USENIX

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the USENIX Annual Technical Conference

Monterey, California, USA, June 6-11, 1999

The MultiSpace: An Evolutionary Platform
for Infrastructural Services

Steven D. Gribble, Matt Welsh,
Eric A. Brewer, and David Culler

University of California at Berkeley

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.

USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738
Email: office @usenix.org WWW: http://www.usenix.org

The MultiSpace: an Evolutionary Platform
for Infrastructural Services

Steven D. Gribble, Matt Welsh, Eric A. Brewer, and David Culler
The Unwversity of California at Berkeley
{gribble,mdw,brewer,culler} @cs.berkeley.edu

Abstract

This paper presents the architecture for a Base, a
clustered environment for building and executing highly
available, scalable, but flexible and adaptable infras-
tructure services. Our architecture has three organizing
principles: addressing all of the difficult service fault-
tolerance, availability, and consistency problems in a
carefully controlled environment, building that environ-
ment out of a collection of execution environments that
are receptive to mobile code, and using dynamically gen-
erated code to introduce run-time-generated levels of in-
direction separating clients from services. We present
a prototype Java implementation of a Base called the
MultiSpace, and talk about two applications written on
this prototype: the Ninja Jukebox (a cluster based mu-
sic warehouse), and Keiretsu (an instant messaging ser-
vice that supports heterogeneous clients). We show that
the MultiSpace implementation successfully reduces the
complexity of implementing services, and that the plat-
form is conducive to rapid service evolution.

1 Introduction

The performance and utility of a personal
computer will be defined less by faster Intel
processors and new Microsoft software and
increasingly by Internet services and software.

c|net news article excerpt, 11/25/98

Once a disorganized collection of data reposi-
tories and web pages, the Internet has become a
landscape populated with rich, industrial-strength
applications. Many businesses and organizations
have counterparts on the web: banks, restaurants,
stock trading services, communities, and even gov-
ernments and countries. These applications possess
similar properties to traditional utilities such as the
telephone network or power grid: they support large
and potentially rapidly growing populations, they

must be available 24x7, and they must abstract com-
plex engineering behind simple interfaces. We be-
lieve that the Internet is evolving towards a service-
oriented infrastructure, in which these high quality
utility-like applications will be commonplace. Un-
like traditional utilities, Internet services tend to
rapidly evolve, are typically customizable by the
end-user, and may even be composable.

Although today’s Internet services are mature,
the process of erecting and modifying services is
quite immature. Most authors of complex, new ser-
vices are forced to engineer substantial amounts of
custom, service-specific code, largely because of the
diversity in the requirements of each service—it is
difficult to conceive of a general-purpose, reusable,
shrink-wrapped, adequately customizable and ex-
tensible service construction product.

Faced with a seemingly inevitable engineering
task, authors tend to adopt one of two strategies
for adding new services to the Internet landscape:

Inflexible, highly tuned, hand-constructed
services: by far, this is the most dominant service
construction strategy found on the Internet. Here,
service authors carefully design a system targeted
towards a specific application and feature set, op-
erating system, and hardware platform. Examples
of such systems are large, carrier-class web search
engines, portals, and application-specific web sites
such as news, stock trading, and shopping sites. The
rationale for this approach is sound: it leads to ro-
bust and high-performance services. However, the
software architectures of these systems are too re-
strictive; they result in a fixed service that performs
a single, rigid function. The large amount of care-
fully crafted and hand-tuned code means that these
services are difficult to evolve; consider, for example,
how hard it would be to radically change the behav-
ior of a popular search engine service, or to move
the service into a new environment—these sorts of
modifications would take massive engineering effort.

“Emergent services” in a world of dis-
tributed objects: this strategy is just beginning

to become popularized with architectures such as
Sun’s JINT [31] and the ongoing CORBA effort [25].
In this world, instead of erecting complex, inflexible
services, large numbers of components or objects
are made available over the wide area, and services
emerge through the composition of many such com-
ponents. This approach has the benefit that adding
to the Internet landscape is a much simpler task,
since the granularity of contributed components is
much smaller. Because of the explicit decomposi-
tion of the world into much smaller pieces, it is also
simpler to retask or extend services by dropping one
set of components and linking in others.

There are significant disadvantages to this ap-
proach. As a side-effect of the more evolutionary
nature of services, it is difficult to manage the state
of the system, as state may be arbitrarily replicated
and distributed across the wide area. Wide-area
network partitions are commonplace, meaning that
it is nearly impossible to provide consistency guar-
antees while maintaining a reasonable amount of
system availability. Furthermore, although it is pos-
sible to make incremental, localized changes to the
system, it is difficult to make large, global changes
because the system components may span many ad-
ministrative domains.

In this paper, we advocate a third approach.
We argue that we can reap many of the benefits
of the distributed objects approach while avoiding
difficult state management problems by encapsulat-
ing services and service state in a carefully con-
trolled environment called a Base. To the outside
world, a Base provides the appearance and guaran-
tees of a non-distributed, robust, highly-available,
high-performance service. Within a Base, services
aren’t constructed out of brittle, restrictive software
architectures, but instead are “grown” out multiple,
smaller, reusable components distributed across a
workstation cluster [3]. These components may be
replicated across many nodes in the cluster for the
purposes of fault tolerance and high performance.
The Base provides the glue that binds the compo-
nents together, keeping the state of replicated ob-
jects consistent, ensuring that all of the constituent
components are available, and distributing traffic
across the components in the cluster as necessary.

The rest of this paper discusses the design princi-
ples that we advocate for the architecture of a Base
(section 2), and presents a preliminary Base imple-
mentation called the Ninja MultiSpace! (section 3)
that uses techniques such as dynamic code genera-
tion and code mobility as mechanisms for demon-

IThe MultiSpace implementation is available with the
Ninja platform release - see http://ninja.cs.berkeley.edu.

client stub for .
service#2 |

@ =service#l Base
A =service#2

Figure 1: Architecture of a Base: a Base is com-
prised of a cluster of workstations connected by a
high-speed network. Each node houses an execution
environment into which code can be pushed. Ser-
vices have many instances within the cluster, but
clients are shielded from this by a service “stub”
through which they interact with the cluster.

strating and evaluating our hypotheses of service
flexibility, rapid evolution, and robustness under
change. While we have begun preliminary explo-
rations into the scalability and high availability as-
pects of our prototype, that has not been the ex-
plicit focus of this initial implementation, and in-
stead remains the subject of future work. Two ex-
ample services running on our prototype Base are
described in section 4. In section 5, we discuss some
of the lessons we learned while building our proto-
type. Section 6 presents related work, and in Section
7 we draw conclusions.

2 Organizing Principles

In this section we present three design principles
that guided our service architecture development
(shown at a high level in figure 1):

1. Solve the challenging service availability and
scalability problems in carefully controlled
environments (Bases),

2. Gain service flexibility by decomposing Bases
into a number of receptive execution envi-
ronments, and

3. Introduce a level of indirection between the
clients and services through the use of dy-
namic code generation techniques.

We now discuss each of these principles in turn.

2.1 Solve Challenging Problems in a
Base

The high availability and scalability “utility” re-
quirements that Internet services require are diffi-
cult to deliver; our first principle is an attempt to
simplify the problem of meeting them by carefully
choosing the environment in which we tackle these
issues. Asin [11], we argue that clusters of worksta-
tions provide the best platform on which to build In-
ternet services. Clusters allow incremental scalabil-
ity through the addition of extra nodes, high avail-
ability through replication and failover, and cost-
performance by using commodity building blocks as
the basis of the computing environment.

Clusters are the backbone of a Base. Physically,
a Base must include everything necessary to keep
a mission-critical cluster running: system adminis-
trators, a physically secure machine room, redun-
dant internal networks and external network feeds,
UPS systems, and so on. Logically, a cluster-wide
software layer provides data consistency, availabil-
ity, and fault tolerance mechanisms.

The power of locating services inside a Base arises
from the assumptions that service authors can now
make when designing their services. Communica-
tion is fast and local, and network partitions are
exceptionally rare. Individual nodes can be forced
to be as homogeneous as necessary, and if a node
dies, there will always be an identical replacement
available. Storage is local, cheap, plentiful, and well-
guarded. Finally, everything is under a single do-
main, simplifying administration.

Nothing outside of the Base should try to dupli-
cate the fault-tolerance or data consistency guaran-
tees of the Base. For example, e-mail clients should
not attempt to keep local copies of mail messages ex-
cept in the capacity of a cache; all messages are per-
manently kept by an e-mail service in the Base. Be-
cause services promise to be highly available, a user
can rely on being able to access her email through
it while she is network connected.

2.2 Receptive Execution Environments

Internet services are generally built from a com-
plex assortment of resources, including heteroge-
neous single-CPU and multiprocessor systems, disk
arrays, and networks. In many cases these ser-
vices are constructed by rigidly placing functional-
ity on particular systems and statically partitioning
resources and state. This approach represents the
view that a service’s design and implementation are
“sanctified” and must be carefully planned and laid

out across the available hardware. In such a regime,
there is little tolerance for failures which disrupt the
balance and structure of the service architecture.

To alleviate the problems associated with this ap-
proach, the Base architecture employs the principle
of receptive execution environments—systems which
can be dynamically configured to host a component
of the service software. A collection of receptive
execution environments can be constructed either
from a set of homogeneous workstations or more
diverse resources as required by the service. The
distinguishing feature of a receptive execution envi-
ronment, however, is that the service is “grown” on
top of a fertile platform; functionality is pushed into
each node as appropriate for the application. Each
node in the Base can be remotely and dynamically
configured by uploading service code components as
needed, allowing us to delay the decision about the
details of a particular node’s specialization as far as
possible into the service construction and mainte-
nance lifecycle.?

As we will see in section 3, our approach has been
to make a single assumption of homogeneity across
systems in a Base: a Java Virtual Machine is avail-
able on each node. In doing so, we raise the bar of
service construction by providing a common instruc-
tion set across all nodes, unified views on thread-
ing models, underlying system APIs (such as socket
and filesystem access), as well as the usual strong
typing and safety features afforded by the Java en-
vironment. Because of these provisions, any service
component can be pushed into any node in our Base
and be expected to execute, subject to local resource
considerations (such as whether a particular node
has access to a disk array or a CD drive). Assuming
that every node is capable of receiving Java byte-
codes, however, means that techniques generally ap-
plied to mobile code systems [21, 13, 28, 32, 18] can
be employed internally to the Base: the adminis-
trator can deploy service components by uploading
Java classes into nodes as needed, and the service
can push itself towards resources redistributing code
amongst the participating nodes. Furthermore, be-
cause in this environment we are restricting our use
of code mobility to deploying local code within the
scope of a single, trusted administrative domain,
some of the security difficulties of mobile code are
reduced.

2We rely on two mechanisms for mobile code security:we
restrict the use of mobile code inside the Base to code that
originates from trusted sources within the Base itself, and we
use the Java Security Manager mechanism to sandbox this
mobile code. Our research goals, however, do not include
solving the mobile code security problem.

2.3 Dynamic Redirector Stub Genera-
tion

One challenge for clustered servers is to present a
single service interface to the outside world, and to
mask load-balancing and failover mechanisms in the
cluster. The naive solution is to have a single front-
end machine that clients first contact; the front-end
then dispatches these incoming requests to one of
several back-end machines. Failures can be hidden
through the selection of another back-end machine,
and load-balancing can be directly controlled by the
front-end’s dispatch algorithm. Unfortunately, the
front-end can become a performance bottleneck and
a single point of failure [11, 8]. One solution to these
problems is to use multiple front-end machines, but
this introduces new problems of naming (how clients
determine which front-end to use) and consistency
(whether the front-ends mutually agree on the back-
end state of the cluster). The naming problem can
be addressed in a number of ways, such as round-
robin DNS [6], static assignment of front-ends to
clients, or “lightweight” redirection in the style of
scalable Web servers [17]. The consistency problem
can be solved through one of many distributed sys-
tems techniques [4] or ignored if consistent state is
unimportant to the front-end nodes.

The Base architecture takes another approach to
cluster access indirection: the use of dynamically-
generated Redirector Stubs. A stub is client-
side code which provides access to a service; a
common example is the stub code generated for
CORBA/IIOP [25] and Java Remote Method In-
vocation (RMI) [23] systems. The stub code runs
on the client and converts client requests for ser-
vice functionality (such as Java method calls) into
network messages, marshalling request parameters
and unmarshalling results. In the case of Java RMI,
clients download stubs on-demand from the server.

Base services employ a similar technique to RPC
stub generation except that the Redirector Stub
for a service is dynamically generated at run-time
and contains embedded logic to select from a set of
nodes within the cluster (figure 2). Load balancing
is implemented within this “Redirector Stub”, and
failover is accomplished by reissuing failed or timed-
out service calls to an alternative back-end machine.
The redirection logic and information about the
state of the Base is built up by the Base and ad-
vertised to clients periodically; clients obtain the
Redirector Stubs from a registry. This methodol-
ogy has a number of significant implications about
the nature of services, namely that they must be
idempotent and maintain self-consistency across a

V777

from Server
Client "

(2417
][] [

7

Figure 2: A “Redirector Stub”: embedded inside
a Redirectory Stub are several RPC stubs with the
same interface, each of which communicates with a
different service instance inside a Base.

service’s instances on different nodes in the Base. In
section 3.3.1, we will discuss an implementation of
a cluster-wide distributed data structure that sim-
plifies the task of satisfying these implications.

Client applications can be coded without knowl-
edge of the Redirector Stub logic; by moving failover
and load-balancing functionality to the client, the
use of front-end machines can be avoided altogether.
This is similar to the notion of smart clients [34], but
with the intelligence being injected into the client at
run-time instead of being compiled in.

3 Implementation

Our prototype Base implementation (written in
Java) is called the MultiSpace. It serves to demon-
strate the effectiveness of our architecture in terms
of facilitating the construction of flexible services,
and to allow us to begin explorations into the issues
of our platform’s scalability. The MultiSpace im-
plementation has three layers: the bottom layer is
a set of communications primitives (NinjaRMI); the
middle layer is a single-node execution environment
(the iSpace); and the top layer is a set of multiple
node abstractions (the MultiSpace layer). We de-
scribe each of these in turn, from the bottom up.

3.1 NinjaRMI

A rich set of high performance communications
primitives is a necessary component of any clustered
environment. We chose to make heavy use of Java’s
Remote Method Invocation (RMI) facilities for per-
forming RPC-like [5] calls across nodes in the clus-
ter, and between clients and services. When a caller
invokes an RMI method, stub code intercepts the
invocation, marshalls arguments, and sends them
to a remote “skeleton” method handler for unmar-
shalling and execution. Using RMI as the finest
granularity communication data unit in our clus-
tered environment has many useful properties. Be-

cause method invocations have completely encap-
sulated, atomic semantics, retransmissions or com-
munication failures are easy to reason about—they
correspond to either successful or failed method in-
vocations, rather than partial data transmissions.

However, from the point of view of clients, if a
remote method invocation does not successfully re-
turn, it can be impossible for the client to know
whether or not the method was successfully invoked
on the server. The client has two choices: it can
reinvoke the method call (and risk calling the same
method twice), or it can assume that the method
was not invoked, risking that the method was in fact
invoked, successfully or unsuccessfully with an ex-
ception, but results were not returned to the client.
Currently, on failure our Redirector Stubs will retry
using a different, randomly chosen service stub; in
the case of many successive failures, the Redirec-
tor Stub will return an exception to the caller. It
is because of the at-least-once semantics implied by
these client-side reinvocations that we must require
services to be idempotent. The exploration of dif-
ferent retry policies inside the Redirector Stubs is
an area of future research.

3.1.1 NinjaRMI enhancements to Sun’s

RMI

NinjaRMI is a ground-up reimplementation of Sun’s
Java Remote Method Invocation for use by com-
ponents within the Ninja system. NinjaRMI was
designed to permit maximum flexibility in imple-
mentation options. NinjaRMI provides three in-
teresting transport-level RMI enhancements. First,
it provides a unicast, UDP-based RMI that allows
clients to call methods with “best-effort” seman-
tics. If the UDP packet containing the marshalled
arguments successfully arrives at the service, the
method is invoked; if not, no retransmissions are
attempted. Because of this, we enforce the require-
ment that such methods do not have any return
values. This transport is useful for beacons, log
entries, or other such side-effect oriented uses that
do not require reliability. Our second enhancement
is a multicast version of this unreliable transport.
RMI services can associate themselves with a multi-
cast group, and RMI calls into that multicast group
result in method invocations on all listening ser-
vices. Our third enhancement is to provide very
flexible certificate-based authentication and encryp-
tion support for reliable, unicast RMI. Endpoints in
an RMI session can associate themselves with dig-
ital certificates issued by a certification authority.
When the TCP-connection underlying an RMI ses-

sion is established, these certificates are exchanged
by the RMI layer and verified at each endpoint. If
the certificate verification succeeds, the remainder
of the communication over that TCP connection is
encrypted using a Triple DES session key obtained
from a Diffie-Hellman key exchange. These security
enhancements are described in [12].

Packaged along with our NinjaRMI implementa-
tion is an interface compiler which, when given an
object that exports an RMI interface, generates the
client-side stub and server-side skeleton stubs for
that object. All source code for stubs and skele-
tons can be generated dynamically at run-time, al-
lowing the Ninja system to leverage the use of an
intelligent code-generation step when constructing
wrappers for service components. We use this to in-
troduce the level of indirection needed to implement
Redirector Stubs—stubs can be overloaded to cause
method invocations to occur on many remote nodes,
or for method invocations to fail over to auxiliary
nodes in the case of a primary node’s failure.

3.1.2 Measurements of NinjaRMI

Method Local Sun Ninja
method RMI RMI
f(void) 0.19 pus | 0.83 ms | 0.82 ms
f(int) 0.20 ps | 0.84 ms | 0.85 ms
int f(int) 0.18 us | 0.85 ms | 0.84 ms
int £(

int,int,int,int) 0.22 us | 0.88 ms | 0.86 ms
f (byte[100]) 0.19 ps | 1.06 ms | 1.05 ms
f (byte[1000]) 0.20 ps | 1.20 ms | 1.09 ms
f (byte [10000]) 0.21 ps | 2.21 ms | 2.23 ms
byte[100] f(int) 0.19 ps | 1.07 ms | 1.00 ms
byte[1000] £ (int) 0.20 s | 1.17 ms | 1.01 ms
byte[10000] £ (int) || 0.20 ps | 2.20 ms | 2.10 ms

Table 1: NinjaRMI microbenchmarks: These
benchmarks were gathered on two 400Mhz Pentium
IT based machines, each with 128MB of physical
memory, connected by a switched 100 Mb/s Eth-
ernet, and using Sun’s JDK 1.1.6v2 with the TYA
just-in-time compiler on Linux 2.0.36. For the sake
of comparison, UDP round-trip times between two
C programs were measured at 0.185 ms, and be-
tween two Java programs at 0.316 ms.

As shown in table 1, NinjaRMI performs as well
as or better than Sun’s Java RMI package. Given
that a null RMI invocation cost 0.82 ms and that
a round-trip across the network and through the
JVMs cost 0.316 ms, we conclude that the differ-
ence (roughly 0.5 ms) is RMI marshalling and pro-

tocol overhead. Profiling the code shows that the
main contributor to this overhead is object seri-
alization, specifically the use of methods such as
java.io.0ObjectInputStream.read().

3.2 iSpace

A Base consists of a number of workstations, each
running a suitable receptive execution environment
for single-node service components. In our proto-
type, this receptive execution environment is the
iSpace: a Java Virtual Machine (JVM) that runs
a component loading service into which Java classes
can be pushed as needed. The iSpace is responsible
for managing component resources, naming, protec-
tion, and security. The iSpace exports the compo-
nent loader interface via NinjaRMI; this interface
allows a remote client to obtain a list of compo-
nents running on the iSpace, obtain an RMI stub to
a particular component, and upload a new service
component or kill a component already running on
the iSpace (subject to authentication). Service com-
ponents running on the iSpace are protected from
one another and from the surrounding execution en-
vironment in three ways:

1. each component is coded as a Java class which
provides protection from hard crashes (such as
null pointer dereferences),

2. components are separated into thread groups;
this limits the interaction one component can
have with threads of another, and

3. all components are subject to the iSpace Se-
curity Manager, which traps certain Java API
calls and determines whether the component
has the credentials to perform the operation in
question, such as file or network access.

Other assumptions must be made in order to
make this approach viable. In essence, we are re-
lying on the JVM to behave and perform like a
miniature operating system, even though it was not
designed as such. For example, the Java Virtual Ma-
chine does not provide adequate protection between
threads of multiple components running within the
same JVM: one component could, for example, con-
sume the entire CPU by running indefinitely within
a non-blocking thread. Here, we must assume that
the JVM employs a preemptive thread scheduler
(as is true in the Sun’s Solaris Java environment)
and that fairness can be guaranteed through its use.
Likewise, the iSpace Security Manager must utilize
a strategy for resource management which ensures

both fairness and safety. In this respect iSpace has
similar goals to other systems which provide multi-
ple protection domains within a single JVM, such as
the JKernel [16]. However, our approach does not
necessitate a re-engineering of the Java runtime li-
braries, particularly because intra-JVM thread com-
munication is not a high-priority feature.

3.3 MultiSpace

The highest layer in our implementation is the
MultiSpace layer, which tethers together a collec-
tion of iSpaces (figure 3). A primary function of
this layer is to provide each iSpace with a repli-
cated registry of all service instances running in the
cluster.

A MultiSpace service inherits from an abstract
MultiSpaceService class, whose constructor registers
each service instance with a “MultiSpaceLoader”
running on the local iSpace. All MultiSpaceLoad-
ers in a cluster cooperate to maintain the replicated
registry; each one periodically sends out a multicast
beacon® that carries its list of local services to all
other nodes in the MultiSpace, and also listens for
multicast messages from other MultiSpace nodes.
Each MultiSpaceLoader builds an independent ver-
sion of the registry from these beacons. The reg-
istries are thus soft-state, similar in nature to the
cluster state maintained in [11] and [1]—if an iS-
pace node goes down and comes back up, its Mul-
tiSpaceLoader simply has to listen to the multicast
channel to rebuild its state. Registries on different
nodes may see temporary periods of inconsistency
as services are pushed into the MultiSpace or moved
across nodes in the MultiSpace, but in steady state,
all nodes asymptotically approach consistency. This
consistency model is similar in nature to that of
Grapevine [10].

The multicast beacons also carry RMI stubs for
each local service component, which implies that
any service instance running on any node in the
MultiSpace can identify and contact any other ser-
vice in the MultiSpace. It also means that the Mul-
tiSpaceLoader on every node has enough informa-
tion to construct Redirector Stubs for all of the ser-
vices in the MultiSpace, and advertise those Redi-
rector Stubs to off-cluster clients through a “service
discovery service”[9].* Each RMI stub embedded in

3Currently, TP multicast is used for this purpose — the
multicast channel that beacons are sent over thus defines the
logical scope and boundary of an individual MultiSpace. We
intend to replace this transport with multicast NinjaRMI.

4The service discovery service (or SDS) implementation
consists of an XML search engine that allows client programs
to locate services based on arbitrary XML predicates.

Service 1
Service 2
Service N
Service 1
Service 2
Service N

L3
L3
L]
i Space Loader
Multi Spacel_oader

i Space Loader
Multi Spacel_oader

Security Mgr. Security Mar.

Java Virtual Machine Java Virtual Machine

o1l | iSpacenodel " iSpace node M

i svec2 ~ .

svc N

sc_:omm/r,/ System Area |
beacon Network

Figure 3: The MultiSpace implementation:
MultiSpace services are instantiated on top of a
sandbox (the Security Manager), and run inside the
context of a Java virtual machine (JVM).

a multicast beacon is (based on our observations)
roughly 500 bytes in average length; there is there-
fore an important tradeoff between the beacon fre-
quency (and therefore freshness of information in
the MultiSpaceLoaders) and the number of services
whose stubs are being beaconed that will ultimately
affect the scalability of the MultiSpace.

Service instances can elect to receive multicast
beacons from other MultiSpace nodes; a service can
use this mechanism to become aware of its peers
running elsewhere in the cluster. If a service over-
rides the standard beacon class, it can augment its
beacons with additional information, such as the
load that it is currently experiencing. Services that
want to call out to other services could thus make
coarse grained load balancing decisions without re-
quiring a centralized load manager.

3.3.1 Built-In MultiSpace Services

Included with the MultiSpace implementation are
two services that enrich the functionality available
to other MultiSpace services: the distributed hash
table, and the uptime monitoring service.
Distributed hash table: as mentioned in sec-
tion 2.3, due to the Redirector Stub mechanism
MultiSpace service instances must maintain self-
consistency across the nodes of the cluster. To make
this task simpler, we have provided service authors
with a distributed, replicated, fault-tolerant hash
table that is implemented in C for the sake of ef-
ficiency. The hash table is designed to present a
consistent view of data across all nodes in the clus-
ter, and as such, services may use it to rendezvous in
a style similar to Linda [2] or IBM’s T-Spaces [33].

The current implementation is moderately fast (it
can handle more than 1000 insertions per second of
500 byte entries on a 4 node 100Mb/s MultiSpace
cluster), is fault tolerant, and transparently mask
multiple node failures. However, it does not yet
provide all of the consistency guarantees that some
services would ideally prefer, such as on-line recov-
ery of crashed state or transactions across multiple
operations. The currently implementation is, how-
ever, suitable for many Internet-style services for
which this level of consistency is not essential.

Uptime monitoring service: Even with the
service beaconing mechanism, it is difficult to de-
tect the failure of individual nodes in the cluster.
This is partly because of the lack of a clear failure
model in Java: a Java service is just a collection of
objects, not necessarily even possessing a thread of
execution. A service failure may just imply that a
set, of objects has entered a mutually inconsistent
state. The absence of beacons doesn’t necessarily
mean that a service instance failure has occurred;
the beacons may be lost due to congestion in the
internal network, or the beacons may not have been
generated because the service instance is overloaded
and is busy processing other tasks.

For this reason, we have provided an uptime
monitoring abstraction to service authors. If a ser-
vice running in the MultiSpace implements a well-
known Java interface, the infrastructure automat-
ically detects this and begins periodically calling
the doProbe() method in that interface. By im-
plementing this method, service authors promise
to perform an application-level task that demon-
strates that the service is accepting and successfully
processing requests. By using this application-level
uptime check, the infrastructure can explicitly de-
tect when a service instance has failed. Currently,
we only log this failure in order to generate up-
time statistics, and we rely on the Redirector Stub
failover mechanisms to mask these failures.

4 Applications

In this section of the paper, we discuss two appli-
cations that demonstrate the validity of our guiding
principles and the efficacy of our MultiSpace imple-
mentation. The first application, the Ninja Juke-
box, abstracts the many independent compact-disc
players and local filesystems in the Berkeley Net-
work of Workstations (NOW) cluster into a single
pool of available music. The second, Keiretsu, is a
three-tiered application that provides instant mes-
saging across heterogeneous devices.

= rirhe e ek 112 e berm 1300 trechky ! 1711

B=C] 4 Saw §lorsias] @burrs 10 bracks O 1T

|- i o g £ b 1 ke, OIS
P el p, Aaliek & Cos R Ddam CnEr d i wired, B il R EEE
¥ O fderany i d e i & s barst 80 mecke. 38T

= Faps femmin 012 ek, CiH1T

e] Flaes Sewsim - dhic 2 Ui s, 25050

2] Pinrs Sowim = ciye 1 013 ks £

s £

o £ ilfie pdn plasiin

L RN

Figure 4: The Ninja Jukebox GUTI: users are pre-
sented with a single Jukebox interface, even though
songs in the Jukebox are scattered across multiple
workstations, and may be either MP3 files on a local
filesystem, or audio CDs in CD-ROM drives.

4.1 The Ninja Jukebox

The original goal of the Ninja jukebox was to
harness all of the audio CD players in the Berkeley
NOW (a 100+ node cluster of Sun UltraSparc work-
stations) to provide a single, giant virtual music
jukebox to the Berkeley CS graduate students. The
most interesting features of the Ninja Jukebox arise
from its implementation on top of iSpace: new nodes
can be dynamically harnessed by pushing appropri-
ate CD track “ripper” services onto them, and the
features of the Ninja Jukebox are simple to evolve
and customize, as evidenced by the seamless trans-
formation of the service to the batch conversion of
audio CDs to MP3 format, and the authenticated
transmission of these MP3s over the network.

The Ninja Jukebox service is decomposed into
three components: a master directory, a CD “rip-
per” and indexer, and a gateway to the online
CDDB service [22] that provides artist and track
title information given a CD serial number. The
ability to push code around the cluster to grow
the service proved to be exceptionally useful, since
we didn’t have to decide a priori which nodes in
the cluster would house CDs—we could dynami-
cally push the ripper/indexer component towards
the CDs as the CDs were inserted into nodes in the
cluster. When a new CD is added to a node in the
NOW cluster, the master directory service pushes
an instance of the ripper service into the iSpace res-
ident on that node. The ripper scans the CD to
determine what music is on it. It then contacts a lo-
cal instance of the CDDB service to gather detailed
information about the CD’s artist and track titles;
this information is put into a playlist which is pe-
riodically sent to the master directory service. The
master directory incorporates playlists from all of

the rippers running across the cluster into a single,
global directory of music, and makes this directory
available over both RMI (for song browsing and se-
lection) and HTTP (for simple audio streaming).
After the Ninja Jukebox had been running for a
while, our users expressed the desire to add MP3
audio files to the Jukebox. To add this new behav-
ior, we only had to subclass the CD ripper/indexer
to recognize MP3 audio files on the local filesystem,
and create new Jukebox components that batch con-
verted between audio CDs and MP3 files. Also, to
protect the copyright of the music in the system we
added access control lists to the MP3 repositories,
with the policy that users could only listen to mu-
sic that they had added to the Jukebox.> We then
began pushing this new subclass to nodes in the sys-
tem, and our system evolved while it was running.
The performance of the Ninja Jukebox is com-
pletely dominated by the overhead of authentication
and the network bandwidth consumed by stream-
ing MP3 files. The first factor (authentication over-
head) is currently benchmarked at a crippling 10
seconds per certificate exchange, entirely due to a
pure Java implementation of a public key cryptosys-
tem. The second factor (network consumption) is
not quite as crippling, but still significant: each
MP3 consumes at least 128 Kb/s, and since the MP3
files are streamed over HTTP, each transmission is
characterized by a large burst as the MP3 is pushed
over the network as quickly as possible. Both limita-
tions can be remedied with significant engineering,
but this would be beyond the scope of our research.

4.2 Keiretsu: The
Messaging Service

Ninja Instant-

Keiretsu® is a MultiSpace service that provides
instant messaging between heterogeneous devices:
Web browsers, one- or two-way pagers, and PDAs
such as the Palm Pilot (see Figure 5). Users are
able to view a list of other users connected to the
Keiretsu service, and can send short text messages
to other users. The service component of Keiretsu
exploits the MultiSpace features: Keiretsu service
instances use the soft-state registry of peer nodes in
order to exchange client routing information across
the cluster, and automatically generated Redirector
Stubs are handed out to clients for use in commu-
nicating with Keiretsu nodes.

5This ACL policy is enforced using the authentication ex-
tensions to NinjaRMI described in 3.1.1.

6 Keiretsu is a Japanese concept in which a group of re-
lated companies work together for each other’s mutual suc-
cess.

H
(2) Active Proxy
converts outgoing
msg to RMI

(1) User enters
message on Pilot

(3) Message sent
to MultiSpace

7171l Keiretsu
| service

(m (5) Active Proxy
converts message
to Pilot format

(4) Message routed to
destination Active Proxy

(6) Receiving
Pilot displays
message

Figure 5: The Keiretsu Service

Keiretsu is a three-tired application: simple
client devices (such as pagers or Palm Pilots) that
cannot run a JVM connect to an Active Proxy,
which can be thought of as a simplified iSpace
node meant to run soft-state mobile code. The Ac-
tive Proxy converts simple text messages from de-
vices into NinjaRMI calls into the Keiretsu Mul-
tiSpace service. The Active Proxies are assumed
to have enough sophistication to run Java-based
mobile code (the protocol conversion routines) and
speak NinjaRMI, while rudimentary client devices
need only speak a simple text-based protocol.

As described in section 2.3, Redirector Stubs
are used to access the back-end service components
within a MultiSpace by pushing load-balancing and
failover logic towards the client—in the case of sim-
ple clients, Redirector Stubs execute in the Active
Proxy. For each protocol message received by an
Active Proxy from a user device (such as “send mes-
sage M to user U”), the Redirector Stub is invoked
to call into the MultiSpace.

Because the Keiretsu proxy is itself a mobile Java
component that runs on an iSpace, the Keiretsu
proxy service can be pushed into appropriate loca-
tions on demand, making it easy to bootstrap such
an Active Proxy as needed. State management in-
side the Active Proxy is much simpler than state
management inside a Base—the only state that Ac-
tive Proxies maintain is the session state for con-
nected clients. This session state is soft-state, and
it does not need to be carefully guarded, as it can be
regenerated given sufficient intelligence in the Base,
or by having users manually recover their sessions.

Rudimentary devices are not the only allowable
members of a Keiretsu. More complex clients that
can run a JVM speak directly to the Keiretsu, in-
stead of going through an Active Proxy. An example
of such a client is our e-mail agent, which attaches
itself to the Keiretsu and acts as a gateway, relaying
Keiretsu messages to users over Internet e-mail.

4.2.1 The Keiretsu MultiSpace service

public void identifySelf(
String clientName,
KeiretsuClientIF clientStub);

public void disconnectSelf(String clientName);
public void injectMessage (KeiretsuMessage msg);

public Stringl[] getClientList();

Figure 6: The Keiretsu service API

The MultiSpace service that performs message
routing is surprisingly simple. Figure 6 shows the
API exported by the service to clients. Through
the identifySelf method, a client periodically an-
nounces its presence to the Keiretsu, and hands
the Keiretsu an RMI stub which the service will
use to send it messages. If a client stops call-
ing this method, the Keiretsu assumes the client
has disconnected; in this way, participation in the
Keiretsu is treated as a lease. Alternately, a client
can invalidate its binding immediately by calling
the disconnectSelf method. Messages are sent by
calling the injectMessage method, and clients can
obtain a list of other connected clients by calling the
getClientList method.

Inside the Keiretsu, all nodes maintain a soft-
state table of other nodes by listening to Multi-
Space beacons, as discussed in section 3.3. When
a client connects to a Keiretsu node, that node
sends the client’s RMI stub to all other nodes; all
Keiretsu nodes maintain individual tables of these
client bindings. This means that in steady state,
each node can route messages to any client.

Because clients access the Keiretsu service
through Redirector Stubs, and because Keiretsu
nodes replicate service state, individual nodes in the

Keiretsu can fail and service will continue uninter-
rupted, at the cost of capacity and perhaps per-
formance. In an experiment on a 4-node cluster,
we demonstrated that the service continued unin-
terrupted even when 3 of the 4 nodes went down.
The Keiretsu source code consists of 5 pages of Java
code; however, most of the code deals with manag-
ing the soft-state tables of the other Keiretsu nodes
in the cluster and the client RMI stub bindings. The
actual business of routing messages to clients con-
sists of only half a page of Java code—the rest of
the service functionality (namely, building and ad-
vertising Redirector Stubs, tracking service imple-
mentations across the cluster, and load balancing
and failover across nodes) is hidden inside the Mul-
tiSpace layer. We believe that the MultiSpace im-
plementation is quite successful in shielding service
authors from a significant amount of complexity.

4.2.2 Keiretsu Performance

We ran an experiment to measure the performance
and scalability of our MultiSpace implementation
and the Keiretsu service. We used a cluster of 400
MHz Pentium II machines, each with 128 MB of
physical memory, connected by a 100 Mb/s switched
Ethernet. We implemented two Keiretsu clients:
the “speedometer”, which open up a parameteriz-
able number of identities in the Keiretsu and then
waits to receive messages, and the “driver”, which
grabs a parameterizable number of Redirector Stubs
to the Keiretsu, downloads a list of clients in the
Keiretsu, and then blasts 75 byte messages to ran-
domly selected clients as fast as it can.

We started our Keiretsu service on a single node,
and incrementally grew the cluster to 4 nodes, mea-
suring the maximum message throughput obtained
for 10z, 50z, and 100z “speedometer” receivers,
where z is the number of nodes in the cluster. To
achieve maximum throughput, we added incremen-
tally more “driver” connections until message deliv-
ery saturated. The drivers and speedometers were
located on many dedicated machines, connected to
the Keiretsu cluster by the same 100 Mb/s switched
Ethernet. Table 2 shows our results.

For a small number of receivers (10 per node), we
observed linear scaling in the message throughput.
This is because each node in the Keiretsu is essen-
tially independent: only a small amount of state
is shared (the client stubs for the 10 receivers per
node). In this case, the CPU was the bottleneck,
likely due to Java overhead in message processing
and argument marshalling and unmarshalling.

For larger number of receivers, we observed a

Clients | Max. message

Nodes | per node throughput

(msgs / s)
10 246 + 4
1 50 200 £ 8
100 195 £ 10
10 420 £ 10
2 50 300 £ 20
100 260 £ 20
10 490 + 15
3 50 370 £ 20
100 160 £ 15
10 570 £ 15
4 50 210 £ 10
100 120 £+ 10

Table 2: Keiretsu performance: These bench-
marks were run on 400Mhz Pentium II machines,
each with 128MB of physical memory, connected
by a 100 Mb/s switched Ethernet, using Sun’s
JDK 1.1.6v2 with the TYA just-in-time compiler on
Linux 2.2.1, and sending 75 byte Keiretsu messages.

breakdown in scaling when the total number of re-
ceivers reached roughly 200 (i.e. 3-4 nodes at 50
receivers per node, or 2 nodes at 100 receivers per
node). The CPU was still the bottleneck in these
cases, but most of the CPU time was spent pro-
cessing the client stubs exchanged between Keiretsu
nodes, rather than processing the clients’ messages.
This is due to poor design of the Keiretsu service; we
did not need to exhange client stubs as frequently as
we did, and we should have simply exchanged times-
tamps for previously distributed stubs rather than
repeatedly sending the same stub. This limitation
could be also removed by modifying the Keiretsu
service to inject client stubs in a distributed hash
table, and rely on service instances to pull the
stubs out of the table as needed. However, a sim-
ilar N? state exchange happens at the MultiSpace
layer with the multicast exchange of service instance
stubs; this could potentially become another scaling
bottleneck for large clusters.

5 Discussion and Future Work

Our MultiSpace and service implementation ef-
forts have given some insights into our original de-
sign principles, and into the use of Java as an Inter-
net service construction language. In this section of
the paper, we delve into some of these insights.

5.1 Code Mobility as a Service Con-
struction Primitive

When we were designing the MultiSpace, we
knew that code mobility would be a powerful tool.
We originally intended to use code mobility for de-
livering code to clients (which we do in the form of
Redirector Stubs), and for it to be used by clients
to upload customization code into the MultiSpace
(which has not been implemented). However, code
mobility turned out to be useful inside the Multi-
Space as a mechanisms for structuring services, and
distributing service components across the cluster.

Code mobility solved a software distribution
problem in the Jukebox, without us realizing that
software distribution might become a problem.
When we updated the ripper service, we needed to
distribute the new functionality to all of the nodes
in the cluster that would potentially have CD’s
inserted into them. Code mobility also partially
solved the service location problem in the Jukebox:
the ripper services depend on the CDDB service to
gather detailed track and album information, but
the ripper has no easy way to know where in the
cluster the CDDB service is running. Using code
mobility to push the CDDB service onto the same
node as the ripper, we enforced the invariant that
the CDDB service is colocated with the ripper.

5.2 Bases are a Simplifying Principle,
but not a Complete Solution

The principle of solving complex service problems
in a Base makes it easier to reason about the inter-
actions between services and clients, and to ensure
that difficult tasks like state management are dealt
with in an environment in which there is a chance
of success. However, this organizational principle
alone is not enough to solve the problem of con-
structing highly available services. Given the con-
trolled environment of a Base, service authors must
still construct services to ensure consistency and
availability. We believe that a Base can provide
primitives that further simply service authors’ jobs;
the Redirector Stub is an example of such a primi-
tive.

While building the Ninja Jukebox and Keiretsu,
we made observations about how we achieved avail-
ability and consistency. Most of the code in these
services dealt with distributing and maintaining ta-
bles of shared state. In the Ninja Jukebox, this
state was the list of available music. In Keiretsu,
this state was the list of other Keiretsu nodes, and
the tables of client stub bindings. The distributed

hash table was not yet complete when these two ser-
vices were being implemented. If we had relied on
it instead of our ad-hoc peer state exchange mecha-
nisms, much of the services’ source code would have
been eliminated.

In both of these services, work queues are not
explicitly exposed to service authors. These queues
are hidden inside the thread scheduler, since Nin-
jaRMI spawns a thread per connected client. This
design decision had repercussions on service struc-
ture: each service had to be written to handle mul-
tithreading, since service authors must handle con-
sistency within a single service instance as well as
across instances throughout the cluster. Providing
a mechanism to expose work queues to service au-
thors may simplify the structure of some services,
for example if services serialize requests to avoid is-
sues associated with multithreading.

In the current MultiSpace, service instances must
explicitly keep track of their counterparts on other
nodes and spawn new services when load or avail-
ability demands it. A useful primitive would be
to allow authors to specify conditions that dictate
when service instances are spawned or pushed to
a specific node, and to allow the MultiSpace infras-
tructure to handle the triggering of these conditions.

5.3 Java as an Internet-service con-
struction environment

Java has proven to be an invaluable tool in the
development of the Ninja infrastructure. The abil-
ity to rapidly deploy cross-platform code compo-
nents simply by assuming the existence of a Java
Virtual Machine made it easy to construct complex
distributed services without concerning oneself with
the heterogeneity of the systems involved. The use
of RMI as a strongly-typed RPC, tied very closely to
the Java language semantics, makes distributed pro-
gramming comparably simple to single node devel-
opment. The protection, modularization, and safety
guarantees provided by the Java runtime environ-
ment make dynamic dissemination of code compo-
nents a natural activity. Similarly, the use of Java
class reflection to generate new code wrappers for
existing components (as with Redirector Stubs) pro-
vides automatic indirection at the object level.

Java has a number of drawbacks in its current
form, however. Performance is always an issue,
and work on just-in-time [14, 24] and ahead-of-time
[27] compilation is addressing many of these prob-
lems. The widely-used JVM from Sun Microsys-
tems exhibits a large memory footprint (we have
observed 3-4 MB for “Hello World”, and up to 30

MB for a relatively simple application that performs
many of memory allocations and deallocations”),
and crossing the boundary from Java to native code
remains an expensive operation. In addition, the
Java threading model permits threads to be non-
preemptive, which has serious implications for com-
ponents which must run in a protected environment.
Our approach has been to use only Java Virtual Ma-
chines which employ preemptive threads.

We have started an effort to improve the perfor-
mance of the Java runtime environment. Our ini-
tial prototype, called Jaguar, permits direct Java
access to hardware resources through the use of a
modified just-in-time compiler. Rather than going
through the relatively expensive Java Native Inter-
face for access to devices, Jaguar generates machine
code for direct hardware access which is inlined with
compiled Java bytecodes. We have implemented a
Jaguar interface to a VIA® enabled fast system area
network, obtaining performance equivalent to VIA
access from C (80 microseconds round-trip time for
small messages and over 400 megabits/second peak
bandwidth). We believe that this approach is a vi-
able way to tailor the Java environment for high-
performance use in a clustered environment.

6 Related Work

Directly related to the Base architecture is the
TACC [11] platform, which provides a cluster-
based environment for scalable Internet services. In
TACC, service components (or “workers”) can be
written in a number of languages and are controlled
by a front-end machine which dispatches incoming
requests to back-end cluster machines, incorporat-
ing load-balancing and restart in the case of node
failure. TACC workers may be chained across the
cluster for composable tasks. TACC was designed
to support Internet services which perform data
transformation and aggregation tasks. Base services
can additionally implement long-lived and persis-
tent services; the result is that the Ninja approach
addresses a wider set of potential applications and
system-support issues. Furthermore, Base services
can dynamically created and destroyed through the
iSpace loader interface on each MultiSpace node—
TACC did not have this functionality.

"There are no explicit deallocations in Java — by “deallo-
cation”, we mean discarding all references to an object, thus
enabling it to be garbage collected.

8VIA is the Virtual Interface Architecture [26], which
specifies an industry-standard architecture for high-
bandwidth, low-latency communication within clusters.

Sun’s JINI [31] architecture is similar to the the
Base architecture in that it proposes to develop
a Java-based lingua franca for binding users, de-
vices, and services together in an intelligent, pro-
grammable Internet-wide infrastructure. JINI’s use
of RMI as the basic communication substrate and
use of code mobility for distributing service and
device interfaces has a great deal of rapport with
our approach. However, we believe that we are
addressing problems which JINI does not directly
solve: providing a hardware and software environ-
ment supporting scalable, fault-tolerant services is
not within the JINI problem domain, nor is the
use of dynamically-generated code components to
act as interfaces into services. However, JINI has
touched on issues such as service discovery and nam-
ing which have not yet been dealt with by the Base
architecture; likewise, JINT’s use of JavaSpaces and
“leases” as a persistent storage model may interact
well with the Base service model.

ANTS [30, 29] is a system that enables the dy-
namic deployment of mobile code which implements
network protocols within Active Routers. Coded in
Java, and utilizing techniques similar to those in the
iSpace environment, ANTS has a similar set of goals
in mind as the Base architecture. However, ANTS
uses mobile code for processing each packet passing
through a router; Base service components are ex-
ecuted on the granularity of an RMI call. Liquid
Software [19] and Joust [15] are similar to ANTS in
that they propose an environment which uses mobile
code to customize nodes in the network for commu-
nications oriented tasks. These systems focused on
adapting systems at the level of network protocol
code, while the Base architecture uses code mobil-
ity for distribution of service components both in-
ternally to and externally from a Base.

SanFrancisco [7] is a platform for building dis-
tributed, object-oriented business applications. Its
primary goal is to simplify the development of
these applications by providing developers a set of
industrial-strength “Foundation” objects which im-
plement common functionality. As such, SanFran-
cisco is very similar to Sun’s Enterprise Java Beans
in that it provides a framework for constructing
applications using reusable components, with San-
Francisco providing a number of generic components
to start with. MultiSpace addresses a different set of
goals than Enterprise Java Beans and SanFrancisco
in that it defines a flexible runtime environment for
services, and MultiSpace intends to provide scalabil-
ity and fault-tolerance by leveraging the flexibility
of a component architecture. MultiSpace services
could be built using the EJB or SanFrancisco model

(extended to expose the MultiSpace functionality),
but these issues appear to be orthogonal.

The Distributed Computing Environment (DCE)
[20] is a software suite that provides a middleware
platform that operates on many operating systems
and environments. DCE abstracts away many OS
and network services (such as threads, security, a di-
rectory service, and RPC) and therefore allows pro-
grammers to implement DCE middleware indepen-
dent of the vagaries of particular operating systems.
DCE is rich, robust, but notoriously heavyweight,
and its focus is on providing interoperable, wide-
area middleware. MultiSpace is far less mature, but
focuses instead on providing a platform for rapidly
adaptable services that are housed within a single
administrative domain (the Base).

7 Conclusions

In this paper, we presented an architecture for
a Base, a clustered hardware and software platform
for building and executing flexible and adaptable in-
frastructure services. The Base architecture was de-
signed to adhere to three organizing principles: (1)
solve the challenging service availability and scala-
bility problems in carefully controlled environments,
allowing service authors to make many assumptions
that would not otherwise be valid in an uncontrolled
or wide area environment, (2) gain service flexibil-
ity by decomposing Bases into a number of receptive
execution environments; and (3) introduce a level of
indirection between the clients and services through
the use of dynamic code generation techniques.

We built a prototype implementation (Multi-
Space) of the Base architecture using Java as a foun-
dation. This implementation took advantage of the
code mobility and dynamic compilation techniques
to help in the structuring and deployment of ser-
vices inside the cluster. The MultiSpace abstracts
away load balancing, failover, and service instance
detection and naming from service authors. Using
the MultiSpace platform, we implemented two novel
services: the Ninja Jukebox, and Keiretsu. The
Ninja Jukebox implementation demonstrated that
code mobility is valuable inside a cluster environ-
ment, as it permits rapid evolution of services, and
run-time binding of service components to available
resources in the cluster. The Keiretsu application
demonstrated that our MultiSpace layer successfully
reduced the complexity of building new services: the
core Keiretsu service functionality was implemented
in less than a page of code, but the application was
demonstrably fault-tolerant. We also demonstrated

that Keiretsu code limited the scalability of this ser-
vice, rather than any inherent limitation in the Mul-
tiSpace layer, although we hypothesized that our use
of multicast beacons would ultimately limit the scal-
ability of the current MultiSpace implementation.

8 Acknowledgements

The authors thank Tan Goldberg and David Wag-
ner for their contributions to iSpace, NinjaRMI, and
the Jukebox application. We would also like to
thank all of the graduate and undergraduate stu-
dents in the Ninja project for agreeing to be guinea
pigs for our platform, and Brian Shiratsuki and
Keith Sklower for their help in the system of the
MultiSpace machines and networks. Finally, we
would like to thank our anonymous reviewers and
our shepherd, Charles Antonelli, for their insight
and suggestions for improvement.

References

[1] Elan Amir, Steven McCanne, and Randy Katz. An
Active Service Framework and its Application to
Real-Time Multimedia Transcoding. In Proceedings
of ACM SIGCOMM ’98, volume 28, pages 178-189,
October 1998.

[2] B. Anderson and D. Shasha. Persistent Linda:
Linda + Transactions + Query Processing. In
Springer-Verlag Lecture Notes in Computer Science
574, Mont-Saint-Michel, France, June 1991.

[3] Thomas E. Anderson, David E. Culler, and David
Patterson. A Case for NOW (Networks of Worksta-
tions). IEEE Micro, 12(1):54-64, February 1995.

[4] Ken Birman, Andre Schiper, and Pat Stephen-
son. Lightweight Causal and Atomic Group Mul-

ticast. ACM Transactions on Computer Systems,
9(3):272-314, 1991.

[6] Andrew D. Birrell and Bruce Jay Nelson. Imple-
menting Remote Procedure Call. ACM Transac-
tions on Computing Systems, 2(1):39-59, February
1984.

[6] T. Brisco. RFC 1764: DNS Support for Load Bal-
ancing, April 1995.

[7] IBM Corporation. IBM SanFrancisco product
homepage. http://www.software.ibm.com/ad/
sanfrancisco/.

[8] Inktomi Corporation. The Technology Behind Hot-
Bot. http://www.inktomi.com/whitepap.html,
May 1996.

[9] Steven Czerwinski, Ben Y. Zhao, Todd Hodes, An-
thony Joseph, and Randy Katz. An Architecture

[10]

[11]

[12]

[16]

[17]

[18]

[19]

[21]

for a Secure Service Discovery Service. In Proceed-
ings of MobiCom ’99, Seattle, WA, August 1999.
ACM.

A.D. Birrell et al. Grapevine: An Exercise in Dis-
tributed Computing. Communications of the Asso-
ciation for Computing Machinery, 25(4):3-23, Feb
1984.

Armando Fox, Steven D. Gribble, Yatin Chawathe,
Eric A. Brewer, and Paul Gauthier. Cluster-Based
Scalable Network Services. In Proceedings of the
16th ACM Symposium on Operating Systems Prin-
ciples, St.-Malo, France, October 1997.

Tan Goldberg, Steven D. Gribble, David Wagner,
and Eric A. Brewer. The Ninja Jukebox. In Sub-
mitted to the 2nd USENIX Symposium on Inter-
net Technologies and Systems, Boulder, Colorado,
USA, October 1999.

Robert S. Gray. Agent Tcl: A Flexible and Se-
cure Mobile-Agent System. In Proceedings of the
Fourth Annual Useniz Tcl/Tk Workshop. USENIX
Association, 1996.

The Open Group. The Fajita Compiler
Project. http://www.gr.opengroup.org/java/
compiler/fajita/index-b.htm, 1998.

J. Hartman, L. Peterson, A. Bavier, P. Bigot,
P. Bridges, B. Montz, R. Piltz, T. Proebsting, and
O. Spatscheck. Joust: A Platform for Liquid Soft-
ware. In IEEE Network (Special Edition on Active
and Programmable Networks), July 1998.

Chris Hawblitzel, Chi-Chao Chang, Grzegorz Cza-
jkowski, Deyu Hu, and Thorsten von Eicken. Im-
plementing Multiple Protection Domains in Java.
In Proceedings of the 1998 Useniz Annual Techni-
cal Conference, June 1998.

Open Group Research Institute. Scalable Highly
Available Web Server Project (SHAWS). http://
www . osf.org/RI/PubProjPgs/SFTWWW.htm.

Dag Johansen, Robbert van Renesse, , and Fred R.
Schneider. Operating System Support for Mobile
Agents. In Proceedings of the 5th IEEE Workshop
on Hot Topics in Operating Systems, 1995.

John Hartman and Udi Manber and Larry Peter-
son and Todd Proebsting. Liquid Software: A New
Paradigm for Networked Systems. Technical re-
port, Department of Computer Science, University
of Arizona, June 1996.

Brad Curtis Johnson. A Distributed Comput-
ing Environment Framework: an OSF Perspec-
tive. Technical Report DEV-DCE-TP6-1, the Open
Group, June 1991.

Eric Jul, Henry M. Levy, Norman C. Hutchinson,
and Andrew P. Black. Fine-Grained Mobility in the
Emerald System. ACM Transactions on Computing
Systems, 6(1):109-133, 1988.

[22]

[23]

[24]

[25]

[29]

[30]

Ti Kan and Steve Scherf. CDDB Specifica-
ton. http://www.cddb.com/ftp/cddb-docs/cddb_
howto.gz.

Method
Java.

Sun Microsystems. Java Remote
Invocation—Distributed Computing for
http://java.sun.com/.

Sun Microsystems. The Solaris JIT Compiler.
http://www.sun.com/solaris/jit, 1998.

The Object Management Group (OMG). The Com-
mon Object Request Broker: Architecture and
Specification, February 1998. http://wuw.omg.
org/library/c2indx.html.

Virtual Interface Architecture Organization. Vir-
tual Interface Architecture Specification version
1.0, December 1997. http://wuw.viarch.org.

Todd A. Proebsting, Gregg Townsend, Patrick
Bridges, John H. Hartman, Tim Newsham, and
Scott A. Watterson. Toba: Java for Applications—
A Way Ahead of Time (WAT) Compiler. In
Proceedings of the Third USENIX Conference on
Object-Oriented Technologies (COOTS), Portland,
Oregon, USA, June 1997.

Joseph Tardo and Luis Valente. Mobile Agent Secu-
rity and Telescript. In Proceedings of the 41st Inter-
national Conference of the IEEE Computer Society
(CompCon ’96), February 1996.

David L. Tennenhouse, Jonathan M. Smith,
W. David Sincoskie, David J. Wetherall, and
Gary J. Minden. A Survey of Active Network Re-
search. Active Networks home page (MIT Teleme-
dia, Networks and Systems group), 1996.

David L. Tennenhouse and David J. Wetherall. To-
wards an Active Network Architecture. In ACM
SIGCOMM ’96 (Computer Communications Re-
view). ACM, 1996.

Jim Waldo. Jini Architecture Overview. Avail-
able at http://java.sun.com/products/jini/
whitepapers.

James E. White. Telescript Technology: The Foun-
dation for the Electronic Marketplace, 1991. http:
//wuw.generalmagic.com.

P. Wyckoff, S. W. McLaughry, T. J. Lehman, and
D. A. Ford. TSpaces. IBM Systems Journal, 37(3),
April 1998.

C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat,
T. Anderson, and D. Culler. Using Smart Clients
to Build Scalable Services. In Proceedings of the
Winter 1997 USENIX Technical Conference, Jan-
uary 1997.

The MultiSpace: an Evolutionary Platform
for Infrastructural Services

Steven D. Gribble, Matt Welsh, Eric A. Brewer, and David Culler
The Unwversity of California at Berkeley
{gribble,mdw,brewer,culler} @cs.berkeley.edu

Abstract

This paper presents the architecture for a Base, a
clustered environment for building and executing highly
available, scalable, but flexible and adaptable infras-
tructure services. Our architecture has three organizing
principles: addressing all of the difficult service fault-
tolerance, availability, and consistency problems in a
carefully controlled environment, building that environ-
ment out of a collection of execution environments that
are receptive to mobile code, and using dynamically gen-
erated code to introduce run-time-generated levels of in-
direction separating clients from services. We present
a prototype Java implementation of a Base called the
MultiSpace, and talk about two applications written on
this prototype: the Ninja Jukebox (a cluster based mu-
sic warehouse), and Keiretsu (an instant messaging ser-
vice that supports heterogeneous clients). We show that
the MultiSpace implementation successfully reduces the
complexity of implementing services, and that the plat-
form is conducive to rapid service evolution.

1 Introduction

The performance and utility of a personal
computer will be defined less by faster Intel
processors and new Microsoft software and
increasingly by Internet services and software.

c|net news article excerpt, 11/25/98

Once a disorganized collection of data reposi-
tories and web pages, the Internet has become a
landscape populated with rich, industrial-strength
applications. Many businesses and organizations
have counterparts on the web: banks, restaurants,
stock trading services, communities, and even gov-
ernments and countries. These applications possess
similar properties to traditional utilities such as the
telephone network or power grid: they support large
and potentially rapidly growing populations, they

must be available 24x7, and they must abstract com-
plex engineering behind simple interfaces. We be-
lieve that the Internet is evolving towards a service-
oriented infrastructure, in which these high quality
utility-like applications will be commonplace. Un-
like traditional utilities, Internet services tend to
rapidly evolve, are typically customizable by the
end-user, and may even be composable.

Although today’s Internet services are mature,
the process of erecting and modifying services is
quite immature. Most authors of complex, new ser-
vices are forced to engineer substantial amounts of
custom, service-specific code, largely because of the
diversity in the requirements of each service—it is
difficult to conceive of a general-purpose, reusable,
shrink-wrapped, adequately customizable and ex-
tensible service construction product.

Faced with a seemingly inevitable engineering
task, authors tend to adopt one of two strategies
for adding new services to the Internet landscape:

Inflexible, highly tuned, hand-constructed
services: by far, this is the most dominant service
construction strategy found on the Internet. Here,
service authors carefully design a system targeted
towards a specific application and feature set, op-
erating system, and hardware platform. Examples
of such systems are large, carrier-class web search
engines, portals, and application-specific web sites
such as news, stock trading, and shopping sites. The
rationale for this approach is sound: it leads to ro-
bust and high-performance services. However, the
software architectures of these systems are too re-
strictive; they result in a fixed service that performs
a single, rigid function. The large amount of care-
fully crafted and hand-tuned code means that these
services are difficult to evolve; consider, for example,
how hard it would be to radically change the behav-
ior of a popular search engine service, or to move
the service into a new environment—these sorts of
modifications would take massive engineering effort.

“Emergent services” in a world of dis-
tributed objects: this strategy is just beginning

to become popularized with architectures such as
Sun’s JINT [31] and the ongoing CORBA effort [25].
In this world, instead of erecting complex, inflexible
services, large numbers of components or objects
are made available over the wide area, and services
emerge through the composition of many such com-
ponents. This approach has the benefit that adding
to the Internet landscape is a much simpler task,
since the granularity of contributed components is
much smaller. Because of the explicit decomposi-
tion of the world into much smaller pieces, it is also
simpler to retask or extend services by dropping one
set of components and linking in others.

There are significant disadvantages to this ap-
proach. As a side-effect of the more evolutionary
nature of services, it is difficult to manage the state
of the system, as state may be arbitrarily replicated
and distributed across the wide area. Wide-area
network partitions are commonplace, meaning that
it is nearly impossible to provide consistency guar-
antees while maintaining a reasonable amount of
system availability. Furthermore, although it is pos-
sible to make incremental, localized changes to the
system, it is difficult to make large, global changes
because the system components may span many ad-
ministrative domains.

In this paper, we advocate a third approach.
We argue that we can reap many of the benefits
of the distributed objects approach while avoiding
difficult state management problems by encapsulat-
ing services and service state in a carefully con-
trolled environment called a Base. To the outside
world, a Base provides the appearance and guaran-
tees of a non-distributed, robust, highly-available,
high-performance service. Within a Base, services
aren’t constructed out of brittle, restrictive software
architectures, but instead are “grown” out multiple,
smaller, reusable components distributed across a
workstation cluster [3]. These components may be
replicated across many nodes in the cluster for the
purposes of fault tolerance and high performance.
The Base provides the glue that binds the compo-
nents together, keeping the state of replicated ob-
jects consistent, ensuring that all of the constituent
components are available, and distributing traffic
across the components in the cluster as necessary.

The rest of this paper discusses the design princi-
ples that we advocate for the architecture of a Base
(section 2), and presents a preliminary Base imple-
mentation called the Ninja MultiSpace! (section 3)
that uses techniques such as dynamic code genera-
tion and code mobility as mechanisms for demon-

IThe MultiSpace implementation is available with the
Ninja platform release - see http://ninja.cs.berkeley.edu.

client stub for .
service#2 |

@ =service#l Base
A =service#2

Figure 1: Architecture of a Base: a Base is com-
prised of a cluster of workstations connected by a
high-speed network. Each node houses an execution
environment into which code can be pushed. Ser-
vices have many instances within the cluster, but
clients are shielded from this by a service “stub”
through which they interact with the cluster.

strating and evaluating our hypotheses of service
flexibility, rapid evolution, and robustness under
change. While we have begun preliminary explo-
rations into the scalability and high availability as-
pects of our prototype, that has not been the ex-
plicit focus of this initial implementation, and in-
stead remains the subject of future work. Two ex-
ample services running on our prototype Base are
described in section 4. In section 5, we discuss some
of the lessons we learned while building our proto-
type. Section 6 presents related work, and in Section
7 we draw conclusions.

2 Organizing Principles

In this section we present three design principles
that guided our service architecture development
(shown at a high level in figure 1):

1. Solve the challenging service availability and
scalability problems in carefully controlled
environments (Bases),

2. Gain service flexibility by decomposing Bases
into a number of receptive execution envi-
ronments, and

3. Introduce a level of indirection between the
clients and services through the use of dy-
namic code generation techniques.

We now discuss each of these principles in turn.

2.1 Solve Challenging Problems in a
Base

The high availability and scalability “utility” re-
quirements that Internet services require are diffi-
cult to deliver; our first principle is an attempt to
simplify the problem of meeting them by carefully
choosing the environment in which we tackle these
issues. Asin [11], we argue that clusters of worksta-
tions provide the best platform on which to build In-
ternet services. Clusters allow incremental scalabil-
ity through the addition of extra nodes, high avail-
ability through replication and failover, and cost-
performance by using commodity building blocks as
the basis of the computing environment.

Clusters are the backbone of a Base. Physically,
a Base must include everything necessary to keep
a mission-critical cluster running: system adminis-
trators, a physically secure machine room, redun-
dant internal networks and external network feeds,
UPS systems, and so on. Logically, a cluster-wide
software layer provides data consistency, availabil-
ity, and fault tolerance mechanisms.

The power of locating services inside a Base arises
from the assumptions that service authors can now
make when designing their services. Communica-
tion is fast and local, and network partitions are
exceptionally rare. Individual nodes can be forced
to be as homogeneous as necessary, and if a node
dies, there will always be an identical replacement
available. Storage is local, cheap, plentiful, and well-
guarded. Finally, everything is under a single do-
main, simplifying administration.

Nothing outside of the Base should try to dupli-
cate the fault-tolerance or data consistency guaran-
tees of the Base. For example, e-mail clients should
not attempt to keep local copies of mail messages ex-
cept in the capacity of a cache; all messages are per-
manently kept by an e-mail service in the Base. Be-
cause services promise to be highly available, a user
can rely on being able to access her email through
it while she is network connected.

2.2 Receptive Execution Environments

Internet services are generally built from a com-
plex assortment of resources, including heteroge-
neous single-CPU and multiprocessor systems, disk
arrays, and networks. In many cases these ser-
vices are constructed by rigidly placing functional-
ity on particular systems and statically partitioning
resources and state. This approach represents the
view that a service’s design and implementation are
“sanctified” and must be carefully planned and laid

out across the available hardware. In such a regime,
there is little tolerance for failures which disrupt the
balance and structure of the service architecture.

To alleviate the problems associated with this ap-
proach, the Base architecture employs the principle
of receptive execution environments—systems which
can be dynamically configured to host a component
of the service software. A collection of receptive
execution environments can be constructed either
from a set of homogeneous workstations or more
diverse resources as required by the service. The
distinguishing feature of a receptive execution envi-
ronment, however, is that the service is “grown” on
top of a fertile platform; functionality is pushed into
each node as appropriate for the application. Each
node in the Base can be remotely and dynamically
configured by uploading service code components as
needed, allowing us to delay the decision about the
details of a particular node’s specialization as far as
possible into the service construction and mainte-
nance lifecycle.?

As we will see in section 3, our approach has been
to make a single assumption of homogeneity across
systems in a Base: a Java Virtual Machine is avail-
able on each node. In doing so, we raise the bar of
service construction by providing a common instruc-
tion set across all nodes, unified views on thread-
ing models, underlying system APIs (such as socket
and filesystem access), as well as the usual strong
typing and safety features afforded by the Java en-
vironment. Because of these provisions, any service
component can be pushed into any node in our Base
and be expected to execute, subject to local resource
considerations (such as whether a particular node
has access to a disk array or a CD drive). Assuming
that every node is capable of receiving Java byte-
codes, however, means that techniques generally ap-
plied to mobile code systems [21, 13, 28, 32, 18] can
be employed internally to the Base: the adminis-
trator can deploy service components by uploading
Java classes into nodes as needed, and the service
can push itself towards resources redistributing code
amongst the participating nodes. Furthermore, be-
cause in this environment we are restricting our use
of code mobility to deploying local code within the
scope of a single, trusted administrative domain,
some of the security difficulties of mobile code are
reduced.

2We rely on two mechanisms for mobile code security:we
restrict the use of mobile code inside the Base to code that
originates from trusted sources within the Base itself, and we
use the Java Security Manager mechanism to sandbox this
mobile code. Our research goals, however, do not include
solving the mobile code security problem.

2.3 Dynamic Redirector Stub Genera-
tion

One challenge for clustered servers is to present a
single service interface to the outside world, and to
mask load-balancing and failover mechanisms in the
cluster. The naive solution is to have a single front-
end machine that clients first contact; the front-end
then dispatches these incoming requests to one of
several back-end machines. Failures can be hidden
through the selection of another back-end machine,
and load-balancing can be directly controlled by the
front-end’s dispatch algorithm. Unfortunately, the
front-end can become a performance bottleneck and
a single point of failure [11, 8]. One solution to these
problems is to use multiple front-end machines, but
this introduces new problems of naming (how clients
determine which front-end to use) and consistency
(whether the front-ends mutually agree on the back-
end state of the cluster). The naming problem can
be addressed in a number of ways, such as round-
robin DNS [6], static assignment of front-ends to
clients, or “lightweight” redirection in the style of
scalable Web servers [17]. The consistency problem
can be solved through one of many distributed sys-
tems techniques [4] or ignored if consistent state is
unimportant to the front-end nodes.

The Base architecture takes another approach to
cluster access indirection: the use of dynamically-
generated Redirector Stubs. A stub is client-
side code which provides access to a service; a
common example is the stub code generated for
CORBA/IIOP [25] and Java Remote Method In-
vocation (RMI) [23] systems. The stub code runs
on the client and converts client requests for ser-
vice functionality (such as Java method calls) into
network messages, marshalling request parameters
and unmarshalling results. In the case of Java RMI,
clients download stubs on-demand from the server.

Base services employ a similar technique to RPC
stub generation except that the Redirector Stub
for a service is dynamically generated at run-time
and contains embedded logic to select from a set of
nodes within the cluster (figure 2). Load balancing
is implemented within this “Redirector Stub”, and
failover is accomplished by reissuing failed or timed-
out service calls to an alternative back-end machine.
The redirection logic and information about the
state of the Base is built up by the Base and ad-
vertised to clients periodically; clients obtain the
Redirector Stubs from a registry. This methodol-
ogy has a number of significant implications about
the nature of services, namely that they must be
idempotent and maintain self-consistency across a

V777

from Server
Client "

(2417
][] [

7

Figure 2: A “Redirector Stub”: embedded inside
a Redirectory Stub are several RPC stubs with the
same interface, each of which communicates with a
different service instance inside a Base.

service’s instances on different nodes in the Base. In
section 3.3.1, we will discuss an implementation of
a cluster-wide distributed data structure that sim-
plifies the task of satisfying these implications.

Client applications can be coded without knowl-
edge of the Redirector Stub logic; by moving failover
and load-balancing functionality to the client, the
use of front-end machines can be avoided altogether.
This is similar to the notion of smart clients [34], but
with the intelligence being injected into the client at
run-time instead of being compiled in.

3 Implementation

Our prototype Base implementation (written in
Java) is called the MultiSpace. It serves to demon-
strate the effectiveness of our architecture in terms
of facilitating the construction of flexible services,
and to allow us to begin explorations into the issues
of our platform’s scalability. The MultiSpace im-
plementation has three layers: the bottom layer is
a set of communications primitives (NinjaRMI); the
middle layer is a single-node execution environment
(the iSpace); and the top layer is a set of multiple
node abstractions (the MultiSpace layer). We de-
scribe each of these in turn, from the bottom up.

3.1 NinjaRMI

A rich set of high performance communications
primitives is a necessary component of any clustered
environment. We chose to make heavy use of Java’s
Remote Method Invocation (RMI) facilities for per-
forming RPC-like [5] calls across nodes in the clus-
ter, and between clients and services. When a caller
invokes an RMI method, stub code intercepts the
invocation, marshalls arguments, and sends them
to a remote “skeleton” method handler for unmar-
shalling and execution. Using RMI as the finest
granularity communication data unit in our clus-
tered environment has many useful properties. Be-

cause method invocations have completely encap-
sulated, atomic semantics, retransmissions or com-
munication failures are easy to reason about—they
correspond to either successful or failed method in-
vocations, rather than partial data transmissions.

However, from the point of view of clients, if a
remote method invocation does not successfully re-
turn, it can be impossible for the client to know
whether or not the method was successfully invoked
on the server. The client has two choices: it can
reinvoke the method call (and risk calling the same
method twice), or it can assume that the method
was not invoked, risking that the method was in fact
invoked, successfully or unsuccessfully with an ex-
ception, but results were not returned to the client.
Currently, on failure our Redirector Stubs will retry
using a different, randomly chosen service stub; in
the case of many successive failures, the Redirec-
tor Stub will return an exception to the caller. It
is because of the at-least-once semantics implied by
these client-side reinvocations that we must require
services to be idempotent. The exploration of dif-
ferent retry policies inside the Redirector Stubs is
an area of future research.

3.1.1 NinjaRMI enhancements to Sun’s

RMI

NinjaRMI is a ground-up reimplementation of Sun’s
Java Remote Method Invocation for use by com-
ponents within the Ninja system. NinjaRMI was
designed to permit maximum flexibility in imple-
mentation options. NinjaRMI provides three in-
teresting transport-level RMI enhancements. First,
it provides a unicast, UDP-based RMI that allows
clients to call methods with “best-effort” seman-
tics. If the UDP packet containing the marshalled
arguments successfully arrives at the service, the
method is invoked; if not, no retransmissions are
attempted. Because of this, we enforce the require-
ment that such methods do not have any return
values. This transport is useful for beacons, log
entries, or other such side-effect oriented uses that
do not require reliability. Our second enhancement
is a multicast version of this unreliable transport.
RMI services can associate themselves with a multi-
cast group, and RMI calls into that multicast group
result in method invocations on all listening ser-
vices. Our third enhancement is to provide very
flexible certificate-based authentication and encryp-
tion support for reliable, unicast RMI. Endpoints in
an RMI session can associate themselves with dig-
ital certificates issued by a certification authority.
When the TCP-connection underlying an RMI ses-

sion is established, these certificates are exchanged
by the RMI layer and verified at each endpoint. If
the certificate verification succeeds, the remainder
of the communication over that TCP connection is
encrypted using a Triple DES session key obtained
from a Diffie-Hellman key exchange. These security
enhancements are described in [12].

Packaged along with our NinjaRMI implementa-
tion is an interface compiler which, when given an
object that exports an RMI interface, generates the
client-side stub and server-side skeleton stubs for
that object. All source code for stubs and skele-
tons can be generated dynamically at run-time, al-
lowing the Ninja system to leverage the use of an
intelligent code-generation step when constructing
wrappers for service components. We use this to in-
troduce the level of indirection needed to implement
Redirector Stubs—stubs can be overloaded to cause
method invocations to occur on many remote nodes,
or for method invocations to fail over to auxiliary
nodes in the case of a primary node’s failure.

3.1.2 Measurements of NinjaRMI

Method Local Sun Ninja
method RMI RMI
f(void) 0.19 pus | 0.83 ms | 0.82 ms
f(int) 0.20 ps | 0.84 ms | 0.85 ms
int f(int) 0.18 us | 0.85 ms | 0.84 ms
int £(

int,int,int,int) 0.22 us | 0.88 ms | 0.86 ms
f (byte[100]) 0.19 ps | 1.06 ms | 1.05 ms
f (byte[1000]) 0.20 ps | 1.20 ms | 1.09 ms
f (byte [10000]) 0.21 ps | 2.21 ms | 2.23 ms
byte[100] f(int) 0.19 ps | 1.07 ms | 1.00 ms
byte[1000] £ (int) 0.20 s | 1.17 ms | 1.01 ms
byte[10000] £ (int) || 0.20 ps | 2.20 ms | 2.10 ms

Table 1: NinjaRMI microbenchmarks: These
benchmarks were gathered on two 400Mhz Pentium
IT based machines, each with 128MB of physical
memory, connected by a switched 100 Mb/s Eth-
ernet, and using Sun’s JDK 1.1.6v2 with the TYA
just-in-time compiler on Linux 2.0.36. For the sake
of comparison, UDP round-trip times between two
C programs were measured at 0.185 ms, and be-
tween two Java programs at 0.316 ms.

As shown in table 1, NinjaRMI performs as well
as or better than Sun’s Java RMI package. Given
that a null RMI invocation cost 0.82 ms and that
a round-trip across the network and through the
JVMs cost 0.316 ms, we conclude that the differ-
ence (roughly 0.5 ms) is RMI marshalling and pro-

tocol overhead. Profiling the code shows that the
main contributor to this overhead is object seri-
alization, specifically the use of methods such as
java.io.0ObjectInputStream.read().

3.2 iSpace

A Base consists of a number of workstations, each
running a suitable receptive execution environment
for single-node service components. In our proto-
type, this receptive execution environment is the
iSpace: a Java Virtual Machine (JVM) that runs
a component loading service into which Java classes
can be pushed as needed. The iSpace is responsible
for managing component resources, naming, protec-
tion, and security. The iSpace exports the compo-
nent loader interface via NinjaRMI; this interface
allows a remote client to obtain a list of compo-
nents running on the iSpace, obtain an RMI stub to
a particular component, and upload a new service
component or kill a component already running on
the iSpace (subject to authentication). Service com-
ponents running on the iSpace are protected from
one another and from the surrounding execution en-
vironment in three ways:

1. each component is coded as a Java class which
provides protection from hard crashes (such as
null pointer dereferences),

2. components are separated into thread groups;
this limits the interaction one component can
have with threads of another, and

3. all components are subject to the iSpace Se-
curity Manager, which traps certain Java API
calls and determines whether the component
has the credentials to perform the operation in
question, such as file or network access.

Other assumptions must be made in order to
make this approach viable. In essence, we are re-
lying on the JVM to behave and perform like a
miniature operating system, even though it was not
designed as such. For example, the Java Virtual Ma-
chine does not provide adequate protection between
threads of multiple components running within the
same JVM: one component could, for example, con-
sume the entire CPU by running indefinitely within
a non-blocking thread. Here, we must assume that
the JVM employs a preemptive thread scheduler
(as is true in the Sun’s Solaris Java environment)
and that fairness can be guaranteed through its use.
Likewise, the iSpace Security Manager must utilize
a strategy for resource management which ensures

both fairness and safety. In this respect iSpace has
similar goals to other systems which provide multi-
ple protection domains within a single JVM, such as
the JKernel [16]. However, our approach does not
necessitate a re-engineering of the Java runtime li-
braries, particularly because intra-JVM thread com-
munication is not a high-priority feature.

3.3 MultiSpace

The highest layer in our implementation is the
MultiSpace layer, which tethers together a collec-
tion of iSpaces (figure 3). A primary function of
this layer is to provide each iSpace with a repli-
cated registry of all service instances running in the
cluster.

A MultiSpace service inherits from an abstract
MultiSpaceService class, whose constructor registers
each service instance with a “MultiSpaceLoader”
running on the local iSpace. All MultiSpaceLoad-
ers in a cluster cooperate to maintain the replicated
registry; each one periodically sends out a multicast
beacon® that carries its list of local services to all
other nodes in the MultiSpace, and also listens for
multicast messages from other MultiSpace nodes.
Each MultiSpaceLoader builds an independent ver-
sion of the registry from these beacons. The reg-
istries are thus soft-state, similar in nature to the
cluster state maintained in [11] and [1]—if an iS-
pace node goes down and comes back up, its Mul-
tiSpaceLoader simply has to listen to the multicast
channel to rebuild its state. Registries on different
nodes may see temporary periods of inconsistency
as services are pushed into the MultiSpace or moved
across nodes in the MultiSpace, but in steady state,
all nodes asymptotically approach consistency. This
consistency model is similar in nature to that of
Grapevine [10].

The multicast beacons also carry RMI stubs for
each local service component, which implies that
any service instance running on any node in the
MultiSpace can identify and contact any other ser-
vice in the MultiSpace. It also means that the Mul-
tiSpaceLoader on every node has enough informa-
tion to construct Redirector Stubs for all of the ser-
vices in the MultiSpace, and advertise those Redi-
rector Stubs to off-cluster clients through a “service
discovery service”[9].* Each RMI stub embedded in

3Currently, TP multicast is used for this purpose — the
multicast channel that beacons are sent over thus defines the
logical scope and boundary of an individual MultiSpace. We
intend to replace this transport with multicast NinjaRMI.

4The service discovery service (or SDS) implementation
consists of an XML search engine that allows client programs
to locate services based on arbitrary XML predicates.

Service 1
Service 2
Service N
Service 1
Service 2
Service N

L3
L3
L]
i Space Loader
Multi Spacel_oader

i Space Loader
Multi Spacel_oader

Security Mgr. Security Mar.

Java Virtual Machine Java Virtual Machine

o1l | iSpacenodel " iSpace node M

i svec2 ~ .

svc N

sc_:omm/r,/ System Area |
beacon Network

Figure 3: The MultiSpace implementation:
MultiSpace services are instantiated on top of a
sandbox (the Security Manager), and run inside the
context of a Java virtual machine (JVM).

a multicast beacon is (based on our observations)
roughly 500 bytes in average length; there is there-
fore an important tradeoff between the beacon fre-
quency (and therefore freshness of information in
the MultiSpaceLoaders) and the number of services
whose stubs are being beaconed that will ultimately
affect the scalability of the MultiSpace.

Service instances can elect to receive multicast
beacons from other MultiSpace nodes; a service can
use this mechanism to become aware of its peers
running elsewhere in the cluster. If a service over-
rides the standard beacon class, it can augment its
beacons with additional information, such as the
load that it is currently experiencing. Services that
want to call out to other services could thus make
coarse grained load balancing decisions without re-
quiring a centralized load manager.

3.3.1 Built-In MultiSpace Services

Included with the MultiSpace implementation are
two services that enrich the functionality available
to other MultiSpace services: the distributed hash
table, and the uptime monitoring service.
Distributed hash table: as mentioned in sec-
tion 2.3, due to the Redirector Stub mechanism
MultiSpace service instances must maintain self-
consistency across the nodes of the cluster. To make
this task simpler, we have provided service authors
with a distributed, replicated, fault-tolerant hash
table that is implemented in C for the sake of ef-
ficiency. The hash table is designed to present a
consistent view of data across all nodes in the clus-
ter, and as such, services may use it to rendezvous in
a style similar to Linda [2] or IBM’s T-Spaces [33].

The current implementation is moderately fast (it
can handle more than 1000 insertions per second of
500 byte entries on a 4 node 100Mb/s MultiSpace
cluster), is fault tolerant, and transparently mask
multiple node failures. However, it does not yet
provide all of the consistency guarantees that some
services would ideally prefer, such as on-line recov-
ery of crashed state or transactions across multiple
operations. The currently implementation is, how-
ever, suitable for many Internet-style services for
which this level of consistency is not essential.

Uptime monitoring service: Even with the
service beaconing mechanism, it is difficult to de-
tect the failure of individual nodes in the cluster.
This is partly because of the lack of a clear failure
model in Java: a Java service is just a collection of
objects, not necessarily even possessing a thread of
execution. A service failure may just imply that a
set, of objects has entered a mutually inconsistent
state. The absence of beacons doesn’t necessarily
mean that a service instance failure has occurred;
the beacons may be lost due to congestion in the
internal network, or the beacons may not have been
generated because the service instance is overloaded
and is busy processing other tasks.

For this reason, we have provided an uptime
monitoring abstraction to service authors. If a ser-
vice running in the MultiSpace implements a well-
known Java interface, the infrastructure automat-
ically detects this and begins periodically calling
the doProbe() method in that interface. By im-
plementing this method, service authors promise
to perform an application-level task that demon-
strates that the service is accepting and successfully
processing requests. By using this application-level
uptime check, the infrastructure can explicitly de-
tect when a service instance has failed. Currently,
we only log this failure in order to generate up-
time statistics, and we rely on the Redirector Stub
failover mechanisms to mask these failures.

4 Applications

In this section of the paper, we discuss two appli-
cations that demonstrate the validity of our guiding
principles and the efficacy of our MultiSpace imple-
mentation. The first application, the Ninja Juke-
box, abstracts the many independent compact-disc
players and local filesystems in the Berkeley Net-
work of Workstations (NOW) cluster into a single
pool of available music. The second, Keiretsu, is a
three-tiered application that provides instant mes-
saging across heterogeneous devices.

= rirhe e ek 112 e berm 1300 trechky ! 1711

B=C] 4 Saw §lorsias] @burrs 10 bracks O 1T

|- i o g £ b 1 ke, OIS
P el p, Aaliek & Cos R Ddam CnEr d i wired, B il R EEE
¥ O fderany i d e i & s barst 80 mecke. 38T

= Faps femmin 012 ek, CiH1T

e] Flaes Sewsim - dhic 2 Ui s, 25050

2] Pinrs Sowim = ciye 1 013 ks £

s £

o £ ilfie pdn plasiin

L RN

Figure 4: The Ninja Jukebox GUTI: users are pre-
sented with a single Jukebox interface, even though
songs in the Jukebox are scattered across multiple
workstations, and may be either MP3 files on a local
filesystem, or audio CDs in CD-ROM drives.

4.1 The Ninja Jukebox

The original goal of the Ninja jukebox was to
harness all of the audio CD players in the Berkeley
NOW (a 100+ node cluster of Sun UltraSparc work-
stations) to provide a single, giant virtual music
jukebox to the Berkeley CS graduate students. The
most interesting features of the Ninja Jukebox arise
from its implementation on top of iSpace: new nodes
can be dynamically harnessed by pushing appropri-
ate CD track “ripper” services onto them, and the
features of the Ninja Jukebox are simple to evolve
and customize, as evidenced by the seamless trans-
formation of the service to the batch conversion of
audio CDs to MP3 format, and the authenticated
transmission of these MP3s over the network.

The Ninja Jukebox service is decomposed into
three components: a master directory, a CD “rip-
per” and indexer, and a gateway to the online
CDDB service [22] that provides artist and track
title information given a CD serial number. The
ability to push code around the cluster to grow
the service proved to be exceptionally useful, since
we didn’t have to decide a priori which nodes in
the cluster would house CDs—we could dynami-
cally push the ripper/indexer component towards
the CDs as the CDs were inserted into nodes in the
cluster. When a new CD is added to a node in the
NOW cluster, the master directory service pushes
an instance of the ripper service into the iSpace res-
ident on that node. The ripper scans the CD to
determine what music is on it. It then contacts a lo-
cal instance of the CDDB service to gather detailed
information about the CD’s artist and track titles;
this information is put into a playlist which is pe-
riodically sent to the master directory service. The
master directory incorporates playlists from all of

the rippers running across the cluster into a single,
global directory of music, and makes this directory
available over both RMI (for song browsing and se-
lection) and HTTP (for simple audio streaming).
After the Ninja Jukebox had been running for a
while, our users expressed the desire to add MP3
audio files to the Jukebox. To add this new behav-
ior, we only had to subclass the CD ripper/indexer
to recognize MP3 audio files on the local filesystem,
and create new Jukebox components that batch con-
verted between audio CDs and MP3 files. Also, to
protect the copyright of the music in the system we
added access control lists to the MP3 repositories,
with the policy that users could only listen to mu-
sic that they had added to the Jukebox.> We then
began pushing this new subclass to nodes in the sys-
tem, and our system evolved while it was running.
The performance of the Ninja Jukebox is com-
pletely dominated by the overhead of authentication
and the network bandwidth consumed by stream-
ing MP3 files. The first factor (authentication over-
head) is currently benchmarked at a crippling 10
seconds per certificate exchange, entirely due to a
pure Java implementation of a public key cryptosys-
tem. The second factor (network consumption) is
not quite as crippling, but still significant: each
MP3 consumes at least 128 Kb/s, and since the MP3
files are streamed over HTTP, each transmission is
characterized by a large burst as the MP3 is pushed
over the network as quickly as possible. Both limita-
tions can be remedied with significant engineering,
but this would be beyond the scope of our research.

4.2 Keiretsu: The
Messaging Service

Ninja Instant-

Keiretsu® is a MultiSpace service that provides
instant messaging between heterogeneous devices:
Web browsers, one- or two-way pagers, and PDAs
such as the Palm Pilot (see Figure 5). Users are
able to view a list of other users connected to the
Keiretsu service, and can send short text messages
to other users. The service component of Keiretsu
exploits the MultiSpace features: Keiretsu service
instances use the soft-state registry of peer nodes in
order to exchange client routing information across
the cluster, and automatically generated Redirector
Stubs are handed out to clients for use in commu-
nicating with Keiretsu nodes.

5This ACL policy is enforced using the authentication ex-
tensions to NinjaRMI described in 3.1.1.

6 Keiretsu is a Japanese concept in which a group of re-
lated companies work together for each other’s mutual suc-
cess.

H
(2) Active Proxy
converts outgoing
msg to RMI

(1) User enters
message on Pilot

(3) Message sent
to MultiSpace

7171l Keiretsu
| service

(m (5) Active Proxy
converts message
to Pilot format

(4) Message routed to
destination Active Proxy

(6) Receiving
Pilot displays
message

Figure 5: The Keiretsu Service

Keiretsu is a three-tired application: simple
client devices (such as pagers or Palm Pilots) that
cannot run a JVM connect to an Active Proxy,
which can be thought of as a simplified iSpace
node meant to run soft-state mobile code. The Ac-
tive Proxy converts simple text messages from de-
vices into NinjaRMI calls into the Keiretsu Mul-
tiSpace service. The Active Proxies are assumed
to have enough sophistication to run Java-based
mobile code (the protocol conversion routines) and
speak NinjaRMI, while rudimentary client devices
need only speak a simple text-based protocol.

As described in section 2.3, Redirector Stubs
are used to access the back-end service components
within a MultiSpace by pushing load-balancing and
failover logic towards the client—in the case of sim-
ple clients, Redirector Stubs execute in the Active
Proxy. For each protocol message received by an
Active Proxy from a user device (such as “send mes-
sage M to user U”), the Redirector Stub is invoked
to call into the MultiSpace.

Because the Keiretsu proxy is itself a mobile Java
component that runs on an iSpace, the Keiretsu
proxy service can be pushed into appropriate loca-
tions on demand, making it easy to bootstrap such
an Active Proxy as needed. State management in-
side the Active Proxy is much simpler than state
management inside a Base—the only state that Ac-
tive Proxies maintain is the session state for con-
nected clients. This session state is soft-state, and
it does not need to be carefully guarded, as it can be
regenerated given sufficient intelligence in the Base,
or by having users manually recover their sessions.

Rudimentary devices are not the only allowable
members of a Keiretsu. More complex clients that
can run a JVM speak directly to the Keiretsu, in-
stead of going through an Active Proxy. An example
of such a client is our e-mail agent, which attaches
itself to the Keiretsu and acts as a gateway, relaying
Keiretsu messages to users over Internet e-mail.

4.2.1 The Keiretsu MultiSpace service

public void identifySelf(
String clientName,
KeiretsuClientIF clientStub);

public void disconnectSelf(String clientName);
public void injectMessage (KeiretsuMessage msg);

public Stringl[] getClientList();

Figure 6: The Keiretsu service API

The MultiSpace service that performs message
routing is surprisingly simple. Figure 6 shows the
API exported by the service to clients. Through
the identifySelf method, a client periodically an-
nounces its presence to the Keiretsu, and hands
the Keiretsu an RMI stub which the service will
use to send it messages. If a client stops call-
ing this method, the Keiretsu assumes the client
has disconnected; in this way, participation in the
Keiretsu is treated as a lease. Alternately, a client
can invalidate its binding immediately by calling
the disconnectSelf method. Messages are sent by
calling the injectMessage method, and clients can
obtain a list of other connected clients by calling the
getClientList method.

Inside the Keiretsu, all nodes maintain a soft-
state table of other nodes by listening to Multi-
Space beacons, as discussed in section 3.3. When
a client connects to a Keiretsu node, that node
sends the client’s RMI stub to all other nodes; all
Keiretsu nodes maintain individual tables of these
client bindings. This means that in steady state,
each node can route messages to any client.

Because clients access the Keiretsu service
through Redirector Stubs, and because Keiretsu
nodes replicate service state, individual nodes in the

Keiretsu can fail and service will continue uninter-
rupted, at the cost of capacity and perhaps per-
formance. In an experiment on a 4-node cluster,
we demonstrated that the service continued unin-
terrupted even when 3 of the 4 nodes went down.
The Keiretsu source code consists of 5 pages of Java
code; however, most of the code deals with manag-
ing the soft-state tables of the other Keiretsu nodes
in the cluster and the client RMI stub bindings. The
actual business of routing messages to clients con-
sists of only half a page of Java code—the rest of
the service functionality (namely, building and ad-
vertising Redirector Stubs, tracking service imple-
mentations across the cluster, and load balancing
and failover across nodes) is hidden inside the Mul-
tiSpace layer. We believe that the MultiSpace im-
plementation is quite successful in shielding service
authors from a significant amount of complexity.

4.2.2 Keiretsu Performance

We ran an experiment to measure the performance
and scalability of our MultiSpace implementation
and the Keiretsu service. We used a cluster of 400
MHz Pentium II machines, each with 128 MB of
physical memory, connected by a 100 Mb/s switched
Ethernet. We implemented two Keiretsu clients:
the “speedometer”, which open up a parameteriz-
able number of identities in the Keiretsu and then
waits to receive messages, and the “driver”, which
grabs a parameterizable number of Redirector Stubs
to the Keiretsu, downloads a list of clients in the
Keiretsu, and then blasts 75 byte messages to ran-
domly selected clients as fast as it can.

We started our Keiretsu service on a single node,
and incrementally grew the cluster to 4 nodes, mea-
suring the maximum message throughput obtained
for 10z, 50z, and 100z “speedometer” receivers,
where z is the number of nodes in the cluster. To
achieve maximum throughput, we added incremen-
tally more “driver” connections until message deliv-
ery saturated. The drivers and speedometers were
located on many dedicated machines, connected to
the Keiretsu cluster by the same 100 Mb/s switched
Ethernet. Table 2 shows our results.

For a small number of receivers (10 per node), we
observed linear scaling in the message throughput.
This is because each node in the Keiretsu is essen-
tially independent: only a small amount of state
is shared (the client stubs for the 10 receivers per
node). In this case, the CPU was the bottleneck,
likely due to Java overhead in message processing
and argument marshalling and unmarshalling.

For larger number of receivers, we observed a

Clients | Max. message

Nodes | per node throughput

(msgs / s)
10 246 + 4
1 50 200 £ 8
100 195 £ 10
10 420 £ 10
2 50 300 £ 20
100 260 £ 20
10 490 + 15
3 50 370 £ 20
100 160 £ 15
10 570 £ 15
4 50 210 £ 10
100 120 £+ 10

Table 2: Keiretsu performance: These bench-
marks were run on 400Mhz Pentium II machines,
each with 128MB of physical memory, connected
by a 100 Mb/s switched Ethernet, using Sun’s
JDK 1.1.6v2 with the TYA just-in-time compiler on
Linux 2.2.1, and sending 75 byte Keiretsu messages.

breakdown in scaling when the total number of re-
ceivers reached roughly 200 (i.e. 3-4 nodes at 50
receivers per node, or 2 nodes at 100 receivers per
node). The CPU was still the bottleneck in these
cases, but most of the CPU time was spent pro-
cessing the client stubs exchanged between Keiretsu
nodes, rather than processing the clients’ messages.
This is due to poor design of the Keiretsu service; we
did not need to exhange client stubs as frequently as
we did, and we should have simply exchanged times-
tamps for previously distributed stubs rather than
repeatedly sending the same stub. This limitation
could be also removed by modifying the Keiretsu
service to inject client stubs in a distributed hash
table, and rely on service instances to pull the
stubs out of the table as needed. However, a sim-
ilar N? state exchange happens at the MultiSpace
layer with the multicast exchange of service instance
stubs; this could potentially become another scaling
bottleneck for large clusters.

5 Discussion and Future Work

Our MultiSpace and service implementation ef-
forts have given some insights into our original de-
sign principles, and into the use of Java as an Inter-
net service construction language. In this section of
the paper, we delve into some of these insights.

5.1 Code Mobility as a Service Con-
struction Primitive

When we were designing the MultiSpace, we
knew that code mobility would be a powerful tool.
We originally intended to use code mobility for de-
livering code to clients (which we do in the form of
Redirector Stubs), and for it to be used by clients
to upload customization code into the MultiSpace
(which has not been implemented). However, code
mobility turned out to be useful inside the Multi-
Space as a mechanisms for structuring services, and
distributing service components across the cluster.

Code mobility solved a software distribution
problem in the Jukebox, without us realizing that
software distribution might become a problem.
When we updated the ripper service, we needed to
distribute the new functionality to all of the nodes
in the cluster that would potentially have CD’s
inserted into them. Code mobility also partially
solved the service location problem in the Jukebox:
the ripper services depend on the CDDB service to
gather detailed track and album information, but
the ripper has no easy way to know where in the
cluster the CDDB service is running. Using code
mobility to push the CDDB service onto the same
node as the ripper, we enforced the invariant that
the CDDB service is colocated with the ripper.

5.2 Bases are a Simplifying Principle,
but not a Complete Solution

The principle of solving complex service problems
in a Base makes it easier to reason about the inter-
actions between services and clients, and to ensure
that difficult tasks like state management are dealt
with in an environment in which there is a chance
of success. However, this organizational principle
alone is not enough to solve the problem of con-
structing highly available services. Given the con-
trolled environment of a Base, service authors must
still construct services to ensure consistency and
availability. We believe that a Base can provide
primitives that further simply service authors’ jobs;
the Redirector Stub is an example of such a primi-
tive.

While building the Ninja Jukebox and Keiretsu,
we made observations about how we achieved avail-
ability and consistency. Most of the code in these
services dealt with distributing and maintaining ta-
bles of shared state. In the Ninja Jukebox, this
state was the list of available music. In Keiretsu,
this state was the list of other Keiretsu nodes, and
the tables of client stub bindings. The distributed

hash table was not yet complete when these two ser-
vices were being implemented. If we had relied on
it instead of our ad-hoc peer state exchange mecha-
nisms, much of the services’ source code would have
been eliminated.

In both of these services, work queues are not
explicitly exposed to service authors. These queues
are hidden inside the thread scheduler, since Nin-
jaRMI spawns a thread per connected client. This
design decision had repercussions on service struc-
ture: each service had to be written to handle mul-
tithreading, since service authors must handle con-
sistency within a single service instance as well as
across instances throughout the cluster. Providing
a mechanism to expose work queues to service au-
thors may simplify the structure of some services,
for example if services serialize requests to avoid is-
sues associated with multithreading.

In the current MultiSpace, service instances must
explicitly keep track of their counterparts on other
nodes and spawn new services when load or avail-
ability demands it. A useful primitive would be
to allow authors to specify conditions that dictate
when service instances are spawned or pushed to
a specific node, and to allow the MultiSpace infras-
tructure to handle the triggering of these conditions.

5.3 Java as an Internet-service con-
struction environment

Java has proven to be an invaluable tool in the
development of the Ninja infrastructure. The abil-
ity to rapidly deploy cross-platform code compo-
nents simply by assuming the existence of a Java
Virtual Machine made it easy to construct complex
distributed services without concerning oneself with
the heterogeneity of the systems involved. The use
of RMI as a strongly-typed RPC, tied very closely to
the Java language semantics, makes distributed pro-
gramming comparably simple to single node devel-
opment. The protection, modularization, and safety
guarantees provided by the Java runtime environ-
ment make dynamic dissemination of code compo-
nents a natural activity. Similarly, the use of Java
class reflection to generate new code wrappers for
existing components (as with Redirector Stubs) pro-
vides automatic indirection at the object level.

Java has a number of drawbacks in its current
form, however. Performance is always an issue,
and work on just-in-time [14, 24] and ahead-of-time
[27] compilation is addressing many of these prob-
lems. The widely-used JVM from Sun Microsys-
tems exhibits a large memory footprint (we have
observed 3-4 MB for “Hello World”, and up to 30

MB for a relatively simple application that performs
many of memory allocations and deallocations”),
and crossing the boundary from Java to native code
remains an expensive operation. In addition, the
Java threading model permits threads to be non-
preemptive, which has serious implications for com-
ponents which must run in a protected environment.
Our approach has been to use only Java Virtual Ma-
chines which employ preemptive threads.

We have started an effort to improve the perfor-
mance of the Java runtime environment. Our ini-
tial prototype, called Jaguar, permits direct Java
access to hardware resources through the use of a
modified just-in-time compiler. Rather than going
through the relatively expensive Java Native Inter-
face for access to devices, Jaguar generates machine
code for direct hardware access which is inlined with
compiled Java bytecodes. We have implemented a
Jaguar interface to a VIA® enabled fast system area
network, obtaining performance equivalent to VIA
access from C (80 microseconds round-trip time for
small messages and over 400 megabits/second peak
bandwidth). We believe that this approach is a vi-
able way to tailor the Java environment for high-
performance use in a clustered environment.

6 Related Work

Directly related to the Base architecture is the
TACC [11] platform, which provides a cluster-
based environment for scalable Internet services. In
TACC, service components (or “workers”) can be
written in a number of languages and are controlled
by a front-end machine which dispatches incoming
requests to back-end cluster machines, incorporat-
ing load-balancing and restart in the case of node
failure. TACC workers may be chained across the
cluster for composable tasks. TACC was designed
to support Internet services which perform data
transformation and aggregation tasks. Base services
can additionally implement long-lived and persis-
tent services; the result is that the Ninja approach
addresses a wider set of potential applications and
system-support issues. Furthermore, Base services
can dynamically created and destroyed through the
iSpace loader interface on each MultiSpace node—
TACC did not have this functionality.

"There are no explicit deallocations in Java — by “deallo-
cation”, we mean discarding all references to an object, thus
enabling it to be garbage collected.

8VIA is the Virtual Interface Architecture [26], which
specifies an industry-standard architecture for high-
bandwidth, low-latency communication within clusters.

Sun’s JINI [31] architecture is similar to the the
Base architecture in that it proposes to develop
a Java-based lingua franca for binding users, de-
vices, and services together in an intelligent, pro-
grammable Internet-wide infrastructure. JINI’s use
of RMI as the basic communication substrate and
use of code mobility for distributing service and
device interfaces has a great deal of rapport with
our approach. However, we believe that we are
addressing problems which JINI does not directly
solve: providing a hardware and software environ-
ment supporting scalable, fault-tolerant services is
not within the JINI problem domain, nor is the
use of dynamically-generated code components to
act as interfaces into services. However, JINI has
touched on issues such as service discovery and nam-
ing which have not yet been dealt with by the Base
architecture; likewise, JINT’s use of JavaSpaces and
“leases” as a persistent storage model may interact
well with the Base service model.

ANTS [30, 29] is a system that enables the dy-
namic deployment of mobile code which implements
network protocols within Active Routers. Coded in
Java, and utilizing techniques similar to those in the
iSpace environment, ANTS has a similar set of goals
in mind as the Base architecture. However, ANTS
uses mobile code for processing each packet passing
through a router; Base service components are ex-
ecuted on the granularity of an RMI call. Liquid
Software [19] and Joust [15] are similar to ANTS in
that they propose an environment which uses mobile
code to customize nodes in the network for commu-
nications oriented tasks. These systems focused on
adapting systems at the level of network protocol
code, while the Base architecture uses code mobil-
ity for distribution of service components both in-
ternally to and externally from a Base.

SanFrancisco [7] is a platform for building dis-
tributed, object-oriented business applications. Its
primary goal is to simplify the development of
these applications by providing developers a set of
industrial-strength “Foundation” objects which im-
plement common functionality. As such, SanFran-
cisco is very similar to Sun’s Enterprise Java Beans
in that it provides a framework for constructing
applications using reusable components, with San-
Francisco providing a number of generic components
to start with. MultiSpace addresses a different set of
goals than Enterprise Java Beans and SanFrancisco
in that it defines a flexible runtime environment for
services, and MultiSpace intends to provide scalabil-
ity and fault-tolerance by leveraging the flexibility
of a component architecture. MultiSpace services
could be built using the EJB or SanFrancisco model

(extended to expose the MultiSpace functionality),
but these issues appear to be orthogonal.

The Distributed Computing Environment (DCE)
[20] is a software suite that provides a middleware
platform that operates on many operating systems
and environments. DCE abstracts away many OS
and network services (such as threads, security, a di-
rectory service, and RPC) and therefore allows pro-
grammers to implement DCE middleware indepen-
dent of the vagaries of particular operating systems.
DCE is rich, robust, but notoriously heavyweight,
and its focus is on providing interoperable, wide-
area middleware. MultiSpace is far less mature, but
focuses instead on providing a platform for rapidly
adaptable services that are housed within a single
administrative domain (the Base).

7 Conclusions

In this paper, we presented an architecture for
a Base, a clustered hardware and software platform
for building and executing flexible and adaptable in-
frastructure services. The Base architecture was de-
signed to adhere to three organizing principles: (1)
solve the challenging service availability and scala-
bility problems in carefully controlled environments,
allowing service authors to make many assumptions
that would not otherwise be valid in an uncontrolled
or wide area environment, (2) gain service flexibil-
ity by decomposing Bases into a number of receptive
execution environments; and (3) introduce a level of
indirection between the clients and services through
the use of dynamic code generation techniques.

We built a prototype implementation (Multi-
Space) of the Base architecture using Java as a foun-
dation. This implementation took advantage of the
code mobility and dynamic compilation techniques
to help in the structuring and deployment of ser-
vices inside the cluster. The MultiSpace abstracts
away load balancing, failover, and service instance
detection and naming from service authors. Using
the MultiSpace platform, we implemented two novel
services: the Ninja Jukebox, and Keiretsu. The
Ninja Jukebox implementation demonstrated that
code mobility is valuable inside a cluster environ-
ment, as it permits rapid evolution of services, and
run-time binding of service components to available
resources in the cluster. The Keiretsu application
demonstrated that our MultiSpace layer successfully
reduced the complexity of building new services: the
core Keiretsu service functionality was implemented
in less than a page of code, but the application was
demonstrably fault-tolerant. We also demonstrated

that Keiretsu code limited the scalability of this ser-
vice, rather than any inherent limitation in the Mul-
tiSpace layer, although we hypothesized that our use
of multicast beacons would ultimately limit the scal-
ability of the current MultiSpace implementation.

8 Acknowledgements

The authors thank Tan Goldberg and David Wag-
ner for their contributions to iSpace, NinjaRMI, and
the Jukebox application. We would also like to
thank all of the graduate and undergraduate stu-
dents in the Ninja project for agreeing to be guinea
pigs for our platform, and Brian Shiratsuki and
Keith Sklower for their help in the system of the
MultiSpace machines and networks. Finally, we
would like to thank our anonymous reviewers and
our shepherd, Charles Antonelli, for their insight
and suggestions for improvement.

References

[1] Elan Amir, Steven McCanne, and Randy Katz. An
Active Service Framework and its Application to
Real-Time Multimedia Transcoding. In Proceedings
of ACM SIGCOMM ’98, volume 28, pages 178-189,
October 1998.

[2] B. Anderson and D. Shasha. Persistent Linda:
Linda + Transactions + Query Processing. In
Springer-Verlag Lecture Notes in Computer Science
574, Mont-Saint-Michel, France, June 1991.

[3] Thomas E. Anderson, David E. Culler, and David
Patterson. A Case for NOW (Networks of Worksta-
tions). IEEE Micro, 12(1):54-64, February 1995.

[4] Ken Birman, Andre Schiper, and Pat Stephen-
son. Lightweight Causal and Atomic Group Mul-

ticast. ACM Transactions on Computer Systems,
9(3):272-314, 1991.

[6] Andrew D. Birrell and Bruce Jay Nelson. Imple-
menting Remote Procedure Call. ACM Transac-
tions on Computing Systems, 2(1):39-59, February
1984.

[6] T. Brisco. RFC 1764: DNS Support for Load Bal-
ancing, April 1995.

[7] IBM Corporation. IBM SanFrancisco product
homepage. http://www.software.ibm.com/ad/
sanfrancisco/.

[8] Inktomi Corporation. The Technology Behind Hot-
Bot. http://www.inktomi.com/whitepap.html,
May 1996.

[9] Steven Czerwinski, Ben Y. Zhao, Todd Hodes, An-
thony Joseph, and Randy Katz. An Architecture

[10]

[11]

[12]

[16]

[17]

[18]

[19]

[21]

for a Secure Service Discovery Service. In Proceed-
ings of MobiCom ’99, Seattle, WA, August 1999.
ACM.

A.D. Birrell et al. Grapevine: An Exercise in Dis-
tributed Computing. Communications of the Asso-
ciation for Computing Machinery, 25(4):3-23, Feb
1984.

Armando Fox, Steven D. Gribble, Yatin Chawathe,
Eric A. Brewer, and Paul Gauthier. Cluster-Based
Scalable Network Services. In Proceedings of the
16th ACM Symposium on Operating Systems Prin-
ciples, St.-Malo, France, October 1997.

Tan Goldberg, Steven D. Gribble, David Wagner,
and Eric A. Brewer. The Ninja Jukebox. In Sub-
mitted to the 2nd USENIX Symposium on Inter-
net Technologies and Systems, Boulder, Colorado,
USA, October 1999.

Robert S. Gray. Agent Tcl: A Flexible and Se-
cure Mobile-Agent System. In Proceedings of the
Fourth Annual Useniz Tcl/Tk Workshop. USENIX
Association, 1996.

The Open Group. The Fajita Compiler
Project. http://www.gr.opengroup.org/java/
compiler/fajita/index-b.htm, 1998.

J. Hartman, L. Peterson, A. Bavier, P. Bigot,
P. Bridges, B. Montz, R. Piltz, T. Proebsting, and
O. Spatscheck. Joust: A Platform for Liquid Soft-
ware. In IEEE Network (Special Edition on Active
and Programmable Networks), July 1998.

Chris Hawblitzel, Chi-Chao Chang, Grzegorz Cza-
jkowski, Deyu Hu, and Thorsten von Eicken. Im-
plementing Multiple Protection Domains in Java.
In Proceedings of the 1998 Useniz Annual Techni-
cal Conference, June 1998.

Open Group Research Institute. Scalable Highly
Available Web Server Project (SHAWS). http://
www . osf.org/RI/PubProjPgs/SFTWWW.htm.

Dag Johansen, Robbert van Renesse, , and Fred R.
Schneider. Operating System Support for Mobile
Agents. In Proceedings of the 5th IEEE Workshop
on Hot Topics in Operating Systems, 1995.

John Hartman and Udi Manber and Larry Peter-
son and Todd Proebsting. Liquid Software: A New
Paradigm for Networked Systems. Technical re-
port, Department of Computer Science, University
of Arizona, June 1996.

Brad Curtis Johnson. A Distributed Comput-
ing Environment Framework: an OSF Perspec-
tive. Technical Report DEV-DCE-TP6-1, the Open
Group, June 1991.

Eric Jul, Henry M. Levy, Norman C. Hutchinson,
and Andrew P. Black. Fine-Grained Mobility in the
Emerald System. ACM Transactions on Computing
Systems, 6(1):109-133, 1988.

[22]

[23]

[24]

[25]

[29]

[30]

Ti Kan and Steve Scherf. CDDB Specifica-
ton. http://www.cddb.com/ftp/cddb-docs/cddb_
howto.gz.

Method
Java.

Sun Microsystems. Java Remote
Invocation—Distributed Computing for
http://java.sun.com/.

Sun Microsystems. The Solaris JIT Compiler.
http://www.sun.com/solaris/jit, 1998.

The Object Management Group (OMG). The Com-
mon Object Request Broker: Architecture and
Specification, February 1998. http://wuw.omg.
org/library/c2indx.html.

Virtual Interface Architecture Organization. Vir-
tual Interface Architecture Specification version
1.0, December 1997. http://wuw.viarch.org.

Todd A. Proebsting, Gregg Townsend, Patrick
Bridges, John H. Hartman, Tim Newsham, and
Scott A. Watterson. Toba: Java for Applications—
A Way Ahead of Time (WAT) Compiler. In
Proceedings of the Third USENIX Conference on
Object-Oriented Technologies (COOTS), Portland,
Oregon, USA, June 1997.

Joseph Tardo and Luis Valente. Mobile Agent Secu-
rity and Telescript. In Proceedings of the 41st Inter-
national Conference of the IEEE Computer Society
(CompCon ’96), February 1996.

David L. Tennenhouse, Jonathan M. Smith,
W. David Sincoskie, David J. Wetherall, and
Gary J. Minden. A Survey of Active Network Re-
search. Active Networks home page (MIT Teleme-
dia, Networks and Systems group), 1996.

David L. Tennenhouse and David J. Wetherall. To-
wards an Active Network Architecture. In ACM
SIGCOMM ’96 (Computer Communications Re-
view). ACM, 1996.

Jim Waldo. Jini Architecture Overview. Avail-
able at http://java.sun.com/products/jini/
whitepapers.

James E. White. Telescript Technology: The Foun-
dation for the Electronic Marketplace, 1991. http:
//wuw.generalmagic.com.

P. Wyckoff, S. W. McLaughry, T. J. Lehman, and
D. A. Ford. TSpaces. IBM Systems Journal, 37(3),
April 1998.

C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat,
T. Anderson, and D. Culler. Using Smart Clients
to Build Scalable Services. In Proceedings of the
Winter 1997 USENIX Technical Conference, Jan-
uary 1997.

