
CSP: A Novel System Architecture for Scalable Internet and Communication
Services

Hemal V. Shah, Dave B. Minturn, Annie Foong, Gary L. McAlpine, Rajesh S.

Madukkarumukumana, and Greg J. Regnier
Enterprise Architecture Lab

Intel Corporation
5200 N.E. Elam Young Parkway

Hillsboro, OR 97124
{hemal.shah, dave.b.minturn, annie.foong, gary.l.mcalpine, rajesh.sankaran, greg.j.regnier}@intel.com

Abstract

The boundary between the network edge and the front-end servers of the data center is blurring. Appliance vendors
are flooding the market with new capabilities, while switch/router vendors scramble to add these services to their
traditional transport services. The result of this competition is a set of ad-hoc technologies and capabilities to
provide services at the network edge. This paper describes the Comm Services Platform (CSP); a system
architecture for this new ‘communication services tier’ of the data center. CSP enumerates a set of architectural
components to provide scalable communication services built from standard building blocks that utilize emerging
server, I/O and network technologies. The building blocks of CSP include a System Area Network, the Virtual
Interface Architecture, programmable network processors, and standard high-density servers.

1. Introduction

Edge
Services

Front-end
Apps

Mid-tier
Apps

Back-end
Apps

Internet

Enterprise
Network

Focus
of CSP

Figure 1: The N-Tier Datacenter

The three-tier data center model is well known. The
first tier consists of front-end servers that provide
web, messaging and various other services to clients
on a network, the middle tier handles transaction
processing and implements the data center business
logic, while the back-end consists of databases that
hold persistent state. We see a fourth tier emerging
in this model between the network and the front-end
servers. This ‘communication services tier’ provides
an ever-richer set of functions. These services
operate on network traffic at and above the network

layer, with well-known examples such as load
balancing (at multiple levels), security (firewall and
SSL), caching and others. These services intend to
increase the responsiveness and throughput of the
data center by distributing and offloading these
functions from the server farm at the front end of the
data center.

This paper describes a novel system architecture for a
scalable, high-performance communication services
tier based on emerging server and network
technologies that are, or will become, standard
building blocks. These technologies include System
Area Network (SAN) technology, the Virtual
Interface Architecture [20], programmable network
processors, and standard high-density servers. We
also describe a new core service, the SAN Proxy
service that offloads and decouples the Transmission
Control Protocol /Internet Protocol (TCP/IP)
processing from the front-end servers, thus improving
the performance of all of the services built on top of
TCP/IP.

The organization of the rest of the paper is as follows.
Section 2 discusses observations and motivations
behind our research. Section 3 provides an overview
of the CSP system architecture. Solutions and
techniques developed in CSP are presented in Section
4. Initial evaluation of CSP using a system prototype
and simulation results are provided in Section 5.

Finally, Section 6 summarizes our findings thus far
and outlines possible future work.

2. Observations and Motivations

Evolution at the data center network edge has been
driven primarily by demands to make web services
more scalable, efficient and available. The most
common solution applied to the scaling problem is to
construct systems comprised of a large number of
front-end servers (web server farms) behind load or
content distributors. These systems typically use
commodity servers for web services and specialized
appliances, commonly termed “web-switches”, as
distributors of web service requests. The connectivity
between web-switches and front-end servers is
predominately on a commodity LAN fabric, a.k.a.
Ethernet, with Internet Protocol (IP) running over it.

Over the past few years, there has been an extensive
amount of research on the functionality, design, and
usage of web-switches. This research, along with a
proliferation of commercial products [28, 29, 30, 34,
35], has mostly focused on the following areas:

• Web request distribution based on server load,

content locality, cache affinity, or client session
affinity [1, 14, 26, 28].

• Optimizations of server TCP connection
management [4, 24, 34].

• Mechanisms for inter-connecting client and
server TCP connections (TCP-splicing) [3, 12,
19].

• Offloading server CPU intensive operations,
such as secure sockets layer (SSL) operations.

Each of these approaches has been based on
optimizing and distributing web transactions by
transparently intercepting and modifying the Hyper
Text Transfer Protocol (HTTP)/TCP/IP packet dialog
between the client and the server. All of these
approaches operate under the premise that the web
switch or appliance device must be interconnected to
the front end servers, or other web appliances, using
the standard TCP transport, even though the client
end to end TCP connections are terminated at the
web-switch. As a result, the web-switch is required to
maintain two separate TCP sessions, one to the client
and another one to the server. Typically, each client
connection is paired with an associated server
connection. Some web-switches have added an
optimization that allows multiple client sessions to be
multiplexed on a set of persistent web-switch to
server TCP connections [34]. This reduces the server
TCP connection setup and teardown overheads but

adds the complexity of session management and TCP
data buffering to the web-switch.

We have observed an evolution of web-switches from
stateless load distributors into intelligent devices that
have control over both the client and server sessions.
When co-located in a data center environment, along
with front-end servers and other web appliances, they
function more as peers in distributed Internet end-
point applications environment. Given this
observation, we propose that the data center web
deployments are good candidates for the application
of SAN technologies. SAN technologies, specifically
the Virtual Interface (VI) Architecture and emerging
Infiniband™ Architecture [9], were developed to
eliminate inefficiencies incurred when using general-
purpose network interfaces with transports such as
TCP, for high-speed inter-process communications
and I/O.

We propose that a systematic approach can be
applied using SAN building blocks to solve the
following issues with today’s data center systems:

1. The high software overheads of using general-

purpose network interfaces significantly reduce
the capacity of the front-end servers. Operating
system related inefficiencies incurred in network
protocol processing, such as user/kernel
transitions, data copies, software multiplexing,
and reliability semantics reduce both CPU
efficiency and overall network throughput.

2. The knowledge gained by TCP/IP packet

processing in a given component is not shared
with other components in the system leading to
excessive redundant processing and poor
integration. For example, a TCP session
establishment and subsequent session
identification are performed on both the web-
switch and the front-end server.

3. General-purpose network protocols are not

suitable for low-latency, high throughput IPC
between functional components. As a result,
scalability and additional functionality is limited
to costly and proprietary “in the box” solutions.
For example, web-switches predominately use
proprietary internal interconnects and inter-
process communication (IPC) to add incremental
functionality.

4. Web switch appliances tend to be proprietary

closed systems that do not allow the
development of new services by a large
community of developers.

5. Rapidly increasing network speeds and usage

demands create a greater need for an efficient
and general-purpose method to independently
scale packet switching capacity, packet
processing, and network services.

Software overhead in server operating system
network stacks, specifically sockets and TCP/IP, has
been identified and studied extensively over the last
ten years. Efficiencies have been added by tuning the
server resident software and protocol stacks and by
incremental offloading of computation intensive
portions of the network stack into specialized
hardware on the Network Interface Card (NIC) [25,
27, 33]. These optimizations, along with increases in
server processing speeds, have improved network
overheads but at too slow of a rate compared to
increasing network throughput and Internet
application demands [15].

To overcome these inefficiencies, we investigated the
use of a Virtual Interface (VI) Architecture enabled
SAN fabric as the network interconnect between the
web-switch and the front-end servers. This
investigation was prompted partially by the results of
our previous VI Architecture related research
showing that use of VI Architecture provided
significant performance and efficiency benefits over
standard server networking interfaces, even when
used with higher level socket interfaces [16]. As an
experiment, we ran a simulated web transaction
performance test in order to re-evaluate TCP/IP and
VI Architecture performance characteristics on
modern software and hardware. The test comprised
of iteratively sending a 256-byte message, simulating
an HTTP get request from a client, followed by
receiving a reply message of varying sizes from the
server. The transaction latency and the server host
CPU cycles spent per transaction were measured.

In the experiment, we used Giganet cLAN product
[31] as the native VI Architecture (nVIA) and M-
VIA [11] over Gigabit Ethernet as the emulated VI
Architecture (eVIA). TCP/IP related tests were run
over Gigabit Ethernet. The results of this experiment
are shown in Figure 2. As the graph illustrates, for
the same reply size, nVIA and eVIA are able to
achieve 2-2.25x and 1.3-1.6x better latencies than
TCP/IP respectively. Furthermore, the CPU cycles
spent per transaction for nVIA and eVIA were
significantly lower than for TCP/IP (for large
messages, an order of magnitude).

Another important characteristic of VI Architecture
enabled SAN fabrics, is that they provide the

mechanisms needed to enable efficient low latency
IPC between distributed components in a system. By
using these mechanisms, which consist of the
standard VI Architecture interface (VIPL) and
underlying reliable SAN wire transport, a lightweight
protocol can be constructed to efficiently exchange
control information and data between components.

Figure 2: Transaction Test Results

Our idea was to research the use of VI Architecture
enabled SAN fabric as the framework to create a
distributed system architecture, termed CSP system
architecture that would enable systems to be
constructed entirely out of commodity building block
components. The goals of this research being to
address the issues raised earlier on the limited
scalability, redundant packet processing, restricted
functionality, and proprietary nature of existing web-
switching systems deployed in today’s data center.

3. System Architecture Overview

The CSP system architecture consists of multiple
functional elements, or nodes, interconnected with a
VI Architecture enabled SAN fabric. These elements
can be enumerated to enable the construction of CSP
systems with varying levels of functionality, scaling
and performance. The decomposition of the CSP
platform into a functional pipeline of building blocks
allows scaling of each pipeline stage independently.
Figure 3 illustrates the CSP system architecture. The
functional elements of the CSP system architecture
are described as follows:

Transaction Test
(800 MHZ PIII, 256 KB L2, 133 MHZ FSB, 512 MB, 64-bit 33

MHZ PCI)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

256 512 1K 2K 4K 8K 16K 32K

Reply Size (bytes)
C

PU
 c

yc
le

s/
tra

ns
ac

tio
n

0

100

200

300

400

500

600

700

Tr
an

sa
ct

io
n

La
te

nc
y

(u
s)

nVIA-CPU eVIA-CPU TCP-CPU

nVIA-Lat eVIA-Lat TCP-Lat

System Area Network (SAN) and the Virtual
Interface Architecture (VI Architecture): the SAN
in the CSP system architecture provides the
interconnecting fabric for all other elements in the
system. CSP nodes attach to the SAN using the VI
Architecture specification [20] compliant interface
and the VIPL API [21]. A lightweight IPC
mechanism, termed the “CSP Transport” is used to
communicate control information and exchange data
between the elements.

Network Node (NN): provides the LAN and/or
WAN interface function in the CSP architecture. It
performs the first level of processing in the functional
pipeline of the CSP system by processing LAN/WAN
packets and then forwarding them to other SAN
nodes for further processing. Examples of NN packet
processing include line-rate layer-3 packet
forwarding, layer-4 load balancing, and TCP flow
classification. The network node is optimized for fast
packet processing and constructed using
programmable network processors, such as the Intel
IXP1200 [32]

Proxy Node (PN): acts as the proxy between remote
clients and high-level CSP services residing above
the network transport layer. Proxy nodes perform the
next level of processing in the CSP pipeline by
terminating all client TCP sessions and subsequently
communicating the associated data streams over the
CSP transport between proxy and application nodes.
Proxy nodes essentially de-couple network transport
protocol processing cycles from application node
compute cycles in order to enable independent
scaling of packet and application processing. The
architecture of proxy nodes in the CSP system
enables them to perform various higher-level
functions on the application data. Examples of these
functions might include HTTP proxy services, web
content transformation, such as SSL, and support for
content-based distribution of web services.

Application Node (AN): hosts well-known
applications, such as a web, mail or directory
services. The application node is built using standard
high-density server hardware and runs standard
operating systems and applications. The application
node utilizes the CSP transport to bypass the kernel-
resident network stack during communication with
proxy nodes (and/or possibly other SAN-enabled
nodes).

Management: The CSP architecture defines a
management function that provides dynamic resource
discovery and configuration services, along with
network policy management. As a central location

for resource and policy information, the management
function is assumed to be configurable in a redundant
manner. An example of the CSP management
function would be a pair of nodes in a CSP system
that acts as a repository and distribution center for
system configuration and packet processing policy.

SANSAN

Lightweight CSP TransportTCP/IP

Mgmt.

App Node

App Node

App Node

App Node

Proxy
Node

Proxy
Node

LAN
/WAN

Network
Node

Network
Node

Figure 3: CSP System Architecture

4. CSP Solutions

The main focus of CSP is to provide solutions to the
network edge related problems described in Section
2. This section describes main techniques and
solutions developed for the CSP architecture.

4.1 SAN Tunneling

In a distributed functional pipeline, one function of
the network node is to forward packets between the
external network (LAN or WAN) and the SAN. In
the CSP architecture, packets are communicated
between a network node and a proxy node through a
SAN tunnel (VI) based IPC mechanism. This is
accomplished by encapsulating network packets with
SAN packet header information. This feature is
important in order to allow the proxy node to process
TCP/IP packets at user level using VIs. Furthermore,
SAN tunneling enables communication of additional
information in a VI packet header that can be used in
TCP/IP header compaction, TCP flow identification,
and TCP checksum off-loading.

4.2 Flow Labeling

In order to eliminate redundant packet header
processing and to enable efficient lookup for TCP
packet flows, we developed a VI Architecture based
TCP flow labeling technique. This technique is
comprised of tunneling encapsulated TCP packets
over VI connections, a simple TCP flow-identifier-

based lookup scheme, and TCP/IP header
compaction. The use of TCP flow labels enables
simple indexing based lookup (constant time lookup)
schemes on the network, proxy, and application
nodes. On the proxy node, flow labels eliminate the
need to maintain a separate TCP transmission control
block (TCB) cache for lookup, enabling it to
outperform other TCP TCB lookup schemes used in
practice. On the network node, TCP flow labels are
used on outbound TCP packet flows to simplify
packet forwarding information lookup.

In contrast to other flow labeling schemes in use by
the web switches, this scheme carries the TCP flow
identification information all the way to the end
stations (proxy nodes and application nodes) and thus
reduces redundant TCP/IP header processing. TCP/IP
header compaction is used to allow space for
additional VI packet header bytes in the encapsulated
TCP packet without having to fragment the packet or
reduce the typical TCP maximum segment size
(MSS) for like media, i.e. Ethernet.

During the initial TCP connection establishment, a
flow identifier is generated by the proxy node and
communicated to the network node as a part of an
outgoing TCP SYN/ACK or TCP SYN packet.
During the connection tear down, the proxy node
informs the network node about the termination of
the flow in the outgoing TCP FIN/ACK or last TCP
ACK packet. For the incoming traffic with known
TCP flows, the network node performs the lookup
and TCP/IP header compaction (optionally), sets the
flow identifier field, and tunnels the rest of the packet
to the appropriate proxy node. Upon receiving a
compacted packet for a known TCP flow from the
proxy node, the network node performs the flow
identifier based lookup, constructs IP header, and
transmits it on an appropriate LAN port. The proxy
node maintains a table of pointers to TCBs. It uses
the flow identifier as an index to the table and this
allows constant time TCB lookup for an incoming
TCP packet with the flow identifier.

4.3 Distributed Network Services

The CSP architecture enables two levels of network
services. At the first level, network nodes can
perform layer-2 to layer-4 (L2-L4) processing and at
the next level proxy nodes can perform layer-5 to
layer-7 (L5-L7) processing. Compared to existing
‘in-the-box’ solutions offered today [26, 28, 29, 30,
34, 35], the advantages of CSP distributed network
services are:

• They provide scalable, open, and cost-effective
solutions as they are built using VI Architecture
interfaces, programmable network processors,
and standard rack-mounted servers.

• Distribution of service functionality allows the
components to be independently scaled and
optimized.

An example of this type of services is distributed
network load balancing, where the network nodes
perform L4 load balancing across the proxy nodes
either using Network Address Translation (NAT) or
IP tunneling and the proxy nodes perform application
level load balancing (L5-L7) across the application
nodes. Thus, the network nodes along with the proxy
nodes can be viewed as a distributed network switch
performing L4-L7 load balancing.

4.4 SAN Proxy Service

We developed a new CSP core service on the proxy
nodes called SAN Proxy to mitigate the OS based
TCP/IP processing bottleneck on the application
nodes. The SAN Proxy is a transport layer proxy
service developed for decoupling TCP/IP processing
from application processing. The SAN Proxy
independently manages TCP/IP connections with the
network clients and SAN channels (VIs) with the
application nodes, relays TCP/IP byte streams
arriving from the network clients to the application
nodes using a lightweight protocol, and
communicates the lightweight protocol data arriving
from the application nodes to the appropriate network
clients using TCP/IP. In this service, TCP flows are
terminated on the proxy nodes and only the data
above the TCP layer is communicated to/from
application nodes over reliable VI connections. As
the network nodes and proxy nodes communicate
TCP/IP packets over SAN tunnels, the proxy nodes
can process TCP/IP packets at the user-level without
any OS intervention.

This isolation and decoupling of TCP/IP processing
from application processing provides the following
advantages:

• The control traffic generated due to TCP/IP

processing no longer interferes with the
applications because it does not propagate
beyond the proxy nodes. The protocol processing
overheads on the application nodes can be
significantly reduced because of the use of
lightweight protocol (CSP transport) to
communicate data.

• Since the proxy nodes are not constrained by the
legacy API (sockets), OS environment, and the
hardware platform, they can be optimized to
meet both TCP/IP and SAN protocol processing
demands and can be scaled independently from
application nodes.

• One or more application nodes can share the

proxy nodes. Thus, proxy nodes can be used to
perform L5-L7 policy execution across the
application nodes in addition to off-loading
protocol processing.

• Because the SAN Proxy handles all packets

moving through the system, it is the logical place
to add higher level services such as caching,
firewall, and content transformation.

Figure 4 shows the flow of packets for a HTTP/1.0
transaction on the CSP with TCP/IP termination and
protocol translation at the proxy node, illustrating the
simplified control traffic at the application node.

Client Network Node Proxy Node Application Node

TCP/IP SAN Protocol
SAN Tunnel

SYN
SYN+ACK

ACK
HTTP REQ

ACK

DATA
ACK

ACKs

DATA

DATAs

FIN

FIN+ACK
ACK

CONN REQ + HTTP REQ

CONN ACCEPT + DATA
DATA

DATA

DATA + CLOSE CONN

HTTP Access

Figure 4: Example of a HTTP/1.0 Transaction
with TCP/IP Termination on the Proxy Node

4.5 Application Support

Application support focuses on developing an
efficient communication interface for front-end
Internet applications. Internet applications commonly
use a socket-based programming paradigm for
communications. Our solution involves work in two
major directions: i) support for existing legacy
applications that use the BSD sockets API; ii)
understand and overcome the communication

constraints imposed by legacy API. DASockets [5]
and Windows Sockets Direct Path (WSDP) [23] are
efforts with similar goals in mind.

5 CSP System Evaluation

A combination of system prototyping and simulation
was being used for evaluation of the CSP
performance, scalability, and for architectural
validation. The combination provided the proof-of-
concept as well as proof-of-architectural
implementation for CSP. In this methodology,
prototyping with off-the-shelf hardware and software
components was focused on dealing with the real
world problems of implementing a CSP system with
existing technology and on providing details on SAN
protocols, message formats, and timing information.
The prototype results were used in conjunction with
the simulation models to evaluate overall system
performance, identify bottlenecks, evaluate
messaging flows, test flow control mechanisms, and
validate improvements.

5.1 Prototype Implementation

This subsection describes a prototype implementation
of the CSP. The prototype implementation provides
practical experience in building a CSP system and
provides a functional demonstration vehicle. The
following subsections describe in detail each
component of our CSP prototype.

5.1.1 SAN and CSP Transport

In order to construct the prototype using existing
technologies, we used Gigabit Ethernet as the
switched interconnect between the elements of the
system. To provide a VI Architecture compliant
interface within each element of the system, we used
the Modular-VI Architecture (M-VIA) [11]
emulation software developed at Lawrence Berkeley
National Labs. The M-VIA software emulates the
VIPL 1.0 API semantics in kernel software in the
absence of native VI Architecture hardware support.
This allows us to develop the services and interfaces
independent of the underlying SAN fabric, as long as
it supports the VIPL interface.

It is noted here that for our prototyping and analysis
purposes, we assume that switched Ethernet provides
the reliable link semantics normally supplied by true
SAN implementations. Also note that the emulated VI
Architecture over Ethernet does not provide the same

level of performance as a true SAN with native VI
Architecture hardware support.

Our prototype CSP transport is a lightweight protocol
optimized for reliable SAN interconnects. The CSP
transport was derived from our earlier stream sockets
prototype over VI Architecture [16]. It was modified
to allow proxy nodes to access internal VI descriptors
and register/deregister buffers. Furthermore, the
ability to wait or poll on particular values of the
immediate data field of a VI descriptor was added for
supporting multiplexing of sockets over a VI on the
application nodes. The CSP transport manages VI
resources and buffers used for communication, and
performs credit-based flow control. The use of a
single VI connection between an application node
and a SAN proxy can have serialization and single-
point of failure problems. On the other hand, use of a
VI per socket limits scalability. In the CSP prototype,
application level communication endpoints (sockets)
were multiplexed over a pool of VI connections. A
cache of registered buffers was maintained by the
CSP transport in order to reduce the cost of memory
registration and de-registration.

5.1.2 Network Node

Figure 5: An IXP1200 based Network Node

The prototype CSP network node used an Intel
IXP1200 network processor [32]. The IXP1200 is a
single chip network processor with interfaces to
external memories and media access devices. The
internal architecture of the IXP1200 consists of the
following functional units; six multi-threaded micro-
coded RISC engines (UENGINES), one
StrongARM core processor (SA_CORE), SRAM
and SDRAM memory interface units and an external
bus interface unit (IXBUS) which is used to connect

media access controllers. The prototype IXP1200
configuration used in the CSP prototype consisted of
a single IXP1200 chip, 32 Megabytes of external
SDRAM, 2 Megabytes of external SRAM, one eight
port (quad) 10/100 Mbps Ethernet MAC for attaching
to the LAN, and one two port Gigabit Ethernet MAC
for attaching to the SAN.

The network node software architecture consists of
twenty-four UENGINE threads for packet processing
and two SA_CORE resident management threads.
The SAN interfaces were made VI Architecture
compliant by porting and running the M-VIA stack
on the UENGINE threads. The UENGINE threads
perform one of four packet processing operations;
reception and processing of packets received on the
LAN interface (Lan_Rx_Th), reception and
processing of packets received on the SAN interface
(San_Rx_Th), transmission of packets onto the LAN
interface (Lan_Tx_Th), and transmission of packets
onto the SAN interface (San_Tx_Th). Each of these
operations is multi-threaded and the threads are
distributed onto multiple UENGINES in order to
provide wire speed packet forwarding between LAN
and SAN ports. Figure 5 shows the IXP1200 based
network node.

5.1.3 Proxy Node

In our prototype, we used standard rack mounted 800
MHz Pentium III processor based servers running
Linux OS (version 2.2.14-20) as the proxy nodes.
The Proxy node uses user-level TCP/IP (derived from
[10]) to communicate with LAN/WAN clients. On
the behalf of clients, it interacts with the application
nodes using the CSP transport. In our prototype, we
only implemented the SAN Proxy service and a
simple L4 load-balancing scheme on top of it.

In our implementation, the SAN Proxy service is a
user-level multithreaded application that uses a pool
of worker threads. Each worker thread is specialized
for performing a subset of functions associated with
TCP/IP processing, protocol translation/decoupling,
SAN protocol processing, initial discovery
mechanism, and L4-L7 policy execution. The SAN
Proxy maintains two separate pools of registered
buffers (one for incoming traffic and another for
outgoing traffic). By maintaining a memory buffer
structure that tracks the state of each registered
buffer, the SAN Proxy achieves zero-copy
translation. Figure 6 shows an architectural view of a
proxy node along with a network node and an
application node running a legacy application.

SA UENGINE Threads

San_Rx_ThSan_Rx_Th San_Tx_Th

Lan_Rx_ThLan_Rx_Th Lan_Tx_Th

SA Core Resident Threads

VI Connection
Manager

Policy
Manager

SA UENGINE Threads

San_Rx_ThSan_Rx_Th San_Tx_Th

Lan_Rx_ThLan_Rx_Th Lan_Tx_Th

San_Rx_ThSan_Rx_Th San_Tx_Th

Lan_Rx_ThLan_Rx_Th Lan_Tx_Th

San_Rx_ThSan_Rx_ThSan_Rx_ThSan_Rx_Th San_Tx_ThSan_Tx_Th

Lan_Rx_ThLan_Rx_ThLan_Rx_ThLan_Rx_Th Lan_Tx_ThLan_Tx_Th

SA Core Resident Threads

VI Connection
Manager

Policy
Manager

Figure 6: TCP/IP Termination Using Proxy Node

5.1.4 Application Node

Our initial approach was to enable existing
applications without modifying the OS or
applications. In our prototype, we introduced a Socket
Filter module to intercept all socket-related function
calls made by the legacy applications, and map them
into appropriate CSP transport messages. In an
environment such as Windows NT, the socket filter
module could be loaded dynamically as a
dynamically loadable library (DLL). However, due to
the lack of DLL support in Linux, the application has
to be recompiled and linked to the socket filter
library.

We assumed that a majority of Internet server
applications follow a predictable logic flow for
socket-related calls, and we can consistently map
them to the CSP transport messages. To simplify
prototyping, we worked with those versions of
applications that are multi-threaded, since VI
resources cannot be shared across multiple processes.
To date, we have successfully used the socket filter to
enable an ftp server (betaftpd-0.0.7) and two web
server applications (thttpd –2.16 and Apache-2.0a-
dev3).

In order for a legacy application to preserve its host
OS descriptors on the application nodes, the socket
filter partitions 16-bit file descriptor (fd) space into
system fds and transport fds. Furthermore, a fd for
listening on a well-known port is obtained from host
OS. The socket filter uses flow identifiers for both

actively and passively opened sockets. For passively
opened sockets, flow identifiers supplied by the
proxy nodes are used as new socket fds. For an
actively opened socket, a mapping between a socket
fd and the corresponding flow identifier is used as the
socket fd needs to be generated prior to the
connection establishment.

0.00
100.00

200.00
300.00
400.00
500.00

600.00
700.00

25
6b

51
2b 1k 2k 4k 8k 16

k
32

k

Re ply s ize (byte s)

C
PU

 T
im

e
(u

s)

0.00
200.00
400.00
600.00
800.00
1000.00
1200.00
1400.00
1600.00

La
te

nc
y

(u
s)

nV IA -CPU eV IA -CPU

TCP-CPU nV IA -Lat

eV IA -Lat TCP-Lat

Figure 7: Performance of Apache over Various
Transports

To ensure that real applications can truly benefit from
the use of lightweight CSP transport, we determined
the performance of the application node in isolation.
Figure 7 compares the performance of an application
node responding to HTTP/1.0 GET requests of

Gigabit Ethernet

Ligh tweight transport
Protocol

TCP/IP Pac k ets tunneled
through VIA connections on

Gigabit Ethernet
TCP/IP prot o col termination, L4+

Services

Sockets mapped to VIPL
inte r face

Network
No des

Proxy
Nodes

Application
Nodes

IXP1200

LAN
Clients

 IA Server

User
Ke r nel

SAN Proxy

VIPL

M-VIA

TCP
/IP

CSP
Transport

 IA Server Apache

VIPL

M-VIA

User
Kernel

Socket Filter
CSP Tran s port

various file sizes using Apache over TCP/IP, eVIA,
and nVIA. A simple client was used to drive
sequential, single-stream HTTP GET requests to
Apache over TCP. The same requests were issued to
Apache over eVIA and Apache over nVIA hardware
by using a simulated proxy (and client) over the CSP
transport. The simulated proxy replicates the
behavior of the proxy node and issues the necessary
CSP transport messages. To ensure a fair comparison,
the maximum packet size was set to 1514 bytes
(including headers) and non-blocking writes were
used in all cases. It should be noted that larger
Maximum Transfer Sizes (MTS) up to 64K (as used
in our experiments related to Figure 2) are more
commonly used in SANs, thereby allowing for better
performance. Furthermore, our prototype has to work
under the restrictions imposed by legacy applications
with substantial overheads added by the socket filter
module. For the file sizes we considered, Apache
over nVIA achieved 1.5-2.9x improvement in the
latency. Furthermore, nVIA incurred less CPU
overhead than TCP/IP.

5.1.5 Management Node

The main functions of the management node in our
prototype is to maintain a centralized CSP
information database, set policies on other nodes, and
facilitate initial discovery operations. Other nodes
register with the management node and inform it of
their capabilities. As a part of initial discovery, the
management node provides the proxy nodes and
application nodes information about the network
nodes and proxy nodes respectively. L2-L4 policies
on the network nodes and L4-L7 policies on the
proxy nodes are set after initial registration phase.

5.2 CSP Simulation Model

Development of the CSP simulation model and initial
CSP system simulation studies were performed in
parallel with the development of the actual CSP
prototype. This allowed us to do early “pre-prototype
hardware” studies of SAN fabric and CSP system
configurations. The SAN fabric simulations were
focused mainly on developing the SAN fabric
infrastructure that would support the interconnect
requirements of the CSP architecture, would scale to
clusters of at least 64 nodes, and would allow
configuring the SAN for either Ethernet or
Infiniband Architecture operation. This enabled
testing various CSP configurations with various SAN
protocol and fabric topology options. The CSP
system simulations were focused on evaluation of the

CSP web services performance on various system
configurations and workload scenarios. Since we
didn't have all the critical CSP prototype software
tuned for performance and test results at the time this
paper was written, we used a three-step process to
characterize as much of a range of performance,
scaling, and configuration information as we could.

The test (CSP) configuration used for our system
simulations consisted of; two network nodes, each
with a Gigabit Ethernet link to the external client
network, two proxy nodes with two SAN ports each,
four application nodes with one SAN port each, and a
10 port SAN switch interconnecting all the nodes.
The SAN links were modeled as 100 meter, full-
duplex links, at 1.25 Gbps for Ethernet and 2.5Gbps
for Infiniband Architecture. SAN messages were
segmented into 1514 byte frames for Ethernet and
282 byte frames for Infiniband Architecture.

135

68

35

18
9

132

66

32

16
8

127

65

30

15
8

0

50

100

150

2KB 4KB 8KB 16KB 32KB
Mean Transaction Size

Tr
an

sa
ct

io
n

Pr
oc

es
si

ng
 B

ud
ge

ts

fo
r 2

 G
bp

s
of

 S
er

vi
ce

 (u
S)

Estimated Mean Transaction Wire Time
Mean SanProxy Tier Processing Budget
Mean App Tier Processing Budget

Figure 8 CSP Processing Time Budgets

For the first step in characterization, system
simulation was used to empirically determine the
processing budgets for the proxy and application tiers
of the test configuration. These budgets were
compared with the calculated mean wire time for
each transaction size on the two output links from the
network nodes to the clients (see Figure 8). The
budgets were derived using constant streams of
HTTP/1.0 GET requests for power-of-two transaction
size from 2KB to 32KB. Each budget shows the
mean transaction processing time the test
configuration must achieve in the proxy or
application tier to fully utilize the bandwidth of the
two Gigabit Ethernet links to the client network,
given a constant stream of the corresponding
transaction size.

The second step was to establish the 800 MHz
Pentium III Processor based server we use in our

prototype system as a basic unit of measure of
processing capacity (P) for characterizing the
application tier (we have not yet acquired the data we
need to do this for the proxy tier). In Figure 9, we
graphed the application tier budgets from Figure 8
and the mean transaction processing times for the
native VI Architecture case in Figure 7. Then we
divided the native VI Architecture based processing
times by the application tier processing budgets to
create the curve showing the equivalent number of P
required in the application tier to achieve the
maximum throughput for each mean transaction size.
It shows that it would take the equivalent of 33P to
sustain the full 2 Gbps throughput with a stream of
2KB web transactions or 2.8P with a stream of 32KB
transactions.

8 15
30

65

127

263
290 290

323

35333

2.8

19.4

5

9.7

0

50

100

150

200

250

300

350

400

2KB 4KB 8KB 16KB 32KB
Mean Transaction Size

M
ea

n
Tr

an
sa

ct
io

n
Pr

oc
es

si
ng

B

ud
ge

t/T
im

e
fo

r 2
 G

bp
s

of
 s

er
vi

ce
 (u

S)

0

5

10

15

20

25

30

35

P
R

eq
ui

re
d

fo
r B

ud
ge

t

Mean Application Layer Processing Budget Mean Trans Processing Time per P
Equivalent P in Application Tier

Figure 9: Equivalent P in Application Tier for 2
Gbps of Service

The third step was to input the appropriate processing
times into our test model to simulate CSP
configurations with the equivalent processing
capacity of each of the points graphed on the curve in
Figure 9. For each of these equivalent-processing
capacities, we applied a web transaction workload
consisting of transaction sizes randomly selected
from the SPECweb99 static distribution (a mean
transaction size of 14,384 bytes). Requests were
generated by the clients in an exponential distribution
with a mean rate of 20000 requests per second. Each
test was run until 50,000 transactions were
completed. The results of these simulations were
used to produce the chart shown in Figure 10. The
bars graph the total system throughput in transactions
per second (TPS) and the curve graphs the TPS per P
equivalent processing capacity.

The chart in Figure 10 shows that the performance of
our test configuration peaks at the equivalent
processing capacity of about 10P for 2 Gbps of
service. It also shows that, although the system
throughput drops significantly when the processing
capacity is reduced to the equivalent of ~3P, the TPS
per P is still increasing. If we consider only the
cost/performance of the application tier, this suggests
the best cost/performance CSP configurations for this
workload will have the equivalent of 1P to 2P per
gigabit of service. However, if such things as the cost
of the links to the clients network are considered, one
may need anywhere from 3P to 5P per gigabit of
service to maximize the cost effectiveness of each
network link. Additional processing loads such as
dynamic objects, SSL processing, or content
transformations will also drive up the processing
capacity requirements.

9917

13680
144361439314428

3542

437

742

1488

2736

0

2000

4000

6000

8000

10000

12000

14000

16000

33 19.4 9.7 5 2.8
Equivalent # of P in App Tier

To
ta

l S
ys

te
m

 T
hr

ou
gh

pu
t (

in
 T

PS
)

0

500

1000

1500

2000

2500

3000

3500

4000

TP
S

pe
r P

 in
 A

pp
 T

ie
r

SPECweb99 1500B MTU, IEEE802.3 TPS per P, IEEE802.3

Figure 10: SpecWeb99 Static Distribution

Performance
By including complete benchmark processing loads
in the performance simulations and by collecting the
critical performance data for each prototype node, we
will be able to fully characterize the CSP in the future
and enable easily optimizing configurations for
various applications and cost/performance tradeoffs.

6 Conclusions and Future Work

In this paper, we described the CSP system
architecture for scalable Internet and communication
services. The distinguishing features of the CSP
architecture being; SAN as the system interconnect
and VI Architecture as a low-overhead interface to
SAN, use of commodity building block components,
decomposition of network services into distributed
functional pipelines, and the de-coupling of network

protocol processing from end-point application
processing. We described several CSP solutions,
specifically the use of SAN tunneling and TCP flow
labeling to reduce redundant packet processing, the
CSP transport to provide an efficient “out of the box”
IPC mechanism, the SAN proxy service that
terminates client TCP/IP flows and maps them to the
CSP transport, and the distribution of network
services to allow scalability by service function.

Our prototype implementation and system simulation
results have offered us significant insights into the
viability, performance and scalability of web service
systems based on the CSP architecture. The current
prototype, which is functionally complete and
operational, but not yet tuned for optimal
performance, has allowed us to understand the
difficulties and limitations imposed when
constructing CSP systems out of available
commodity building block components. The CSP
simulation models have allowed us to extend past
these limitations in order to gain the knowledge
needed to architect future interconnect and
component technologies better suited for CSP like
systems. The following is a summary of the insights
gained and issues raised during both the CSP
prototype and modeling efforts:

• It is possible to construct a CSP type system

using commodity-based components that can be
scaled by function and processing capability to
achieve a desired system throughput and cost
point. To date, our CSP simulation studies have
shown significant evidence that the CSP systems
can be built from commodity building blocks
and provide the necessary characteristics and
scalability to be competitive with more
specialized solutions. Unfortunately, at this time
we have not acquired all of the critical prototype
data needed to complete our analysis and fully
characterize and contrast our solution against
others. We plan to do so in future.

• Prototype benchmarking and simulation results
showed that the use of a light weight CSP
transport had performance benefits over
traditional network transports, especially on
components running traditional operating system
stacks, such as application nodes. These benefits
are largely due to the underlying VI Architecture
and SAN interconnect technologies. The
challenge lies in how to balance these benefits
with the constraints imposed. For example, our
early investigations showed that significant
performance benefits could be achieved by using
VI Architecture interfaces for web type
transactions. Later prototyping showed that

utilizing the VI Architecture interface
efficiencies while still maintaining application
transparency and compatibility of existing
Internet application interfaces, i.e. BSD sockets,
was very challenging. In particular, the select()
paradigm, used by socket-based applications, did
not map efficiently to the queued real time
signals available in message passing primitives
provided by VI Architecture interfaces.

• The current CSP prototype and system model

use a proxy node architecture that required all
TCP control and data traffic be stored and
forwarded through it. This presents challenges
in how to balance memory capacity, I/O
throughput, and processing capacity with
price/performance and functionality on the proxy
node.

• CSP System simulations have shown very
aggressive processing budgets are needed for
both the proxy and application node components
to achieve maximum system capacity. Current
generation components are not optimized for
CSP traffic patterns or processing budgets and
therefore require higher degrees of CSP node
replication or component cost. By developing a
set of server silicon components that are
optimized for the CSP architecture and
developing key hardware functionality, we
believe a much better cost/performance solution
can be achieved.

Going forward, we plan to address the constraints
imposed by the legacy sockets API as well as explore
legacy-free application interfaces that can take full
advantage of the CSP transport optimizations (such
as user level I/O, asynchronous I/O, and zero copy
semantics). Ultimately, we hope to develop a set of
OS independent high-performance APIs to facilitate
this transaction. To address the proxy node store and
forward issue, we plan to investigate alternative
control and data flow methods, such as “third party
data transfers”.

Other areas for future work are extending the CSP
architecture to support SAN-aware file systems as
defined in the direct access files system (DAFS)
specification [6] and also extending the CSP
architecture to interface into more traditional SAN-
aware back-end applications, such as distributed
databases.

To date we have focused heavily on basic web traffic.
In the future, we would like to explore more
communication intensive applications focused on a

mixture of voice, rich media and data with additional
infrastructure services such as SSL and Firewalls. We
believe the CSP architecture is a relevant step in the
evolution of the converged data center networks of
the future.

References

1. Apostolopoulos et al. “Design, Implementation

and Performance of a Content-Based Switch”, In
Proc. of IEEE INFOCOM 2000, 2000.

2. Camarda et al. “Performance Evaluation of
TCP/IP Protocol Implementations in End
Systems”, IEE Proc. Comput. Digit. Tech. Vol.
146, Jan 1999.

3. A. Cohen et al. “On the Performance of TCP
Splicing for URL-Aware Redirection”, Proc. of
the 2nd USENIX Symp. on Internet Technologies
& Systems, 1999.

4. Edith Cohen et al. “Managing TCP Connections
under Persistent HTTP”, Proc. of the Eighth
International World Wide Web Conf., 1999.

5. DASockets Protocol Specification, Version 0.6,
Network Appliance, Inc., 2000.

6. Direct Access File System (DAFS).
http://www.dafscollaborative.org/.

7. D. Dunning, G. Regnier, G. McAlpine et al.
“The Virtual Interface Architecture”, IEEE
Micro, Vol. 3, No. 2, pp. 66-76, 1998.

8. A. Fox et al. “Cluster-Based Scalable Network
Services”, Proc. of the sixteenth ACM symp. on
Operating systems principles, pp. 78-91, 1997.

9. Infiniband Arch. Spec. Vol 1 & 2. Rel. 1.0.
 www.infinibandta.org/download_spec10.html.
10. KA9Q NOS TCP/IP.

http://people.qualcomm.com/karn/code/ka9qnos.
11. M-VIA : A High Performance Modular VIA for

Linux. http://www.nersc.gov/research/FTG/via.
12. D. Maltz and P. Bhagwat. TCP Splicing for

application layer proxy performance. Technical
Report RC 21139, IBM, March 1998.

13. D. Maltz and P. Bhagwat. “Improving HTTP
Caching Proxy Performance with TCP Tap”, In
Proc. of HIPPARCH’98, pp. 98-103, 1998.

14. V. Pai et al. “Locality Aware Request
Distribution in Cluster-based Network Servers”,
In Proc. Architectural Support for Programming
Languages and Operating Systems, 1998.

15. Greg Regnier, Dave Minturn, et al., Internet
Protocol Acceleration Techniques, Intel
Developer Forum, February 1999.

16. H. Shah, C. Pu, and R. Madukkarumukumana.
“High Performance Sockets and RPC over
Virtual Interface (VI) Architecture”, In Proc.
Third Intl. Workshop on Communication,

Architecture, and Applications for Network
Based Parallel Computing, pp. 91-107, 1999.

17. Evan Speight, Hazim Abdel-Shafi, and John K.
Bennett. “Realizing the Performance Potential
of the Virtual Interface Architecture”, In Proc. of
the 13th ACM-SIGARCH International
Conference on Supercomputing, June 1999.

18. Junehwa Song et al. “Design Alternatives For
Scalable Web Server Accelerators”, In Proc. of
the IEEE International Symp. on Performance
Analysis of Systems and Software, April 2000.

19. Oliver Spatscheck et al. “Optimizing TCP
Forwarder Performance”, In IEEE/ACM Tran. of
Networking, Vol. 8, No. 2, April 2000.

20. Virtual Interface Architecture Specification,
Version 1.0, http://www.viarch.org/.

21. Virtual Interface Architecture Developer Guide,
Intel Corporation,
http://developer.intel.com/design/servers/vi/.

22. G. Welling, M. Ott, and S. Mathur. “CLARA: A
Cluster-Based Active Router Architecture”, Hot
Interconnects 8, pp. 53-60, 2000.

23. Windows Sockets Direct Path for System Area
Networks. Microsoft Corporation, 2000.

24. C. Yang and M. Luo, “Efficient Support for
Content-Based Routing in Web Server Clusters”,
Proc. of the 2nd USENIX Symposium on Internet
Technologies & Systems, 1999.

25. Alacritech, Alacritech Server Network Adapters.
http://www.alacritech.com/html/products.html.

26. Alteon WebSystems, Alteon Web Switching
Products.
http://www.alteonwebsystems.com/products/.

27. Alteon WebSystems, Next Generation Adapter
Design and Optimization for Gigabit Ethernet.
http://www.alteonwebsystems.com/products/whi
tepapers/adapter

28. ArrowPoint Communications, ArrowPoint
Content Smart Web Switches.
http://www.arrowpoint.com/products/index.html.

29. Cisco Systems, Cisco Local Director.
http://www.cisco.com/public/product_root.shtml.

30. F5 Networks, BIG-IP Products.
http://www.f5labs.com/f5products/bigip.

31. Giganet, Inc., Giagnet cLAN Product Family.
http://www.giganet.com/products/.

32. Intel IXP1200 Network Processor.
http://developer.intel.com/design/network/produ
cts/npfamily/ixp1200.htm.

33. Interprophet Corporation.
http://www.interprophet.com/.

34. NetScaler, WebScaler Internet Accelerator.
 http://www.netscaler.com/products.html.
35. Resonate, “Central Dispatch 3.0 – White Paper”,

http://www.resonate.com/.

http://www.dafscollaborative.org/
http://www.infinibandta.org/download_spec10.html
http://people.qualcomm.com/karn/code/ka9qnos
http://www.nersc.gov/research/FTG/via
http://www.viarch.org/
http://developer.intel.com/design/servers/vi/
http://www.alacritech.com/
http://www.alteonwebsystems.com/
http://www.alteonwebsystems.com/products/whitepapers/adapter
http://www.alteonwebsystems.com/products/whitepapers/adapter
http://www.arrowpoint.com/products/index.html
http://www.cisco.com/public/product_root.shtml
http://www.f5labs.com/f5products/bigip
http://www.giganet.com/products/
http://developer.intel.com/design/network/products/npfamily/ixp1200.htm
http://developer.intel.com/design/network/products/npfamily/ixp1200.htm
http://www.interprophet.com/
http://www.netscaler.com/products.html
http://www.resonate.com/

	Intel Corporation
	
	
	
	
	
	
	References

