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Abstract 

 
The boundary between the network edge and the front-end servers of the data center is blurring.  Appliance vendors 
are flooding the market with new capabilities, while switch/router vendors scramble to add these services to their 
traditional transport services.  The result of this competition is a set of ad-hoc technologies and capabilities to 
provide services at the network edge.  This paper describes the Comm Services Platform (CSP); a system 
architecture for this new ‘communication services tier’ of the data center.  CSP enumerates a set of architectural 
components to provide scalable communication services built from standard building blocks that utilize emerging 
server, I/O and network technologies.  The building blocks of CSP include a System Area Network, the Virtual 
Interface Architecture, programmable network processors, and standard high-density servers. 

 
1. Introduction 
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Figure 1: The N-Tier Datacenter 

The three-tier data center model is well known.  The 
first tier consists of front-end servers that provide 
web, messaging and various other services to clients 
on a network, the middle tier handles transaction 
processing and implements the data center business 
logic, while the back-end consists of databases that 
hold persistent state.  We see a fourth tier emerging 
in this model between the network and the front-end 
servers.  This ‘communication services tier’ provides 
an ever-richer set of functions.  These services 
operate on network traffic at and above the network 

layer, with well-known examples such as load 
balancing (at multiple levels), security (firewall and 
SSL), caching and others.  These services intend to 
increase the responsiveness and throughput of the 
data center by distributing and offloading these 
functions from the server farm at the front end of the 
data center. 

This paper describes a novel system architecture for a 
scalable, high-performance communication services 
tier based on emerging server and network 
technologies that are, or will become, standard 
building blocks.  These technologies include System 
Area Network (SAN) technology, the Virtual 
Interface Architecture [20], programmable network 
processors, and standard high-density servers.  We 
also describe a new core service, the SAN Proxy 
service that offloads and decouples the Transmission 
Control Protocol /Internet Protocol (TCP/IP) 
processing from the front-end servers, thus improving 
the performance of all of the services built on top of 
TCP/IP. 

 
The organization of the rest of the paper is as follows. 
Section 2 discusses observations and motivations 
behind our research. Section 3 provides an overview 
of the CSP system architecture. Solutions and 
techniques developed in CSP are presented in Section 
4. Initial evaluation of CSP using a system prototype 
and simulation results are provided in Section 5. 



Finally, Section 6 summarizes our findings thus far 
and outlines possible future work. 
 
2. Observations and Motivations 
 
Evolution at the data center network edge has been 
driven primarily by demands to make web services 
more scalable, efficient and available. The most 
common solution applied to the scaling problem is to 
construct systems comprised of a large number of 
front-end servers (web server farms) behind load or 
content distributors. These systems typically use 
commodity servers for web services and specialized 
appliances, commonly termed “web-switches”, as 
distributors of web service requests. The connectivity 
between web-switches and front-end servers is 
predominately on a commodity LAN fabric, a.k.a. 
Ethernet, with Internet Protocol (IP) running over it. 

 
Over the past few years, there has been an extensive 
amount of research on the functionality, design, and 
usage of web-switches. This research, along with a 
proliferation of commercial products [28, 29, 30, 34, 
35], has mostly focused on the following areas: 

 
•  Web request distribution based on server load, 

content locality, cache affinity, or client session 
affinity [1, 14, 26, 28]. 

•  Optimizations of server TCP connection 
management [4, 24, 34]. 

•  Mechanisms for inter-connecting client and 
server TCP connections  (TCP-splicing) [3, 12, 
19]. 

•  Offloading server CPU intensive operations, 
such as secure sockets layer (SSL) operations. 
 

Each of these approaches has been based on 
optimizing and distributing web transactions by 
transparently intercepting and modifying the Hyper 
Text Transfer Protocol (HTTP)/TCP/IP packet dialog 
between the client and the server. All of these 
approaches operate under the premise that the web 
switch or appliance device must be interconnected to 
the front end servers, or other web appliances, using 
the standard TCP transport, even though the client 
end to end TCP connections are terminated at the 
web-switch. As a result, the web-switch is required to 
maintain two separate TCP sessions, one to the client 
and another one to the server.  Typically, each client 
connection is paired with an associated server 
connection. Some web-switches have added an 
optimization that allows multiple client sessions to be 
multiplexed on a set of persistent web-switch to 
server TCP connections [34]. This reduces the server 
TCP connection setup and teardown overheads but 

adds the complexity of session management and TCP 
data buffering to the web-switch.  
 
We have observed an evolution of web-switches from 
stateless load distributors into intelligent devices that 
have control over both the client and server sessions.   
When co-located in a data center environment, along 
with front-end servers and other web appliances, they 
function more as peers in distributed Internet end-
point applications environment. Given this 
observation, we propose that the data center web 
deployments are good candidates for the application 
of SAN technologies. SAN technologies, specifically 
the Virtual Interface (VI) Architecture and emerging 
Infiniband™ Architecture [9], were developed to 
eliminate inefficiencies incurred when using general-
purpose network interfaces with transports such as 
TCP, for high-speed inter-process communications 
and I/O.  
 
We propose that a systematic approach can be 
applied using SAN building blocks to solve the 
following issues with today’s data center systems: 
  
1. The high software overheads of using general-

purpose network interfaces significantly reduce 
the capacity of the front-end servers. Operating 
system related inefficiencies incurred in network 
protocol processing, such as user/kernel 
transitions, data copies, software multiplexing, 
and reliability semantics reduce both CPU 
efficiency and overall network throughput. 

 
2. The knowledge gained by TCP/IP packet 

processing in a given component is not shared 
with other components in the system leading to 
excessive redundant processing and poor 
integration. For example, a TCP session 
establishment and subsequent session 
identification are performed on both the web-
switch and the front-end server.  

 
3. General-purpose network protocols are not 

suitable for low-latency, high throughput IPC 
between functional components. As a result, 
scalability and additional functionality is limited 
to costly and proprietary “in the box” solutions.  
For example, web-switches predominately use 
proprietary internal interconnects and inter-
process communication (IPC) to add incremental 
functionality.    

 
4. Web switch appliances tend to be proprietary 

closed systems that do not allow the 
development of new services by a large 
community of developers. 



 
5. Rapidly increasing network speeds and usage 

demands create a greater need for an efficient 
and general-purpose method to independently 
scale packet switching capacity, packet 
processing, and network services.  

  
Software overhead in server operating system 
network stacks, specifically sockets and TCP/IP, has 
been identified and studied extensively over the last 
ten years. Efficiencies have been added by tuning the 
server resident software and protocol stacks and by 
incremental offloading of computation intensive 
portions of the network stack into specialized 
hardware on the Network Interface Card (NIC) [25, 
27, 33]. These optimizations, along with increases in 
server processing speeds, have improved network 
overheads but at too slow of a rate compared to 
increasing network throughput and Internet 
application demands [15].   
 
To overcome these inefficiencies, we investigated the 
use of a Virtual Interface (VI) Architecture enabled 
SAN fabric as the network interconnect between the 
web-switch and the front-end servers. This 
investigation was prompted partially by the results of 
our previous VI Architecture related research 
showing that use of VI Architecture provided 
significant performance and efficiency benefits over 
standard server networking interfaces, even when 
used with higher level socket interfaces [16]. As an 
experiment, we ran a simulated web transaction 
performance test in order to re-evaluate TCP/IP and 
VI Architecture performance characteristics on 
modern software and hardware. The test comprised 
of iteratively sending a 256-byte message, simulating 
an HTTP get request from a client, followed by 
receiving a reply message of varying sizes from the 
server. The transaction latency and the server host 
CPU cycles spent per transaction were measured. 
 
In the experiment, we used Giganet cLAN product 
[31] as the native VI Architecture (nVIA) and M-
VIA [11] over Gigabit Ethernet as the emulated VI 
Architecture (eVIA). TCP/IP related tests were run 
over Gigabit Ethernet. The results of this experiment 
are shown in Figure 2. As the graph illustrates, for 
the same reply size, nVIA and eVIA are able to 
achieve 2-2.25x and 1.3-1.6x better latencies than 
TCP/IP respectively.  Furthermore, the CPU cycles 
spent per transaction for nVIA and eVIA were 
significantly lower than for TCP/IP (for large 
messages, an order of magnitude). 
 
Another important characteristic of VI Architecture 
enabled SAN fabrics, is that they provide the 

mechanisms needed to enable efficient low latency 
IPC between distributed components in a system. By 
using these mechanisms, which consist of the 
standard VI Architecture interface (VIPL) and 
underlying reliable SAN wire transport, a lightweight 
protocol can be constructed to efficiently exchange 
control information and data between components. 

Figure 2: Transaction Test Results 

Our idea was to research the use of VI Architecture 
enabled SAN fabric as the framework to create a 
distributed system architecture, termed CSP system 
architecture that would enable systems to be 
constructed entirely out of commodity building block 
components.  The goals of this research being to 
address the issues raised earlier on the limited 
scalability, redundant packet processing, restricted 
functionality, and proprietary nature of existing web-
switching systems deployed in today’s data center. 
 
3. System Architecture Overview 
 
The CSP system architecture consists of multiple 
functional elements, or nodes, interconnected with a 
VI Architecture enabled SAN fabric. These elements 
can be enumerated to enable the construction of CSP 
systems with varying levels of functionality, scaling 
and performance. The decomposition of the CSP 
platform into a functional pipeline of building blocks 
allows scaling of each pipeline stage independently. 
Figure 3 illustrates the CSP system architecture. The 
functional elements of the CSP system architecture 
are described as follows: 
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System Area Network (SAN) and the Virtual 
Interface Architecture (VI Architecture): the SAN 
in the CSP system architecture provides the 
interconnecting fabric for all other elements in the 
system. CSP nodes attach to the SAN using the VI 
Architecture specification [20] compliant interface 
and the VIPL API [21]. A lightweight IPC 
mechanism, termed the “CSP Transport” is used to 
communicate control information and exchange data 
between the elements.   

 
Network Node (NN): provides the LAN and/or 
WAN interface function in the CSP architecture.  It 
performs the first level of processing in the functional 
pipeline of the CSP system by processing LAN/WAN 
packets and then forwarding them to other SAN 
nodes for further processing. Examples of NN packet 
processing include line-rate layer-3 packet 
forwarding, layer-4 load balancing, and TCP flow 
classification. The network node is optimized for fast 
packet processing and constructed using 
programmable network processors, such as the Intel  
IXP1200 [32] 

 
Proxy Node (PN): acts as the proxy between remote 
clients and high-level CSP services residing above 
the network transport layer. Proxy nodes perform the 
next level of processing in the CSP pipeline by 
terminating all client TCP sessions and subsequently 
communicating the associated data streams over the 
CSP transport between proxy and application nodes. 
Proxy nodes essentially de-couple network transport 
protocol processing cycles from application node 
compute cycles in order to enable independent 
scaling of packet and application processing. The 
architecture of proxy nodes in the CSP system 
enables them to perform various higher-level 
functions on the application data. Examples of these 
functions might include HTTP proxy services, web 
content transformation, such as SSL, and support for 
content-based distribution of web services. 
 
Application Node (AN): hosts well-known 
applications, such as a web, mail or directory 
services. The application node is built using standard 
high-density server hardware and runs standard 
operating systems and applications. The application 
node utilizes the CSP transport to bypass the kernel-
resident network stack during communication with 
proxy nodes (and/or possibly other SAN-enabled 
nodes). 
 
Management: The CSP architecture defines a 
management function that provides dynamic resource 
discovery and configuration services, along with 
network policy management.  As a central location 

for resource and policy information, the management 
function is assumed to be configurable in a redundant 
manner. An example of the CSP management 
function would be a pair of nodes in a CSP system 
that acts as a repository and distribution center for 
system configuration and packet processing policy. 
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Figure 3: CSP System Architecture 

 
4. CSP Solutions 
 
The main focus of CSP is to provide solutions to the 
network edge related problems described in Section 
2. This section describes main techniques and 
solutions developed for the CSP architecture. 
 
4.1 SAN Tunneling 
 
In a distributed functional pipeline, one function of 
the network node is to forward packets between the 
external network (LAN or WAN) and the SAN. In 
the CSP architecture, packets are communicated 
between a network node and a proxy node through a 
SAN tunnel (VI) based IPC mechanism.  This is 
accomplished by encapsulating network packets with 
SAN packet header information.  This feature is 
important in order to allow the proxy node to process 
TCP/IP packets at user level using VIs. Furthermore, 
SAN tunneling enables communication of additional 
information in a VI packet header that can be used in 
TCP/IP header compaction, TCP flow identification, 
and TCP checksum off-loading. 
 
4.2 Flow Labeling 
 
In order to eliminate redundant packet header 
processing and to enable efficient lookup for TCP 
packet flows, we developed a VI Architecture based 
TCP flow labeling technique. This technique is 
comprised of tunneling encapsulated TCP packets 
over VI connections, a simple TCP flow-identifier-



based lookup scheme, and TCP/IP header 
compaction. The use of TCP flow labels enables 
simple indexing based lookup (constant time lookup) 
schemes on the network, proxy, and application 
nodes. On the proxy node, flow labels eliminate the 
need to maintain a separate TCP transmission control 
block (TCB) cache for lookup, enabling it to 
outperform other TCP TCB lookup schemes used in 
practice. On the network node, TCP flow labels are 
used on outbound TCP packet flows to simplify 
packet forwarding information lookup.  
 
In contrast to other flow labeling schemes in use by 
the web switches, this scheme carries the TCP flow 
identification information all the way to the end 
stations (proxy nodes and application nodes) and thus 
reduces redundant TCP/IP header processing. TCP/IP 
header compaction is used to allow space for 
additional VI packet header bytes in the encapsulated 
TCP packet without having to fragment the packet or 
reduce the typical TCP maximum segment size 
(MSS) for like media, i.e. Ethernet. 

 
During the initial TCP connection establishment, a 
flow identifier is generated by the proxy node and 
communicated to the network node as a part of an 
outgoing TCP SYN/ACK or TCP SYN packet. 
During the connection tear down, the proxy node 
informs the network node about the termination of 
the flow in the outgoing TCP FIN/ACK or last TCP 
ACK packet. For the incoming traffic with known 
TCP flows, the network node performs the lookup 
and TCP/IP header compaction (optionally), sets the 
flow identifier field, and tunnels the rest of the packet 
to the appropriate proxy node. Upon receiving a 
compacted packet for a known TCP flow from the 
proxy node, the network node performs the flow 
identifier based lookup, constructs IP header, and 
transmits it on an appropriate LAN port. The proxy 
node maintains a table of pointers to TCBs. It uses 
the flow identifier as an index to the table and this 
allows constant time TCB lookup for an incoming 
TCP packet with the flow identifier.  
 
4.3 Distributed Network Services 
 
The CSP architecture enables two levels of network 
services. At the first level, network nodes can 
perform layer-2 to layer-4 (L2-L4) processing and at 
the next level proxy nodes can perform layer-5 to 
layer-7 (L5-L7) processing. Compared to existing 
‘in-the-box’ solutions offered today [26, 28, 29, 30, 
34, 35], the advantages of CSP distributed network 
services are: 
 

•  They provide scalable, open, and cost-effective 
solutions as they are built using VI Architecture 
interfaces, programmable network processors, 
and standard rack-mounted servers. 

•  Distribution of service functionality allows the 
components to be independently scaled and 
optimized. 

 
An example of this type of services is distributed 
network load balancing, where the network nodes 
perform L4 load balancing across the proxy nodes 
either using Network Address Translation (NAT) or 
IP tunneling and the proxy nodes perform application 
level load balancing (L5-L7) across the application 
nodes. Thus, the network nodes along with the proxy 
nodes can be viewed as a distributed network switch 
performing L4-L7 load balancing. 
 
4.4 SAN Proxy Service 
 
We developed a new CSP core service on the proxy 
nodes called SAN Proxy to mitigate the OS based 
TCP/IP processing bottleneck on the application 
nodes. The SAN Proxy is a transport layer proxy 
service developed for decoupling TCP/IP processing 
from application processing. The SAN Proxy 
independently manages TCP/IP connections with the 
network clients and SAN channels (VIs) with the 
application nodes, relays TCP/IP byte streams 
arriving from the network clients to the application 
nodes using a lightweight protocol, and 
communicates the lightweight protocol data arriving 
from the application nodes to the appropriate network 
clients using TCP/IP. In this service, TCP flows are 
terminated on the proxy nodes and only the data 
above the TCP layer is communicated to/from 
application nodes over reliable VI connections. As 
the network nodes and proxy nodes communicate 
TCP/IP packets over SAN tunnels, the proxy nodes 
can process TCP/IP packets at the user-level without 
any OS intervention. 
 
This isolation and decoupling of TCP/IP processing 
from application processing provides the following 
advantages: 

 
•  The control traffic generated due to TCP/IP 

processing no longer interferes with the 
applications because it does not propagate 
beyond the proxy nodes. The protocol processing 
overheads on the application nodes can be 
significantly reduced because of the use of 
lightweight protocol (CSP transport) to 
communicate data.  

 



•  Since the proxy nodes are not constrained by the 
legacy API (sockets), OS environment, and the 
hardware platform, they can be optimized to 
meet both TCP/IP and SAN protocol processing 
demands and can be scaled independently from 
application nodes. 

 
•  One or more application nodes can share the 

proxy nodes. Thus, proxy nodes can be used to 
perform L5-L7 policy execution across the 
application nodes in addition to off-loading 
protocol processing. 

 
•  Because the SAN Proxy handles all packets 

moving through the system, it is the logical place 
to add higher level services such as caching, 
firewall, and content transformation. 
 

Figure 4 shows the flow of packets for a HTTP/1.0 
transaction on the CSP with TCP/IP termination and 
protocol translation at the proxy node, illustrating the 
simplified control traffic at the application node. 
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Figure 4: Example of a HTTP/1.0 Transaction 
with TCP/IP Termination on the Proxy Node 

4.5 Application Support 
 
Application support focuses on developing an 
efficient communication interface for front-end 
Internet applications. Internet applications commonly 
use a socket-based programming paradigm for 
communications. Our solution involves work in two 
major directions: i) support for existing legacy 
applications that use the BSD sockets API; ii) 
understand and overcome the communication 

constraints imposed by legacy API. DASockets [5] 
and Windows Sockets Direct Path (WSDP) [23] are 
efforts with similar goals in mind.  
 
5 CSP System Evaluation 
 
A combination of system prototyping and simulation 
was being used for evaluation of the CSP 
performance, scalability, and for architectural 
validation. The combination provided the proof-of-
concept as well as proof-of-architectural 
implementation for CSP. In this methodology, 
prototyping with off-the-shelf hardware and software 
components was focused on dealing with the real 
world problems of implementing a CSP system with 
existing technology and on providing details on SAN 
protocols, message formats, and timing information. 
The prototype results were used in conjunction with 
the simulation models to evaluate overall system 
performance, identify bottlenecks, evaluate 
messaging flows, test flow control mechanisms, and 
validate improvements. 
 
5.1 Prototype Implementation 
 
This subsection describes a prototype implementation 
of the CSP. The prototype implementation provides 
practical experience in building a CSP system and 
provides a functional demonstration vehicle. The 
following subsections describe in detail each 
component of our CSP prototype. 
 
5.1.1 SAN and CSP Transport 

 
In order to construct the prototype using existing 
technologies, we used Gigabit Ethernet as the 
switched interconnect between the elements of the 
system.  To provide a VI Architecture compliant 
interface within each element of the system, we used 
the Modular-VI Architecture (M-VIA) [11] 
emulation software developed at Lawrence Berkeley 
National Labs.  The M-VIA software emulates the 
VIPL 1.0 API semantics in kernel software in the 
absence of native VI Architecture hardware support.  
This allows us to develop the services and interfaces 
independent of the underlying SAN fabric, as long as 
it supports the VIPL interface.   

 
It is noted here that for our prototyping and analysis 
purposes, we assume that switched Ethernet provides 
the reliable link semantics normally supplied by true 
SAN implementations.  Also note that the emulated VI 
Architecture over Ethernet does not provide the same 



level of performance as a true SAN with native VI 
Architecture hardware support. 
 
Our prototype CSP transport is a lightweight protocol 
optimized for reliable SAN interconnects. The CSP 
transport was derived from our earlier stream sockets 
prototype over VI Architecture [16]. It was modified 
to allow proxy nodes to access internal VI descriptors 
and register/deregister buffers. Furthermore, the 
ability to wait or poll on particular values of the 
immediate data field of a VI descriptor was added for 
supporting multiplexing of sockets over a VI on the 
application nodes. The CSP transport manages VI 
resources and buffers used for communication, and 
performs credit-based flow control. The use of a 
single VI connection between an application node 
and a SAN proxy can have serialization and single-
point of failure problems. On the other hand, use of a 
VI per socket limits scalability. In the CSP prototype, 
application level communication endpoints (sockets) 
were multiplexed over a pool of VI connections. A 
cache of registered buffers was maintained by the 
CSP transport in order to reduce the cost of memory 
registration and de-registration. 
 
5.1.2 Network Node 
 

 
 

Figure 5: An IXP1200 based Network Node 

 
The prototype CSP network node used an Intel  
IXP1200 network processor [32]. The IXP1200 is a 
single chip network processor with interfaces to 
external memories and media access devices.  The 
internal architecture of the IXP1200 consists of the 
following functional units; six multi-threaded micro-
coded RISC engines (UENGINES), one 
StrongARM  core processor (SA_CORE), SRAM 
and SDRAM memory interface units and an external 
bus interface unit (IXBUS) which is used to connect 

media access controllers. The prototype IXP1200 
configuration used in the CSP prototype consisted of 
a single IXP1200 chip, 32 Megabytes of external 
SDRAM, 2 Megabytes of external SRAM, one eight 
port (quad) 10/100 Mbps Ethernet MAC for attaching 
to the LAN, and one two port Gigabit Ethernet MAC 
for attaching to the SAN. 
 
The network node software architecture consists of 
twenty-four UENGINE threads for packet processing 
and two SA_CORE resident management threads. 
The SAN interfaces were made VI Architecture 
compliant by porting and running the M-VIA stack 
on the UENGINE threads. The UENGINE threads 
perform one of four packet processing operations; 
reception and processing of packets received on the 
LAN interface (Lan_Rx_Th), reception and 
processing of packets received on the SAN interface 
(San_Rx_Th), transmission of packets onto the LAN 
interface (Lan_Tx_Th), and transmission of packets 
onto the SAN interface (San_Tx_Th). Each of these 
operations is multi-threaded and the threads are 
distributed onto multiple UENGINES in order to 
provide wire speed packet forwarding between LAN 
and SAN ports. Figure 5 shows the IXP1200 based 
network node. 
 
5.1.3 Proxy Node 
 
In our prototype, we used standard rack mounted 800 
MHz Pentium  III processor based servers running 
Linux OS (version 2.2.14-20) as the proxy nodes. 
The Proxy node uses user-level TCP/IP (derived from 
[10]) to communicate with LAN/WAN clients. On 
the behalf of clients, it interacts with the application 
nodes using the CSP transport. In our prototype, we 
only implemented the SAN Proxy service and a 
simple L4 load-balancing scheme on top of it.  
 
In our implementation, the SAN Proxy service is a 
user-level multithreaded application that uses a pool 
of worker threads. Each worker thread is specialized 
for performing a subset of functions associated with 
TCP/IP processing, protocol translation/decoupling, 
SAN protocol processing, initial discovery 
mechanism, and L4-L7 policy execution. The SAN 
Proxy maintains two separate pools of registered 
buffers (one for incoming traffic and another for 
outgoing traffic). By maintaining a memory buffer 
structure that tracks the state of each registered 
buffer, the SAN Proxy achieves zero-copy 
translation. Figure 6 shows an architectural view of a 
proxy node along with a network node and an 
application node running a legacy application. 
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Figure 6: TCP/IP Termination Using Proxy Node 

 
5.1.4 Application Node 
 
Our initial approach was to enable existing 
applications without modifying the OS or 
applications. In our prototype, we introduced a Socket 
Filter module to intercept all socket-related function 
calls made by the legacy applications, and map them 
into appropriate CSP transport messages. In an 
environment such as Windows  NT, the socket filter 
module could be loaded dynamically as a 
dynamically loadable library (DLL). However, due to 
the lack of DLL support in Linux, the application has 
to be recompiled and linked to the socket filter 
library.  
 
We assumed that a majority of Internet server 
applications follow a predictable logic flow for 
socket-related calls, and we can consistently map 
them to the CSP transport messages. To simplify 
prototyping, we worked with those versions of 
applications that are multi-threaded, since VI 
resources cannot be shared across multiple processes.  
To date, we have successfully used the socket filter to 
enable an ftp server (betaftpd-0.0.7) and two web 
server applications (thttpd –2.16 and Apache-2.0a-
dev3).   

In order for a legacy application to preserve its host 
OS descriptors on the application nodes, the socket 
filter partitions 16-bit file descriptor (fd) space into 
system fds and transport fds. Furthermore, a fd for 
listening on a well-known port is obtained from host 
OS. The socket filter uses flow identifiers for both 

actively and passively opened sockets. For passively 
opened sockets, flow identifiers supplied by the 
proxy nodes are used as new socket fds. For an 
actively opened socket, a mapping between a socket 
fd and the corresponding flow identifier is used as the 
socket fd needs to be generated prior to the 
connection establishment. 
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Figure 7: Performance of Apache over Various 
Transports 

To ensure that real applications can truly benefit from 
the use of lightweight CSP transport, we determined 
the performance of the application node in isolation. 
Figure 7 compares the performance of an application 
node responding to HTTP/1.0 GET requests of 
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various file sizes using Apache over TCP/IP, eVIA, 
and nVIA. A simple client was used to drive 
sequential, single-stream HTTP GET requests to 
Apache over TCP.  The same requests were issued to 
Apache over eVIA and Apache over nVIA hardware 
by using a simulated proxy (and client) over the CSP 
transport. The simulated proxy replicates the 
behavior of the proxy node and issues the necessary 
CSP transport messages. To ensure a fair comparison, 
the maximum packet size was set to 1514 bytes 
(including headers) and non-blocking writes were 
used in all cases.  It should be noted that larger 
Maximum Transfer Sizes (MTS) up to 64K (as used 
in our experiments related to Figure 2) are more 
commonly used in SANs, thereby allowing for better 
performance. Furthermore, our prototype has to work 
under the restrictions imposed by legacy applications 
with substantial overheads added by the socket filter 
module. For the file sizes we considered, Apache 
over nVIA achieved 1.5-2.9x improvement in the 
latency. Furthermore, nVIA incurred less CPU 
overhead than TCP/IP.  
 
5.1.5 Management Node 
 
The main functions of the management node in our 
prototype is to maintain a centralized CSP 
information database, set policies on other nodes, and 
facilitate initial discovery operations. Other nodes 
register with the management node and inform it of 
their capabilities. As a part of initial discovery, the 
management node provides the proxy nodes and 
application nodes information about the network 
nodes and proxy nodes respectively. L2-L4 policies 
on the network nodes and L4-L7 policies on the 
proxy nodes are set after initial registration phase. 
 
5.2 CSP Simulation Model 
 
Development of the CSP simulation model and initial 
CSP system simulation studies were performed in 
parallel with the development of the actual CSP 
prototype. This allowed us to do early “pre-prototype 
hardware” studies of SAN fabric and CSP system 
configurations.  The SAN fabric simulations were 
focused mainly on developing the SAN fabric 
infrastructure that would support the interconnect 
requirements of the CSP architecture, would scale to 
clusters of at least 64 nodes, and would allow 
configuring the SAN for either Ethernet or 
Infiniband  Architecture operation. This enabled 
testing various CSP configurations with various SAN 
protocol and fabric topology options. The CSP 
system simulations were focused on evaluation of the 

CSP web services performance on various system 
configurations and workload scenarios. Since we 
didn't have all the critical CSP prototype software 
tuned for performance and test results at the time this 
paper was written, we used a three-step process to 
characterize as much of a range of performance, 
scaling, and configuration information as we could. 
 
The test (CSP) configuration used for our system 
simulations consisted of; two network nodes, each 
with a Gigabit Ethernet link to the external client 
network, two proxy nodes with two SAN ports each, 
four application nodes with one SAN port each, and a 
10 port SAN switch interconnecting all the nodes.  
The SAN links were modeled as 100 meter, full-
duplex links, at 1.25 Gbps for Ethernet and 2.5Gbps 
for Infiniband  Architecture.  SAN messages were 
segmented into 1514 byte frames for Ethernet and 
282 byte frames for Infiniband  Architecture.  
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Figure 8 CSP Processing Time Budgets 

For the first step in characterization, system 
simulation was used to empirically determine the 
processing budgets for the proxy and application tiers 
of the test configuration. These budgets were 
compared with the calculated mean wire time for 
each transaction size on the two output links from the 
network nodes to the clients (see Figure 8). The 
budgets were derived using constant streams of 
HTTP/1.0 GET requests for power-of-two transaction 
size from 2KB to 32KB. Each budget shows the 
mean transaction processing time the test 
configuration must achieve in the proxy or 
application tier to fully utilize the bandwidth of the 
two Gigabit Ethernet links to the client network, 
given a constant stream of the corresponding 
transaction size. 
 
The second step was to establish the 800 MHz 
Pentium  III Processor based server we use in our 



prototype system as a basic unit of measure of 
processing capacity (P) for characterizing the 
application tier (we have not yet acquired the data we 
need to do this for the proxy tier). In Figure 9, we 
graphed the application tier budgets from Figure 8 
and the mean transaction processing times for the 
native VI Architecture case in Figure 7. Then we 
divided the native VI Architecture based processing 
times by the application tier processing budgets to 
create the curve showing the equivalent number of P 
required in the application tier to achieve the 
maximum throughput for each mean transaction size.  
It shows that it would take the equivalent of 33P to 
sustain the full 2 Gbps throughput with a stream of 
2KB web transactions or 2.8P with a stream of 32KB 
transactions. 
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Figure 9: Equivalent P in Application Tier for 2 
Gbps of Service 

The third step was to input the appropriate processing 
times into our test model to simulate CSP 
configurations with the equivalent processing 
capacity of each of the points graphed on the curve in 
Figure 9. For each of these equivalent-processing 
capacities, we applied a web transaction workload 
consisting of transaction sizes randomly selected 
from the SPECweb99 static distribution (a mean 
transaction size of 14,384 bytes). Requests were 
generated by the clients in an exponential distribution 
with a mean rate of 20000 requests per second. Each 
test was run until 50,000 transactions were 
completed. The results of these simulations were 
used to produce the chart shown in Figure 10. The 
bars graph the total system throughput in transactions 
per second (TPS) and the curve graphs the TPS per P 
equivalent processing capacity.  
 

The chart in Figure 10 shows that the performance of 
our test configuration peaks at the equivalent 
processing capacity of about 10P for 2 Gbps of 
service. It also shows that, although the system 
throughput drops significantly when the processing 
capacity is reduced to the equivalent of ~3P, the TPS 
per P is still increasing. If we consider only the 
cost/performance of the application tier, this suggests 
the best cost/performance CSP configurations for this 
workload will have the equivalent of 1P to 2P per 
gigabit of service. However, if such things as the cost 
of the links to the clients network are considered, one 
may need anywhere from 3P to 5P per gigabit of 
service to maximize the cost effectiveness of each 
network link. Additional processing loads such as 
dynamic objects, SSL processing, or content 
transformations will also drive up the processing 
capacity requirements. 
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Figure 10: SpecWeb99 Static Distribution 

Performance 
By including complete benchmark processing loads 
in the performance simulations and by collecting the 
critical performance data for each prototype node, we 
will be able to fully characterize the CSP in the future 
and enable easily optimizing configurations for 
various applications and cost/performance tradeoffs. 
 
6 Conclusions and Future Work 
 
In this paper, we described the CSP system 
architecture for scalable Internet and communication 
services. The distinguishing features of the CSP 
architecture being; SAN as the system interconnect 
and VI Architecture as a low-overhead interface to 
SAN, use of commodity building block components, 
decomposition of network services into distributed 
functional pipelines, and the de-coupling of network 



protocol processing from end-point application 
processing. We described several CSP solutions, 
specifically the use of SAN tunneling and TCP flow 
labeling to reduce redundant packet processing, the 
CSP transport to provide an efficient “out of the box” 
IPC mechanism, the SAN proxy service that 
terminates client TCP/IP flows and maps them to the 
CSP transport, and the distribution of network 
services to allow scalability by service function. 
  
Our prototype implementation and system simulation 
results have offered us significant insights into the 
viability, performance and scalability of web service 
systems based on the CSP architecture.  The current 
prototype, which is functionally complete and 
operational, but not yet tuned for optimal 
performance, has allowed us to understand the 
difficulties and limitations imposed when 
constructing CSP systems out of available 
commodity building block components. The CSP 
simulation models have allowed us to extend past 
these limitations in order to gain the knowledge 
needed to architect future interconnect and 
component technologies better suited for CSP like 
systems. The following is a summary of the insights 
gained and issues raised during both the CSP 
prototype and modeling efforts: 
 
•  It is possible to construct a CSP type system 

using commodity-based components that can be 
scaled by function and processing capability to 
achieve a desired system throughput and cost 
point. To date, our CSP simulation studies have 
shown significant evidence that the CSP systems 
can be built from commodity building blocks 
and provide the necessary characteristics and 
scalability to be competitive with more 
specialized solutions. Unfortunately, at this time 
we have not acquired all of the critical prototype 
data needed to complete our analysis and fully 
characterize and contrast our solution against 
others. We plan to do so in future. 

•  Prototype benchmarking and simulation results 
showed that the use of a light weight CSP 
transport had performance benefits over 
traditional network transports, especially on 
components running traditional operating system 
stacks, such as application nodes.  These benefits 
are largely due to the underlying VI Architecture 
and SAN interconnect technologies.  The 
challenge lies in how to balance these benefits 
with the constraints imposed.  For example, our 
early investigations showed that significant 
performance benefits could be achieved by using 
VI Architecture interfaces for web type 
transactions. Later prototyping showed that 

utilizing the VI Architecture interface 
efficiencies while still maintaining application 
transparency and compatibility of existing 
Internet application interfaces, i.e. BSD sockets, 
was very challenging.  In particular, the select() 
paradigm, used by socket-based applications, did 
not map efficiently to the queued real time 
signals available in message passing primitives 
provided by VI Architecture interfaces.  

 
•  The current CSP prototype and system model 

use a proxy node architecture that required all 
TCP control and data traffic be stored and 
forwarded through it.  This presents challenges 
in how to balance memory capacity, I/O 
throughput, and processing capacity with 
price/performance and functionality on the proxy 
node.  
 

•  CSP System simulations have shown very 
aggressive processing budgets are needed for 
both the proxy and application node components 
to achieve maximum system capacity.  Current 
generation components are not optimized for 
CSP traffic patterns or processing budgets and 
therefore require higher degrees of CSP node 
replication or component cost.  By developing a 
set of server silicon components that are 
optimized for the CSP architecture and 
developing key hardware functionality, we 
believe a much better cost/performance solution 
can be achieved.  

 
Going forward, we plan to address the constraints 
imposed by the legacy sockets API as well as explore 
legacy-free application interfaces that can take full 
advantage of the CSP transport optimizations (such 
as user level I/O, asynchronous I/O, and zero copy 
semantics).  Ultimately, we hope to develop a set of 
OS independent high-performance APIs to facilitate 
this transaction. To address the proxy node store and 
forward issue, we plan to investigate alternative 
control and data flow methods, such as “third party 
data transfers”.  
 
Other areas for future work are extending the CSP 
architecture to support SAN-aware file systems as 
defined in the direct access files system (DAFS) 
specification [6] and also extending the CSP 
architecture to interface into more traditional SAN-
aware back-end applications, such as distributed 
databases.  
 
To date we have focused heavily on basic web traffic.  
In the future, we would like to explore more 
communication intensive applications focused on a 



mixture of voice, rich media and data with additional 
infrastructure services such as SSL and Firewalls. We 
believe the CSP architecture is a relevant step in the 
evolution of the converged data center networks of 
the future. 
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