devices and PDAs [25]. One
representative project is the GloMop from Berkeley
[9,10]. It achieved better end-to-end performance and
higher quality display output for low-end clients
through dynamic distillation. However, the data
streaming nature of the WWW data cannot be handled
by their techniques. Another approach to address the
WWW bandwidth problem is to use delta encoding for
the web response. When a cache object is outdated in
the local proxy, only the delta of the change in content
will be transferred from the server to the proxy. This
idea was proposed in [2,11,13,26] and [16] later
verified its potentials with realistic traces. The idea is
good, but it only works on objects that are outdated in
cache. This limitation is important to network
bandwidth reduction because over half of web objects
are referenced only once [15]. In network caching,
researchers address the network bandwidth problem by
keeping those web objects that are expected to be
reused in the local memory or cache [1,4]. However,
the network proxy cache cannot reduce the network
bandwidth consumption for first time object accesses.
To address this issue, the idea of prefetching [19,20] is
proposed. The main difficulty in web prefetching is to
have a very high prefetch accuracy; the spatial



property of web objects is not well defined and many
web objects are referenced only once in cache [15].

8. Conclusion

In this paper, we investigated web data
compression as the mechanism to solve the Internet
bandwidth problem. Based on the unique features of
the web protocol and data, we proposed a new
classification for web data compression: stream, block,
and file. We argued that data block compression fits
into the web environment best because it handles the
streaming of web data properly and allows multi-pass
compressors to work on web data without explicit file
storage. Then we proposed the hybrid web
compression mechanism and implemented it on the
Squid proxy server to test out its feasibility and to
evaluate its performance. The result is very
impressive; about 30% of the network bandwidth can
be saved and the compression and decompression
overhead is less than 1% of the web access latency
(even on an outdated PC proxy server). The result is
important because the compression process is
completely transparent to the web surfers and it can
work co-operatively with other bandwidth saving
mechanisms.
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Figure 2: Bandwidth Saving By Web Compression
(x-axis: stream, block with various buffer sizes, file)

Figure 3: Compression and Decompression Overhead
(x-axis: stream, block with various buffer sizes, file)
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Figure 4: Normalized Web Compression Overhead
(with respect to the Access Latency)

(x-axis: stream, block with various buffer sizes, file)
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