
USENIX Association

Proceedings of
USITS ’03:

4th USENIX Symposium on
Internet Technologies and Systems

Seattle, WA, USA
March 26–28, 2003

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Moving Edge-Side Includes to the Real Edge—the Clients

Michael Rabinovichy Zhen Xiaoy Fred Douglisz
Chuck Kalmaneky

yAT&T Labs – Research
zIBM T.J. Watson Research Center

Abstract

Edge-Side Includes (ESI) is an open mark-up lan-
guage that allows content providers to break their pages
into fragments with individual caching characteristics.
A page is reassembled from ESI fragments by a con-
tent delivery network (CDN) at an edge server, which se-
lectively downloads from the origin content server only
those fragments that are necessary (as opposed to the
entire page). This is expected to reduce the load and
bandwidth requirements of the content server.

This paper proposes an ESI-compliant approach in
which page reconstruction occurs at the browser rather
than the CDN. Unlike page assembly at the network
edge, CSI optimizes content delivery over the last mile,
which is where the true bottleneck often is. We call the
client-based approachClient-Side Includes, or CSI.

1 Introduction

As the use of the Internet increases, caching is an im-
portant tool in coping with the rate of requests to Internet
servers. Caching can be client-centric (proxy caching)
or server-centric (reverse proxy caching or CDNs). Re-
gardless, a significant limitation of caching is that it is
mostly oriented towardstatic content. This limitation
has been recognized and there have been a number of
approaches to extend caching to handle other types of
content.

These approaches include specialized tools to gen-
erate pages with dynamic content on a client (e.g.,
HPP [6] and<bigwig> [3]) or a proxy cache (e.g., Ac-
tive Cache [4] and CONCA [19]); application distribu-
tion networks, which run complete applications at the
edge of the network (e.g., Ejasent [9] and ACDN [13]);
and Edge-Side Includes (ESI) [10], which builds pages,
from component pieces (known asfragments) specified
within an XML template, in servers at the network edge.

1.1 Fragment-based Technologies

As an example of fragment usage, consider AT&T’s
home page,www.att.com , shown in Figure 1. One
can identify two natural fragments: one includes the
newsroom headlines; another encompasses the stock
prices for AT&T and AT&T Wireless and the date/time
of these quotes. The rest of the page can be viewed as the
template. The stock quote fragment changes very fre-
quently, probably every minute when the stock market
is open. The headlines fragments changes much more
slowly, perhaps a few times each day. The rest of the
page changes even less often.

If the entire page is considered as an indivisible
whole, its lifetime in the cache is limited to the life-
time of the fastest-changing content, one minute in our
example. With ESI, each portion of content is treated
individually according to its own properties: the tem-
plate will usually be accessed using the cached copy, the
headlines fragment will be validated/refetched every few
hours, and only the small stock quote fragment will be
refetched every minute. We discuss ESI in greater detail
in the next section.

The above example represents a typical organization
of Web content, where the general “look and feel” of the
page remains the same for a long time and only certain
segments within this general page framework change.
Several studies have found benefits from such page frag-
mentation [6, 21, 5]. The next question is where on the
processing path from the origin server to the browser to
reassemble a fragmented page? Historically, page as-
sembly was first done at origin sites using technologies
like Active Server Pages [1], Java Server Pages [11],
PHP Hypertext Preprocessor [18], and Server-Side In-
cludes [20]. The motivation behind this approach in-
cludes simplification of maintenance of Web sites (e.g.,
templates can be stored as static files and populated in a
systematic way using data extracted from databases; dif-
ferent fragments can be conveniently generated by spe-
cialized application servers, etc).

Akamai implemented page reconstruction at theedge

Figure 1: An example of a page amenable to ESI encoding, with two “fragments,”newsandstocks, highlighted by
boxes.

servers, outside the origin Web site, and ultimately coau-
thored the ESI language specification [8]. Other vendors
supporting ESI include Speedera, a CDN that offers ESI
page assembly at the edge similar to Akamai, and IBM,
which offers edge servers supporting this functionality.

1.2 CSI: Addressing the Last Mile

ESI was proposed with the goal of assembling the
page on surrogates: reverse proxies that act on behalf
of the origin server in serving client requests, or edge
servers in the CDN parlance. The ESI overview [10]
claims that ESI “speeds up delivery of highly dynamic
Web-based applications,” in addition to the other goals
of reductions in network and server loads. However,
in this paper, we observe that page assembly at the
edge server does not improve the response time for
dial-up clients, which still represent a large majority of
Web users (79% of consumer subscribers as of March
2002 [17]) and, while declining, are projected to remain
a majority for the next several years (59% of all on-line
households in the US in 2006 [12]). The reason for the
lack of improvement in the dial-up environment is that
the dial-up link (referred to as “the last mile”) is often the
bottleneck that determines the download time, and edge
assembly does not affect the amount of content over that
link. Furthermore, depending on the nature of content,
ESI may actually increase the load on origin servers (see
Section 4).

Consequently, we implemented an alternative mech-
anism, which performs ESI page assembly directly in
the browser. We found that assembly in the browser can
dramatically reduce the user response time. Depending
on the nature of the page, we observed a significant re-
duction in the page display time for dial-up users with
56Kbps modems. Because page assembly occurs on the
client, we call our approachClient-Side Includes, orCSI.

Our mechanism requires no modification of browsers
or configuration of the browser machine. In particular,
it does not require such typical extension techniques as
configuring a new browser plug-in, or co-locating a cus-
tom proxy at the browser machine. At the same time,
our mechanism implements most of the language spec-
ification of ESI 1.0 and thus enables content providers
using ESI to switch to our mechanism without changing
their content.1

An important advantage of CSI is that, unlike edge-
based page assembly, CSI does not require the presence
of an edge server. CSI can be implemented between the
origin server and the browser directly. The existence of
the edge server, and indeed the use of a CDN by the
Web site, becomes an orthogonal issue. When a CDN is

1Our current implementation excludes support for the optional “in-
lining” feature and provides incomplete support for ESI variables.

used, CSI can utilize edge servers for scalable delivery
of page templates and fragments. Otherwise, browsers
can download them directly from the origin server. This
flexibility is important because inserting and removing
ESI mark-up, however simple it might appear, has a high
administrative overhead for large Web sites. With edge-
side page assembly, a decision to use ESI entails a com-
mitment for continued use of a CDN. With CSI, a Web
site is free to use or not use a CDN based on other fac-
tors, such as performance and price.

Moreover, when the content provider does use a
CDN, CSI can significantly reduce their CDN-related
costs. The reason is that CDNs charge content providers
for the traffic they deliver from their edge servers to
clients. CSI reduces this traffic by delivering only ESI
fragments, and not entire pages, from edge servers to
clients.

It is important to realize the difference between a
mark-up language and the mechanism for page assem-
bly. Both our proposed CSI and the existing edge-side
assembly mechanisms use the same mark-up language,
called ESI. We will be careful to distinguish between the
ESI languageand the ESIassembly mechanismunless
the meaning of the “ESI” term is clear from the context.

1.3 Our Contributions

While client-side assembly of a page from individual
components has been described before [6, 3], our paper
makes a number of contributions beyond prior work:

� While existing work used their own ad-hoc frag-
mentation languages, ours is to our knowledge the
first paper that implements client-side page assem-
bly using an existing widely supported language for
page fragmentation, which was independently pro-
posed for a different purpose. This is important be-
cause legacy content that already uses this language
can benefit from our approach, whereas previous
work required re-authoring the content.

� A significant concern with client-side implemen-
tations is the need to support the implementation
across a vast number of different browser types and
versions that co-exist on the Internet. We demon-
strate that this concern can be effectively addressed
without modifying the server code and without the
need to maintain multiple versions of the content.

� To our knowledge, ours is the first paper that raises
and addresses an issue of assessing whether and
which pages should use fragmentation on a Web
site.

� Finally, we provide details of our prototype imple-
mentation. While obviously dependent on the cur-

rent technology context, the lessons from our im-
plementation experience will be useful for readers
who implement other functionality on the clients.

2 ESI Overview

ESI is an open-standard XML-based markup lan-
guage that provides a mechanism to assemble a web
page from different components at the edge of a net-
work. Each component can be retrieved independently
and have its own cache control header, such as an expi-
ration time. Since many web pages have a mixture of
dynamic content (like stock quotes) and static content
(like a page template), this design facilitates caching of
web objects. Ideally, it helps reduce the congestion on
the network, reduces the processing overhead on origin
servers, and improves overall response time [10]. ESI
has been developed by a consortium and subsequently
proposed as a standard within the World Wide Web Con-
sortium [8]. It is primarily targeted at processing on sur-
rogates: reverse proxies that act on behalf of the origin
server in serving client requests.

1.<HTML>
2.<!-- esi
3. <H3>Stock quote for $fQUERY STRINGg</H3>
4. <esi:try>
5 <esi:attempt>
6. <esi:include src=/quote.html
7. alt=/delayedquote.html/>
8. <esi:choose>
9. <esi:when
10. test=”$(HTTPCOOKIEfTypeg)==premium”>
11. <esi:include src=/marketnews.html/>
12. </esi:when>
13. <esi:otherwise>
14. To subscribe to premium services
15. click here
16. </esi:otherwise>
17. </esi:choose>
18. </esi:attempt>
19. <esi:except>
20. <esi:include src=/sorry.html />
21. </esi:except>
22. </esi:try>
23. -- >
24.<esi:remove>
25. Please click on a
26. non-ESI version of this site
27.</esi:remove>
</HTML>

Figure 2: An example of ESI usage.

Figure 2 shows an example of an ESI template.

The<!--esi andesi:remove tags allow templates
that can be handled by non-ESI reverse proxies and
browsers. If our template is obtained by a browser di-
rectly or through a non-ESI reverse proxy, the browser
will assume that line 2 signifies the beginning of HTML
comments and will ignore lines 3-21. The browser will
further ignore unknownesi:remove tags and will
display an invitation to access a non-ESI version of the
site on lines 25-26. An ESI processor, conversely, re-
moves<!--esi tags from the final page, and treats
the text within theesi:remove block as comments.
Thus, lines 3-21 will be processed and the invitation to
access the non-ESI version will be elided.

Turning now to processing of lines 3-21, theat-
tempt block of lines 5-18 is executed first. Line 6 tries
to insert a fragment with relative URL “/quote.html”. If
for some reason this download fails (e.g., the data feed
was broken), a fragment “delayedquote.html” is tried
next. If this download, or any other download in the at-
tempt block, fails, theexcept block on lines 19-21 is
executed.

Lines 8-17 give an example of a conditional in-
clusion based on testing a request cookie. Presum-
ably the request Cookie header could contain “User-
Type=premium” field, in which case line 11 would in-
clude the market news fragment, otherwise the invita-
tion to subscribe to this service would be inserted into
the final page. Theesi:remove tag instructs the ESI
processor to remove the enclosed text (the invitation to
access non-ESI version of the site in our example) from
the final page. The client that does not understand ESI
would ignore the unknown tags and will display the text
on lines 25-26.

This example illustrates fragment inclusion, condi-
tional inclusion, and exception handling of ESI. Other
features include a possibility of nested ESI constructs
and access to environment variables. In particular, inclu-
sion in ESI can be nested: the “/marketnews.html” frag-
ment in our example can itself include other fragments
(or other ESI mark-up). Later versions of ESI also al-
low the template to declare and assign values to arbitrary
variables, which can then be accessed (e.g., tested for
conditional inclusion or inserted the assembled HTML
page) inside ESI fragments.

3 Our Approach

There are a number of ways to assemble a page from
various segments of information. The most common
way is to do it at the origin server as shown in Figure 3a.
With ESI, Akamai and others moved page assembly to
CDNs’ edge servers (Figure 3b). By reusing unchanged
content from edge servers’ caches, this approach reduces

B
ro

w
se

r

 E
dg

e
 s

er
ve

r

 O
rig

in
 s

er
ve

rGET /www.att.com

Full page

GET /www.att.com

Full page

(a) No ESI

B
ro

w
se

r

 E
dg

e
 s

er
ve

r

 O
rig

in
 s

er
ve

rGET /www.att.com

Full page Frag1

GET /frag1.html
B

ro
w

se
r

 E
dg

e
 s

er
ve

r

 O
rig

in
 s

er
ve

r

Frag1

GET /frag1.html

Frag1

GET /frag1.html

(b) ESI with edge−side page assembly

(c) ESI with client−side page assembly

Figure 3: Page assembly alternatives assuming only fragment Frag1 must be prefetched into the cache.

traffic outflow from origin sites and associated connec-
tivity costs for content providers. Also, depending on
the nature of content, edge assembly may reduce server
load (although it may also have an opposite effect as
discussed in Section 4). By reducing bandwidth con-
sumption and possibly server load, edge assembly can
improve the peak capacity of origin sites. However, intu-
itively, edge assembly would not reduce download times
for dial-up users during normal operation because the
determining factor in this case is the slow dial-up link.

A separate study would be needed to conclusively
verify this intuition. As a preliminary indication, we
used awget tool to download objects of around 100K
from some remote sites (listed in Table 1) to a local idle
server and compared the time it takes a dial-up client
to fetch these objects from the remote sites and the lo-
cal server. The client used a 56Kbps modem dialing
into a modem bank that shared a building and a LAN
with the local server. Thus, downloading from the lo-
cal server emulated the best possible scenario of CDN-
facilitated content delivery. As Table 2 shows, there
is no discernible difference in median download times
from remote and local servers except for the Wednes-
day experiment with Italy, which had two extremely high
download times, 44 and 65 seconds.2 We speculate that

2The large difference in download times between the three objects
reflects the different degree of compressibility, since modems use hard-

these two downloads reflect dropped connections by ori-
gin servers.

We propose to push page assembly further, to the ul-
timate network edge – the client itself. In ourCSI ap-
proach, illustrated in Figure 3c, the client downloads
only changed fragments, thereby reducing both the traf-
fic that flows out of the origin server and that is trans-
mitted over the last-mile link connecting the client to the
Internet.

Just like edge assembly, CSI reduces connectivity
costs for the content provider and possibly improves
the origin site peak capacity. But it also improves the
user experience for those with dial-up or other low-
bandwidth connections. Furthermore, as already dis-
cussed in the Introduction, unlike edge assembly, CSI
is applicable to Web sites regardless of whether or not
they use CDN servers, and it reduces CDN-related costs
for those Web sites that do use CDNs.

4 ESI or not ESI?

Before we explore different alternatives for ESI
page assembly, an important question is how a content

ware compression. As an indication of compressibility, the object size
aftergzipcompression remained almost unchanged for the Italian ob-
ject, reduced slightly to over 99K for the Cornell object, and reduced
by more than the factor of 3, to just over 30K, for the Berkeley object.

Location URL Size
Italy 131.114.9.184/ luigi/rlc99.ps.gz 96983
Berkeley 169.229.60.105/ helenjw/papers/icc.ps 96176
Cornell 128.84.154.132/Info/Projects/Spinglass/publicpdfs/Randomized%20Error.pdf115788

Table 1: Objects used in the comparison of download times. To factor out DNS latency, host names have been
pre-resolved into IP addresses.

Friday Wednesday
Object local remote reduction local remote reduction
Italy 17.5 17.8 2% 18.4 22.2 17.1%
Berkeley 8.8 8.7 -1% 9.3 9.7 4.1%
Cornell 19.9 19.9 0% 21.0 21.0 0%

Table 2: Median download times (in seconds) from remote sites and a local server. The table also shows the percent-
age of improvements due to proximity of the local server.

provider could decide if ESI encoding would be benefi-
cial in its case. The answer depends on what the provider
is trying to optimize.

� If the goal is to improve the end user experience,
then ESI encoding is beneficial if it allows the con-
tent provider to move a substantial portion of con-
tent to templates or fragments with long TTLs. For
poorly connected clients, the benefits are greatest
if CSI assembly is used rather than ESI assembly,
since traffic is reduced over the bottleneck link.

� If the goal is to reduce bandwidth consumption
on the link from the Web server to the network,
the condition that a substantial portion of content
belong to ESI objects with long TTL will ensure
that ESI is beneficial, regardless of the assembly
method.

� Finally, if the goal is to increase the effective server
capacity, the answer depends on the nature of the
content. The following example elaborates upon
this issue.

As an extreme example of a situation where ESI
would be detrimental to server capacity, consider a 20K
page that has three mutable regions of 2K each that
change every minute. According to the ESI literature,
this page seems like a good candidate for ESI encod-
ing. However, for every HTTP request that reached the
server without ESI, there will be either four requests (if
it is a brand new client) or three (if is it a repeat client
with a cached template). Overall, in the best-case sce-
nario for ESI, when all requests are due to repeat clients,
the bandwidth consumption out of the server reduces by
a factor of three (20K=(3 � 2K) = 3:3), but the number
of requests to the server increases three-fold.

If the bottleneck is the server load, the overall effect
can easily be detrimental. Indeed, the server load gener-

ated by a request includes a fixed component that does
not depend on response size and a variable component
that is proportional to the response size. The relative
contribution of these components depends on the nature
of content (e.g., static files vs. CGI scripts in C vs. CGI
scripts in Perl vs. fast CGI or servlets), and whether
or not persistent connections are used. As one indica-
tion, we tested the request throughput of Apache 2.0.40
on a 733MHz NetBSD machine and, using static files
with persistent connections, the throughput for a 20K
page was reduced by only a factor of 2 as compared with
the throughput for a 2K page – 1150 vs. 2274 requests
per second.3 So, in our example, with this workload,
ESI would prove detrimental for effective server capac-
ity even though it reduces the number of bytes served.

4.1 Guidelines

To generalize the above example, we propose the fol-
lowing procedure to infer the overall effect of reduced
bandwidth consumption and increased request rate on
the origin server capacity. We will use Figure 4 to illus-
trate the procedure, and we will explain various elements
in this figure as we move along.

� Stress-test the server to see how its request through-
put depends on the size of the response and plot
the result. For example, the descending solid line
on Figure 4 shows the throughput vs. response
size curve obtained in our experiment with static
files mentioned earlier. Call this acapacity curve.
In obtaining the capacity curve, use resource types
that approximate resources to be used in practice
(e.g., Figure 4 was obtained using static files, which
would be appropriate for sites like att.com, where

3A very similar trend can be seen in results by Nahum et al. for a
variety of Web servers – see Table II in [16].

0 5 10 15 20 25 30 35 40
600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

size (KB)

th
ro

ug
hp

ut
 (

re
q/

se
c)

(|P|,T)

(|F|,T)
ESI

max

max

orig

(|F|,KT) orig

max

*

Figure 4: Effect of ESI encoding on server load.

even the most mutable fragments are only updated
periodically; for other resources, servlets or CGI
scripts might be more appropriate).

� Let jP j be the size of the original page in ques-
tion, that is, the page for which we must decide
whether to use ESI encoding. Estimate (we will
discuss how later) the average size of ESI objects,
j �F j, that would be shipped from the server if the
page were ESI-encoded and by how many times the
request rate would increase,K. That is, ifTorig is
the request rate for the original page,KTorig will
be the total request rate for the page template and
fragments after it is ESI-encoded. Note thatj �F j is
the average over server responses rather than the
number of fragments on the page, so a more fre-
quently requested fragment contributes more to the
average.

� Draw two vertical lines in the throughput vs. object
size plane, corresponding to the original and aver-
age ESI-encoded response size,jP j and j �F j. For
instance, the two dashed vertical lines in Figure 4
correspond to the case where the original page size
is 20K and the average ESI-encoded response size
will be 10K. Let (jP j; Tmax

orig) and j(�F j; Tmax
ESI) be

the points where these vertical lines intersect with
the capacity curve.Tmax

orig represents the server ca-
pacity for the original page andTmax

ESI gives the
server capacity for the ESI-encoded page.

� We know that, whatever the request rate for the
original page was, the request rate for the ESI ob-
jects after ESI encoding will beK times higher.
In particular, the maximum sustainable demand for
the original page (corresponding toTmax

orig request
rate) results in the request rate for the ESI objects

that is equal toTafter = K � Tmax
orig . If the re-

quest rateTafter = Tmax
ESI , then the server will re-

main fully utilized after ESI-encoding, and its ef-
fective capacity will remain the same. IfTafter <
Tmax
ESI , the server utilization will be below capac-

ity and hence it could serve some additional re-
quests. In other words, ESI encoding would in-
crease the effective capacity of the server. Finally,
if Tafter > Tmax

ESI , ESI encoding will reduce the
effective capacity. Graphically, we plot the point
(j(�F j;K � Tmax

orig) on the coordinate plane. If this
point is above the throughput curve, ESI encod-
ing of pageP will reduce the effective server ca-
pacity, otherwise the capacity will increase. For
example, in Figure 4,Tmax

orig is 1150 requests per
second. AssumingK = 1:25, the same demand
that drove the server to capacity would result in
1150� 1:25 = 1437:5 requests per second for ESI
objects, which falls below the capacity curve and
thus indicates that ESI encoding of this page would
be beneficial from the perspective of server capac-
ity.

4.2 Estimating j �F j andK

To estimatej �F j andK, the most general technique is
a trace simulation using the Web server access log. The
simulator should translate each request for pageP in the
log into requests for the template and every fragment,
and then filter out repeated requests from the same client
that would hit in the client’s cache, taking into account
TTLs of individual ESI objects. The remaining requests
could then be used to calculatej �F j and the new request
rate.

However, some special cases, such as the case where
every fragment has a non-zero TTL, allow analytical es-
timations. Consider a Web site that uses a CDN and a
pageP of sizejP j that containsn fragments,F1; :::; Fn,
with each fragmentFi having a lifetime ofti seconds
and sizejFij. Let tm be the smallest lifetime of all frag-
ments, withtm greater than 0.

With ESI, in the best case of all repeat clients, the
template is (almost) never sent. Assume that pageP is
popular enough so that the request rate for it at each of
the CDN’s edge servers is much higher than fragment
lifetimes. (After all, unpopular pages do not matter from
the perspective of load.) Then, without ESI, an edge
server will send1=tm requests per second. With ESI, the
edge server will send

Pn
i=1(1=ti) requests per second.

Since the same is true for all edge servers, the request
rate is increased by a factor of

K = [

nX

i=1

(1=ti)]tm:

<HTML>
<BODY>
<SCRIPT SRC=”csi.js”></SCRIPT>
<SCRIPT> run(“pagetemplate.html”);</SCRIPT>

</BODY>
</HTML>

Figure 6: The wrapper for Javascript/ActiveX imple-
mentations of CSI.

Similarly, the amount of data served per second to the
edge server is

Pn
i=1(jFij=ti) and therefore the average

response size is

j �F j =

Pn
i=1(jFij=ti)Pn
i=1(1=ti)

:

5 Implementation

CSI is a mechanism for assembling a page from indi-
vidual ESI components at the browser. Any implemen-
tation of CSI must be able to download page compo-
nents, process them to assemble the page, and tell the
browser to display the result. We implemented CSI us-
ing JavaScript for assembling the page. Our implemen-
tation follows the framework shown in Figure 5. When
a CSI-capable client requests a page, the server returns
a small wrapper (150 bytes plus headers). The wrap-
per invokes a Javascript page assembler and passes it
the URL of the ESI template corresponding to the re-
quested page. The page assembler then downloads the
template and any ESI fragments it includes and assem-
bles the page.

It might appear that CSI involves much overhead to
download the page assembler script and the page wrap-
per. However, the assembler script is generic for all CSI
content from any Web site. Thus, once a client down-
loads it, it remains in its cache and is invoked locally.
This is akin to installing a piece of software on the client
except this software is installed transparently the first
time it is used. The wrapper is immutable for a given
page but not across pages because it includes the URL
of the requested page. Thus, the client does incur an
overhead of fetching the wrapper when it accesses the
page for the first time. Subsequent accesses to this page
will not incur this overhead because they will reuse the
cached wrapper even if the page itself has changed. Be-
cause the wrapper is very small, the above overhead is
mostly due to round-trip packet latency and not band-
width consumption.

We implemented CSI for Microsoft’s Internet Ex-
plorer browser using ActiveX to download page com-
ponents. In principle, Java’s LiveConnect facility can be

used instead, except we in the past encountered incom-
plete support of this feature in MSIE [7]. The imple-
mentation uses the wrapper shown in Figure 6. In this
wrapper, the csi.js script implements the page assembler,
andrun is the function in the assembler that starts the
processing. The assembler downloads page components
using the code fragment below:
httpDoc = new ActiveXObject(”Microsoft.XMLHTTP”);
httpDoc.open(”GET”, url, false);
httpDoc.send();
if (httpDoc.status != 200)<Process exception>

This implementation requires that ActiveX be en-
abled in the browser. Although this is a default config-
uration for MSIE, some users disable ActiveX due to
security concerns, in which case we resort to a fall back
approach that we also use for non-IE browsers. We dis-
cuss this fall-back approach next.

5.1 Supporting Non-IE Browsers

Our implementation of CSI only works for Microsoft
Internet Explorer (MSIE). Although MSIE now occu-
pies the overwhelming majority of the browser market,
an important issue we need to address is how to deal with
non-MSIE browsers and various early versions of the
MSIE browsers that might not be compatible with the
Javascript or ActiveX features used by our implemen-
tation. One could attempt to support different CSI im-
plementations for all possible browsers. This would be
an administrative nightmare and a significant disadvan-
tage over edge assembly of ESI pages which is browser-
agnostic. Alternatively, a Web site could maintain two
versions of the content, one with ESI markups for CSI-
capable clients and the other for other clients. However,
maintaining the content in two versions is unacceptable
to many content providers due to administrative costs.

Our approach to this problem is to implement CSI
for the prevalent browser only (recent versions of MSIE)
and to resort to edge-side or server-side page assembly
for all other browsers. This approach can be imple-
mented in two ways, which decide between CSI and ESI
either at the client or at the server.

The client-side solution adds a test for browser capa-
bilities to the wrapper and redirects the non-CSI capable
browser to the ESI script with the template URL as a pa-
rameter. Figure 7 shows an example of such wrapper for
the ActiveX CSI implementation. If the browser does
not support Javascript, the wrapper invites the user to
click for the ESI script. Although awkward, this seems
acceptable as Javascript is virtually universally enabled.
The disadvantage of the client-side solution is that it in-
creases the size of the wrapper.

The server-side solution is enabled by HTTP’s User-
agent header, which nearly all browsers include with

Browser Edge server Origin server

GET /www.att.com

Obtain fragments using
 Active X

Obtain fragments using
 HTTP

Wrapper

GET CSI Javascript

(cacheable,immutable
 for given page)

(cacheable, generic
 for all pages)

Typically satisfied
from client’s cache

Figure 5: CSI interactions for a browser that never before accessed any CSI-enabled page.

<HTML>
<BODY>
<SCRIPT>
<! ��

if (!window.ActiveXObject)
window.location=”/cgi-bin/esi.pl/template.html”

//-- >
</SCRIPT>
<SCRIPT SRC=”csi.js”></SCRIPT>
<SCRIPT>
<!--

run(“template.xml”);
//-- >
</SCRIPT>
If your browser does not support Javascript please click
 here

</BODY>
</HTML>

Figure 7: The wrapper choosing between client- and
server-side page assembly.

their requests. If the server processing the request (the
origin server or edge server if CDN is used) can deter-
mine from this header that the client is CSI-capable, the
server returns the CSI wrapper. Otherwise, the server
reconstructs the page itself and returns the complete
HTML page. This client-specific request processing can
be done without any modification of server code. On
Apache, it can be achieved by an appropriate server con-
figuration. One configuration method, which we tested,
uses Apache’s URL rewriting [14]. Here, a requested
URL is rewritten into different internal URLs depending

on the value of the User-agent field in the HTTP request
header. The disadvantage of the server-side solution is
that it does not work well with client Web proxies. The
server now returns different responses for the same re-
quest based on the nature of the browser. If a proxy has
both CSI-capable and CSI-incapable clients, the proxy
should also distinguish between these responses and not
send a CSI response to a CSI-incapable browser. The
server can ensure this behavior by adding “Vary: User-
agent” HTTP header to its responses. Unfortunately,
some proxies do not cache responses with this header,
while those that do will not share a cached response
amongany non-identical browsers even if all of them
support CSI (such as different versions of MSIE). In ei-
ther case, the effectiveness of proxy caching would be
reduced.

5.2 Discussion

There are a number of other ways to implement the
CSI functionality. Possible approaches include using
pure Java, Javascript/Java combinations; pure Javascript;
local proxy caches; and XML with XSLT transforma-
tions.

In the pure Java approach, the exposed URL of an
ESI-encoded page would return a small wrapper object,
which would invoke the applet that implements CSI,
passing to this applet the URL of the template. The
applet would fetch the template and assemble the page,
downloading page fragments as needed, and then dis-
play the page. The applet itself would be generic for any
ESI-encoded page and would typically be found in the
browser cache. The Javascript/Java combination would

be similar, except the wrapper would invoke a Javascript
module rather than the applet, page parsing and assem-
bly would occur in that Javascript module, and Java
would only be used to download the template and frag-
ments by means of the Java’s LiveConnect facility. We
chose ActiveX over Java in our initial implementation
because the former is better supported in MSIE. Because
MSIE constitutes the vast majority of browsers, any per-
formance optimization must apply to this browser in or-
der to have any practical effect.

Pages could be generated on a client machine in a
separate application, as is done with CONCA [19]. This
approach requires explicit action on the part of users,
and is therefore not suited to CSI in its current form.

A subset of ESI functionality can be implemented
using XML and XSLT. The XML/XSLT implementa-
tion would treat ESI tags as XML elements and provide
XSLT procedures to process these elements by replacing
them with appropriate ESI fragments. The advantages
of this approach is that the XML/XSLT implementation
does not require a separate wrapper and that XML/XSLT
is being adopted across most browsers. However, its dis-
advantage is that it does not have access to HTTP-related
variables such as request header fields. As a result, it can
only implement a subset of the language.

6 Performance

In this section, we measure the performance of
ESI/CSI. The measurements were conducted using a set
of synthetic pages and two real pages. The synthetic
pages were HTML files of specified sizes with randomly
generated characters. When ESI encoding is used, these
pages are split into a template and a specified number of
fragments. This allows us to study performance trends
of ESI/CSI in a systematic manner by varying the degree
of caching for the CSI JavaScript, the template, and the
fragments. In this experiment, we generated synthetic
pages of 20K, 60K, and 100K bytes. Each page consists
of a template and four fragments. The template has 80%
of bytes in the page, and each fragment has 5%. As a
target for comparison, we also generated a static page
for each page size by assembling the template and its
fragments offline.

For the real pages, we chose AT&T’s entry page,
http://www.att.com , and the Wall Street Jour-
nal’s entry page,http://online.wsj.com/ . We
downloaded a copy of each page and its embedded ob-
jects to a local Apache server and then manually split
the page into an ESI template and a set of fragments.
The AT&T page has two fragments (as shown in Fig-
ure 1): news headlines and stock quotes. The Wall Street
Journal page has three fragments: time of the day, news

Page Static page with CSI with ESI
synthetic 20K 240 320 380
synthetic 60K 300 431 441

synthetic 100K 441 491 501
AT&T page 306 351 430

WSJ page 571 676 831

Table 3: Overhead of CSI and ESI processing. All num-
bers are in milliseconds.

headlines, and stock quotes.
The server used in the experiments runs on a 864Hz

Pentium III with 256 MBytes of memory. The client
computer is an IBM T22 Thinkpad laptop with a 1GHz
CPU and 128MB memory running Windows 2000.

6.1 Overhead

We first measure the overhead of ESI and CSI pro-
cessing. To do so, we compare the display time of an
ESI-encoded page using server-side assembly or client-
side assembly with that of the corresponding static page.
We implemented server-side assembly as a Perl script
with FastCGI. Since our software resorts to server-side
assembly for clients considered CSI-incapable, we want
to make sure the overhead is acceptable. The experi-
ment was conducted over an 100Mbps Ethernet and was
repeated 30 times. In repeat downloads, all page com-
ponents were fetched from the browser cache. Table 3
shows the median display time for different synthetic
pages as well as for the two real pages. All numbers
are in milliseconds.

As can be seen from the table, the overhead for
server-side assembly is small: below 300ms in all cases.
This overhead can be significantly reduced by reimple-
menting page assembly in C. However, given that only
very few clients will experience it, we consider it to
be already acceptable. We should also note that in re-
ality these pages would not be downloaded from static
files anyway. Rather, they need to be assembled on the
server using some mechanism such as server-side in-
cludes. Thus, our measurements provide an upper bound
of the overhead.

The table also indicates that the overhead for CSI as-
sembly is under 150ms. As we will see in the next sub-
section, this overhead is more than offset by savings in
transfer times for dial-up clients. While for broadband
clients it might result in a slight increase of the overall
download time, we believe it is justified by a significant
reduction in download time for dial-up clients.

20K 60K 100K
0

2

4

6

8

10

12

14

16

18
di

sp
la

y
tim

e
(s

ec
)

Static page
ESI
1st CSI page
1st access
temp cached
1 frag cached
2 frags cached
3 frags cached
4 frags cached

Figure 8: Download time of synthetic pages over dial-up
links.

6.2 Display Time

Next we measure the time it takes for a client to re-
trieve a page from the Web server and display it in its
browser over dial-up links with 56K modems. The re-
sults for synthetic pages are shown in Figure 8. The
figure indicates that the display time for ESI is slightly
higher than that of the static page due to the processing
overhead of the ESI Perl script. The figure also shows
that there is a substantial penalty in performance when
a client invokes CSI for the first time (denoted as “1st
CSI page” in the figure). In this case, the browser needs
to download the CSI JavaScript, the wrapper page, the
template, and all the fragments. For 20K pages, it in-
creases the display time by as much as 48%. Since the
CSI script is the same for all pages, it can be served from
the browser cache afterward. Even so, the first access to
an CSI-enabled page (denoted as “1st access”) may still
incur an overhead due to the download of the wrapper
page and the processing of CSI script inside the client’s
browser. However, during subsequent visits to the page,
the template is likely to be served out of the cache since
it seldom changes. Consequently, only those fragments
that have changed need to be fetched from the server.
As can be seen from the figure, this results in substantial
reduction in display times across all page sizes.

The results for the AT&T page are shown in Figure
9. The figure indicates that CSI improved the median
download time by about 25%, from 3450ms to 2569ms,
assuming that the template is cached, which would be
the typical case. Note that the performance improve-
ment for the AT&T page is not as substantial as that for
synthetic pages. We discovered that this is because the
AT&T page is more compressible than randomly gener-

Without Expires Header With Expires Header
0

1

2

3

4

5

6

D
is

pl
ay

 ti
m

e
(s

ec
)

Static page
ESI
1st CSI page
1st access
Template cached
1 frag cached
2 frags cached

Figure 9: Download time of the AT&T entry page over
dial-up links.

ated synthetic pages.
We further observed that the AT&T site (like many

other Web sites) does not specify expiration times for
its embedded objects. MSIE in this case sends “If-
Modified-Since” requests to validate these objects on
each access. Since these objects (mostly images) do not
change often, we configured the local server to provide
expiration times for them. Then we repeated the exper-
iments to measure the download time for what could be
considered a “properly configured” Web site. With ex-
plicit expiration times, all values reduced accordingly
and CSI’s relative improvement grew to 45%. Like in
synthetic pages, the first access to the AT&T page may
have a high overhead due to the download of the wrapper
page, the template, and all the fragments.

Figure 10 shows the results for the Wall Street Jour-
nal page. When the template was served from the
browser cache, CSI reduces the display time by about
27%. If expiration headers were provided for the embe-
ded objects, the improvement becomes 38%. Note that
some of these objects have query strings in their URLs.
This causes MSIE to send validation requests even if
they have not expired.

6.3 Bandwidth Reduction

An important goal of our project is to reduce the
amount of bytes that need to be transmitted over the last
mile. Table 4 shows the sizes of the two real pages and
their components with ESI-encoding.4 The table indi-
cates that 93% of the bytes in the AT&T page and 71%
of the bytes in the Wall Street Journal page are in their

4The total size of the page template plus all its fragments is slightly
higher than the size of the full page. This is due to some ESI encoding
statements we added into the page.

Without Expires Header With Expires Header
0

2

4

6

8

10

12

14

16
D

is
pl

ay
 ti

m
e

(s
ec

)
Static page
ESI
1st CSI page
1st access
Template cached
1 frag cached
2 frags cached
3 frags cached

Figure 10: Download time of the Wall Street Journal
entry page over dial-up links.

AT&T Page WSJ Page
full page 30731 (100%) 79608 (100%)
page template 28661 (93%) 56324 (71%)
current time N/A 55 (0%)
news headlines 927 (3%) 20161 (25%)
stock quotes 1231 (4%) 3166 (4%)

Table 4: Sizes of the AT&T page and the Wall Street
Journal page with ESI encoding.

templates. Hence, client-side assembly of these pages
can achieve significant reduction in bandwidth when the
templates are in the browser’s cache. Note that the ac-
tual saving observed in practice is slightly lower than in-
dicated in the table because of the extra bandwidth con-
sumed by HTTP requests for the page components and
by HTTP headers carried by responses with the compo-
nents. We estimate that this adds about 400 bytes for
each fragment that is not in the cache.

7 Limitations and Future Work

The need to download the wrapper increases latency
when the browser accesses the page for the first time and
hence does not have the wrapper in its cache. Our partic-
ular implementation downloads fragments into the CSI
assembler script sequentially and synchronously with
template parsing. This may slow down page assembly
for pages containing a large number of fragments that
are not locally cached. Furthermore, MSIE seems to al-
ways validate any locally cached object that does not
have an explicit expiration time, and in our case these
fragment validations would be sequential. Thus, CSI
will bring higher benefits to those Web sites that supply

Expires headers for their fragments.
A limitation not specific to our implementation stems

from the fact that Javascript is allowed to transparently
download objects only from the same Web site from
which the original page (that invoked the Javascript) was
downloaded. In other case, this means that the tem-
plate and all fragments must come from the same Web
site. This disallows fragment sharing among Web sites.
Edge-side assembly is not restricted by existing browser
realities and therefore allows fragment sharing.

Some pages that are well suited to ESI assembly may
not be amenable to CSI. Specifically, pages that are ac-
cessed by very many clients, but only once per client
over a long interval, may be generated efficiently within
a CDN but slow down individual CSI clients due to the
“first access” downloads discussed in the previous sec-
tion.

As future work, we would like to extend the ESI lan-
guage with some features from the HPP markup lan-
guage [6], such as the loop construct. This would expand
the applicability of ESI to more content, most notably
responses from search engines.

8 Related Work

Numerous language constructs exist for including
fragments into an HTML page. IMG and APPLET
HTML tags tell the browser to insert, respectively, an
image or an applet to the HTML document. The OB-
JECT tag allows an insertion of an object of an arbitrary
type. These tags, however, only allow a straightforward
inclusion. In particular, they allow no conditional in-
clusion, no access to environment variables and HTTP
headers, and no user-defined variables to pass data from
the containing page to included objects. The same is true
of the Xinclude [22] construct in XML and XML with
XSLT transformation. The ESI language allows much
greater flexibility in specifying how the final page should
be assembled.

Much more sophisticated inclusion mechanisms than
the above-mentioned tags exist for use on the server-
side. ASP, JSP, PHP, and Server-Side Includes are pure
server-side tools. Unlike CSI, the page using these lan-
guage constructs is assembled at the server and shipped
to the client in its entirety. Thus, the client only sees
the final HTML page without any inclusion constructs.
The primary goal of these tools is to simplify the devel-
opment and management of the Web site (for example,
to provide a systematic way of organizing a database-
driven Web site), and not to improve the performance of
accessing the site. The purpose of the ESI language, and
the CSI assembly mechanism in particular, is to improve
performance.

The closest approach to CSI are HTML Pre-
Processing (HPP) [6] and the<bigwig> project [3].
HPP is geared towards the case where a page contains
access-specific information that changes on every ac-
cess. In particular, HPP distinguishes only two kinds
of content on the page - the static template and (possibly
disjoint) dynamic portions that must always be down-
loaded from the server. The ESI language allows the
containing page to specify multiple fragments, each with
its own caching characteristics. At the same time, some
language features from HPP, most notably its loop con-
struct, would benefit the ESI language. In terms of page
reassembly, HPP was implemented as a browser plug-in,
thus requiring browser configuration. In contrast, CSI
requires no such configuration.<bigwig> is similar to
CSI in that it uses Javascript for page reconstruction on
the client. However, it is based on its own language for
Web service specification, and is applicable only to ap-
plications created with that language.

Active Cache [4] and CONCA [19] are two exam-
ples of dynamic content generation within intermedi-
aries such as proxy caches. Unlike ESI page assem-
bly, which uses surrogates associated with the content
provider, these systems permit dynamic content to be
generated closer to end users, and possibly under their
control. In particular, CONCA permits user profiles to
assist with transcoding content formats to a user’s speci-
fications. With CSI, our emphasis is to generate content
dynamically with an established language (the ESI lan-
guage) and existing browser technologies, Javascript and
ActiveX.

A recently emerged notion of “utility computing”
aims at providing an even higher degree of flexibility in
page construction. ACDN [13] and Vmatrix [2] are ex-
amples of research efforts, and Ejasent [9] is one start-up
commercial venture in this area. Rather than providing a
mark-up language to insert dynamic fragments, the idea
of utility computing is to allow entire applications to run
at CDN servers and to let these applications migrate or
be replicated among CDN servers as needed by changing
demand. Utility computing is a pure edge-side approach.
It aims at replicating applications rather than optimizing
data transfer over the last mile. Thus, while this tech-
nology does overlap with edge-side page assembly, it is
complimentary to CSI.

Finally, like previous systems like HPP and Conca,
the benefits of CSI should be evaluated relative to an-
other emerging technology, delta-encoding [15]. Send-
ing updates to web pages, rather than the pages them-
selves, can save bandwidth and improve response time;
it can be deployed over the last mile, between the user
and a proxy; between a proxy (including a CDN) and a
content provider; or across the entire connection. For the
last mile, CSI has the advantage of transparency, since

there need be no special support in the browser or a lo-
cal proxy. It also does not require synchronization be-
tween clients and servers to specify base versions against
which to compute deltas, and does not require the same
content to be transmitted for different pages [19].

9 Conclusions

Numerous methods for template-based page con-
struction exist. These methods are typically oriented
toward simplifying content generation and management
are intended to be executed at the origin site before the
page is shipped out. The ESI language was proposed
with the goal of shifting template-based page assembly
to the network edge. This paper argues for shifting such
page assembly all the way to the browser and shows that
such a shift can occur transparently to browsers, while
supporting most of the ESI language.

Our proposed client-side page assembly (CSI) not
only reduces the traffic served by origin servers, it also
reduces the traffic flowing into the client over the last-
mile connection. In the case of dial-up clients, this trans-
lates into a significant reduction in end-user response
times. Furthermore, for content providers who use CDN
services, CSI can significantly reduce their CDN-related
costs by delivering only ESI fragments, and not entire
pages, from edge servers to clients.

Our performance study shows that the overhead of
CSI assembly is small and is more than offset by the
reduction in transmission time over the last mile. Our
micro-benchmark pages, as well as experiments with
two sample real pages, showed very significant net re-
ductions in page time-to-display. Edge-side page assem-
bly overhead, while similar to CSI, occursin additionto
the last mile transmission time. It therefore only adds to
the total time-of-display of ESI pages, assuming that the
last mile is the bottleneck.

Acknowledgements

We wish to thanks Walter Sturm for encouragement
to pursue this project. We are grateful to Irina Rabi-
novich and Mary Fernandez for help with our Javascript
and XML questions. We would also like to thank Jim
Challenger and the anonymous referees for their helpful
comments.

References

[1] Guide to active server pages.
http://msdn.microsoft.com/lib-
rary/default.asp?URL=/lib-
rary/psdk/iisref/aspguide.htm .

[2] Amr Awadallah and Mendel Rosenblum. The vMatrix:
A network of virtual machine monitors for dynamic con-
tent distribution. InProceedings of the 7th International
Workshop on Web Content Caching and Distribution,
2002.

[3] C. Brabrand, A. Møller, S. Olesen, and M.I.
Schwartzbach. Language-based caching of dynam-
ically generated HTML.World Wide Web, 5(4):305–323,
2002.

[4] Pei Cao, Jin Zhang, and Kevin Beach. Active cache:
Caching dynamic contents on the Web. InProceedings
of the 1998 Middleware Conference, September 1998.

[5] Jim Challenger, Arun Iyengar, Karen Witting, Cameron
Ferstat, and Paul Reed. A publishing system for effi-
ciently creating dynamic web content. InProceedings of
INFOCOM, pages 844–853, 2000.

[6] Fred Douglis, Antonio Haro, and Michael Rabinovich.
HPP: HTML macro-preprocessing to support dynamic
document caching. InProceedings of the Usenix Sympo-
sium on Internet Technologies and Systems, pages 83–94,
December 1997.

[7] Fred Douglis, Sonia Jain, John Klensin, and Michael Ra-
binovich. Click-once hypertext: Now you see it, now you
don’t. In Proceedings of the Second IEEE Workshop on
Internet Applications. IEEE, July 2001.

[8] Edge Side Includes W3C submission.
http://www.w3.org/Submission/2001/09/ ,
September 2001.

[9] Ejasent, inc.http://www.ejasent.com .
[10] ESI - Accelerating E-Business Applications: Overview.

http://www.esi.org/overview.html ,
September 2002.

[11] JSP: Java server pages.
http://java.sun.com/products/jsp/ .

[12] Jupiter internet access model (US only). Broadband.
Jupiter Media Metrix, August 2001.

[13] P. Karbhari, M. Rabinovich, Z. Xiao, and F. Douglis.
ACDN: a content delivery network for applications. In
Proceedings of the ACM SIGMOD Conference, Demon-
strations track, page 619, 2002.

[14] Module modrewrite URL rewrit-
ing engine. http://httpd.apa-
che.org/docs/mod/mod rewrite.html .

[15] Jeffrey Mogul, Fred Douglis, Anja Feldmann, and Bal-
achander Krishnamurthy. Potential benefits of delta-
encoding and data compression for HTTP. InProceed-
ings of the ACM SIGCOMM Conference, pages 181–194,
September 1997.

[16] Erich M. Nahum, Tsipora Barzilai, and Dilip Kandlur.
Performance issues in WWW servers.IEEE/ACM Trans-
actions on Networking, 10(2):2–11, Feb 2002.

[17] Network traffic & revenue analysis. market update. RHK,
Inc., July 2002.

[18] PHP: Hypertext preprocessor.
http://www.php.net/ .

[19] W. Shi and V. Karamcheti. CONCA: An architecture
for consistent nomadic content access. InProceedings

of the Workshop on Cache, Coherence, and Consistency
(WC3’01), June 2001.

[20] Apache tutorial: Introduction to server side includes.
http://httpd.apache.org/docs/how-
to/ssi.html .

[21] Craig E. Wills and Mikhail Mikhailov. Examining the
cacheability of user-requested Web resources. InPro-
ceedings of the 4rd Web Caching and Content Delivery
Workshop, April 1999.
http://workshop99.ircache.net/Papers/wills-final.ps.gz.

[22] Xinclude. http://www.w3.org/TR/xinclude .

