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Abstract
UNIX applications not wishing to block when do-

ing I/O often use the select() system call, to wait for
events on multiple file descriptors. The select() mech-
anism works well for small-scale applications, but scales
poorly as the number of file descriptors increases. Many
modern applications, such as Internet servers, use hun-
dreds or thousands of file descriptors, and suffer greatly
from the poor scalability of select(). Previous work has
shown that while the traditional implementation of se-
lect() can be improved, the poor scalability is inherent in
the design. We present a new event-delivery mechanism,
which allows the application to register interest in one or
more sources of events, and to efficiently dequeue new
events. We show that this mechanism, which requires
only minor changes to applications, performs independ-
ently of the number of file descriptors.

1 Introduction
An application must often manage large numbers of

file descriptors, representing network connections, disk
files, and other devices. Inherent in the use of a file
descriptor is the possibility of delay. A thread that in-
vokes a blocking I/O call on one file descriptor, such as
the UNIX read() or write() systems calls, risks ignoring
all of its other descriptors while it is blocked waiting for
data (or for output buffer space).

UNIX supports non-blocking operation for read() and
write(), but a naive use of this mechanism, in which the
application polls each file descriptor to see if it might be
usable, leads to excessive overheads.

Alternatively, one might allocate a single thread to
each activity, allowing one activity to block on I/O
without affecting the progress of others. Experience with
UNIX and similar systems has shown that this scales
badly as the number of threads increases, because of
the costs of thread scheduling, context-switching, and
thread-state storage space[6, 9]. The use of a single pro-
cess per connection is even more costly.

The most efficient approach is therefore to allocate
a moderate number of threads, corresponding to the

amount of available parallelism (for example, one per
CPU), and to use non-blocking I/O in conjunction with
an efficient mechanism for deciding which descriptors
are ready for processing[17]. We focus on the design of
this mechanism, and in particular on its efficiency as the
number of file descriptors grows very large.

Early computer applications seldom managed many
file descriptors. UNIX, for example, originally suppor-
ted at most 15 descriptors per process[14]. However, the
growth of large client-server applications such as data-
base servers, and especially Internet servers, has led to
much larger descriptor sets.

Consider, for example, a Web server on the Inter-
net. Typical HTTP mean connection durations have been
measured in the range of 2-4 seconds[8, 13]; Figure 1
shows the distribution of HTTP connection durations
measured at one of Compaq's firewall proxy servers. In-
ternet connections last so long because of long round-
trip times (RTTs), frequent packet loss, and often be-
cause of slow (modem-speed) links used for download-
ing large images or binaries. On the other hand, mod-
ern single-CPU servers can handle about 3000 HTTP
requests per second[19], and multiprocessors consider-
ably more (albeit in carefully controlled environments).
Queueing theory shows that an Internet Web server hand-
ling 3000 connections per second, with a mean duration
of 2 seconds, will have about 6000 open connections to
manage at once (assuming constant interarrival time).

In a previous paper[4], we showed that the BSD
UNIX event-notification mechanism, the select() system
call, scales poorly with increasing connection count. We
showed that large connection counts do indeed occur in
actual servers, and that the traditional implementation of
select() could be improved significantly. However, we
also found that even our improved select() implementa-
tion accounts for an unacceptably large share of the over-
all CPU time. This implies that, no matter how carefully
it is implemented, select() scales poorly. (Some UNIX
systems use a different system call, poll(), but we believe
that this call has scaling properties at least as bad as those
of select(), if not worse.)
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Fig. 1: Cumulative distribution of proxy connection durations

The key problem with the select() interface is that it
requires the application to inform the kernel, on each
call, of the entire set of “interesting” file descriptors: i.e.,
those for which the application wants to check readiness.
For each event, this causes effort and data motion propor-
tional to the number of interesting file descriptors. Since
the number of file descriptors is normally proportional
to the event rate, the total cost of select() activity scales
roughly with the square of the event rate.

In this paper, we explain the distinction between state-
based mechanisms, such as select(), which check the
current status of numerous descriptors, and event-based
mechanisms, which deliver explicit event notifications.
We present a new UNIX event-based API (application
programming interface) that an application may use, in-
stead of select(), to wait for events on file descriptors.
The API allows an application to register its interest in
a file descriptor once (rather than every time it waits for
events). When an event occurs on one of these interest-
ing file descriptors, the kernel places a notification on a
queue, and the API allows the application to efficiently
dequeue event notifications.

We will show that this new interface is simple, easily
implemented, and performs independently of the number
of file descriptors. For example, with 2000 connections,
our API improves maximum throughput by 28%.

2 The problem with select()
We begin by reviewing the design and implementation

of the select() API. The system call is declared as:

int select(
int nfds,
fd_set *readfds,
fd_set *writefds,
fd_set *exceptfds,
struct timeval *timeout);

An fd set is simply a bitmap; the maximum size (in
bits) of these bitmaps is the largest legal file descriptor

value, which is a system-specific parameter. The read-
fds, writefds, and exceptfds are in-out arguments, respect-
ively corresponding to the sets of file descriptors that are
“interesting” for reading, writing, and exceptional con-
ditions. A given file descriptor might be in more than
one of these sets. The nfds argument gives the largest
bitmap index actually used. The timeout argument con-
trols whether, and how soon, select() will return if no file
descriptors become ready.

Before select() is called, the application creates one
or more of the readfds, writefds, or exceptfds bitmaps, by
asserting bits corresponding to the set of interesting file
descriptors. On its return, select() overwrites these bit-
maps with new values, corresponding to subsets of the
input sets, indicating which file descriptors are available
for I/O. A member of the readfds set is available if there
is any available input data; a member of writefds is con-
sidered writable if the available buffer space exceeds a
system-specific parameter (usually 2048 bytes, for TCP
sockets). The application then scans the result bitmaps
to discover the readable or writable file descriptors, and
normally invokes handlers for those descriptors.

Figure 2 is an oversimplified example of how an ap-
plication typically uses select(). One of us has shown[15]
that the programming style used here is quite inefficient
for large numbers of file descriptors, independent of the
problems with select(). For example, the construction
of the input bitmaps (lines 8 through 12 of Figure 2)
should not be done explicitly before each call to select();
instead, the application should maintain shadow copies
of the input bitmaps, and simply copy these shadows to
readfds and writefds. Also, the scan of the result bit-
maps, which are usually quite sparse, is best done word-
by-word, rather than bit-by-bit.

Once one has eliminated these inefficiencies, however,
select() is still quite costly. Part of this cost comes from
the use of bitmaps, which must be created, copied into
the kernel, scanned by the kernel, subsetted, copied out



1 fd_set readfds, writefds;
2 struct timeval timeout;
3 int i, numready;
4
5 timeout.tv_sec = 1; timeout.tv_usec = 0;
6
7 while (TRUE) {
8 FD_ZERO(&readfds); FD_ZERO(&writefds);
9 for (i = 0; i <= maxfd; i++) {

10 if (WantToReadFD(i)) FD_SET(i, &readfds);
11 if (WantToWriteFD(i)) FD_SET(i, &writefds);
12 }
13 numready = select(maxfd, &readfds,
14 &writefds, NULL, &timeout);
15 if (numready < 1) {
16 DoTimeoutProcessing();
17 continue;
18 }
19
20 for (i = 0; i <= maxfd; i++) {
21 if (FD_ISSET(i, &readfds)) InvokeReadHandler(i);
22 if (FD_ISSET(i, &writefds)) InvokeWriteHandler(i);
23 }
24 }

Fig. 2: Simplified example of how select() is used

of the kernel, and then scanned by the application. These
costs clearly increase with the number of descriptors.

Other aspects of the select() implementation also scale
poorly. Wright and Stevens provide a detailed discussion
of the 4.4BSD implementation[23]; we limit ourselves
to a sketch. In the traditional implementation, select()
starts by checking, for each descriptor present in the in-
put bitmaps, whether that descriptor is already available
for I/O. If none are available, then select() blocks. Later,
when a protocol processing (or file system) module' s
state changes to make a descriptor readable or writable,
that module awakens the blocked process.

In the traditional implementation, the awakened pro-
cess has no idea which descriptor has just become read-
able or writable, so it must repeat its initial scan. This is
unfortunate, because the protocol module certainly knew
what socket or file had changed state, but this informa-
tion is not preserved. In our previous work on improv-
ing select() performance[4], we showed that it was fairly
easy to preserve this information, and thereby improve
the performance of select() in the blocking case.

We also showed that one could avoid most of the ini-
tial scan by remembering which descriptors had previ-
ously been interesting to the calling process (i.e., had
been in the input bitmap of a previous select() call),
and scanning those descriptors only if their state had
changed in the interim. The implementation of this tech-
nique is somewhat more complex, and depends on set-
manipulation operations whose costs are inherently de-
pendent on the number of descriptors.

In our previous work, we tested our modifications us-
ing the Digital UNIX V4.0B operating system, and ver-

sion 1.1.20 of the Squid proxy software[5, 18]. After
doing our best to improve the kernel' s implementation
of select(), and Squid' s implementation of the procedure
that invokes select(), we measured the system's perform-
ance on a busy non-caching proxy, connected to the In-
ternet and handling over 2.5 million requests/day.

We found that we had approximately doubled the sys-
tem's efficiency (expressed as CPU time per request), but
select() still accounted for almost 25% of the total CPU
time. Table 1 shows a profile, made with the DCPI [1]
tools, of both kernel and user-mode CPU activity during
a typical hour of high-load operation.

In the profile comm select(), the user-mode proced-
ure that creates the input bitmaps for select() and that
scans its output bitmaps, takes only 0.54% of the non-
idle CPU time. Some of the 2.85% attributed to mem-
Copy() and memSet() should also be charged to the cre-
ation of the input bitmaps (because the modified Squid
uses the shadow-copy method). (The profile also shows a
lot of time spent in malloc()-related procedures; a future
version of Squid will use pre-allocated pools to avoid the
overhead of too many calls to malloc() and free()[22].)

However, the bulk of the select()-related overhead is
in the kernel code, and accounts for about two thirds of
the total non-idle kernel-mode CPU time. Moreover, this
measurement reflects a select() implementation that we
had already improved about as much as we thought pos-
sible. Finally, our implementation could not avoid costs
dependent on the number of descriptors, implying that
the select()-related overhead scales worse than linearly.
Yet these costs did not seem to be related to intrinsically
useful work. We decided to design a scalable replace-



CPU % Non-idle Procedure Mode
CPU %

65.43% 100.00% all non-idle time kernel
34.57% all idle time kernel

16.02% 24.49% all select functions kernel
9.42% 14.40% select kernel
3.71% 5.67% new soo select kernel
2.82% 4.31% new selscan one kernel
0.03% 0.04% new undo scan kernel

15.45% 23.61% malloc-related code user

4.10% 6.27% in pcblookup kernel

2.88% 4.40% all TCP functions kernel
0.94% 1.44% memCopy user
0.92% 1.41% memset user
0.88% 1.35% bcopy kernel
0.84% 1.28% read io port kernel
0.72% 1.10% doprnt user

0.36% 0.54% comm select user

Profile on 1998-09-09 from 11:00 to 12:00 PDT
mean load = 56 requests/sec.

peak load ca. 131 requests/sec

Table 1: Profile - modified kernel, Squid on live proxy

ment for select().

2.1 The poll() system call
In the System V UNIX environment, applications use

the poll() system call instead of select(). This call is de-
clared as:

struct pollfd {
int fd;
short events;
short revents;

};

int poll(
struct pollfd filedes[];
unsigned int nfds;
int timeout /* in milliseconds */);

The filedes argument is an in-out array with one ele-
ment for each file descriptor of interest; nfds gives the
array length. On input, the events field of each element
tells the kernel which of a set of conditions are of in-
terest for the associated file descriptor fd. On return, the
revents field shows what subset of those conditions hold
true. These fields represent a somewhat broader set of
conditions than the three bitmaps used by select().

The poll() API appears to have two advantages over
select(): its array compactly represents only the file
descriptors of interest, and it does not destroy the input
fields of its in-out argument. However, the former ad-
vantage is probably illusory, since select() only copies

3 bits per file descriptor, while poll() copies 64 bits. If
the number of interesting descriptors exceeds 3/64 of the
highest-numbered active file descriptor, poll() does more
copying than select(). In any event, it shares the same
scaling problem, doing work proportional to the number
of interesting descriptors rather than constant effort, per
event.

3 Event-based vs. state-based notification
mechanisms

Recall that we wish to provide an application with an
efficient and scalable means to decide which of its file
descriptors are ready for processing. We can approach
this in either of two ways:

1. A state-based view, in which the kernel informs
the application of the current state of a file
descriptor (e.g., whether there is any data currently
available for reading).

2. An event-based view, in which the kernel informs
the application of the occurrence of a meaningful
event for a file descriptor (e.g., whether new data
has been added to a socket' s input buffer).

The select() mechanism follows the state-based ap-
proach. For example, if select() says a descriptor is ready
for reading, then there is data in its input buffer. If the ap-
plication reads just a portion of this data, and then calls
select() again before more data arrives, select() will again
report that the descriptor is ready for reading.

The state-based approach inherently requires the ker-
nel to check, on every notification-wait call, the status
of each member of the set of descriptors whose state is
being tested. As in our improved implementation of se-
lect(), one can elide part of this overhead by watching for
events that change the state of a descriptor from unready
to ready. The kernel need not repeatedly re-test the state
of a descriptor known to be unready.

However, once select() has told the application that a
descriptor is ready, the application might or might not
perform operations to reverse this state-change. For ex-
ample, it might not read anything at all from a ready-
for-reading input descriptor, or it might not read all of
the pending data. Therefore, once select() has reported
that a descriptor is ready, it cannot simply ignore that
descriptor on future calls. It must test that descriptor' s
state, at least until it becomes unready, even if no fur-
ther I/O events occur. Note that elements of writefds are
usually ready.

Although select() follows the state-based approach,
the kernel' s I/O subsystems deal with events: data pack-
ets arrive, acknowledgements arrive, disk blocks arrive,
etc. Therefore, the select() implementation must trans-
form notifications from an internal event-based view to
an external state-based view. But the “event-driven” ap-



plications that use select() to obtain notifications ulti-
mately follow the event-based view, and thus spend ef-
fort tranforming information back from the state-based
model. These dual transformations create extra work.

Our new API follows the event-based approach. In
this model, the kernel simply reports a stream of events to
the application. These events are monotonic, in the sense
that they never decrease the amount of readable data (or
writable buffer space) for a descriptor. Therefore, once
an event has arrived for a descriptor, the application can
either process the descriptor immediately, or make note
of the event and defer the processing. The kernel does not
track the readiness of any descriptor, so it does not per-
form work proportional to the number of descriptors; it
only performs work proportional to the number of events.

Pure event-based APIs have two problems:

1. Frequent event arrivals can create excessive com-
munication overhead, especially for an application
that is not interested in seeing every individual
event.

2. If the API promises to deliver information about
each individual event, it must allocate storage pro-
portional to the event rate.

Our API does not deliver events asynchronously (as
would a signal-based mechanism; see Section 8.2),
which helps to eliminate the first problem. Instead,
the API allows an application to efficiently discover
descriptors that have had event arrivals. Once an event
has arrived for a descriptor, the kernel coalesces sub-
sequent event arrivals for that descriptor until the applic-
ation learns of the first one; this reduces the communica-
tion rate, and avoids the need to store per-event informa-
tion. We believe that most applications do not need expli-
cit per-event information, beyond that available in-band
in the data stream.

By simplifying the semantics of the API (compared
to select()), we remove the necessity to maintain inform-
ation in the kernel that might not be of interest to the
application. We also remove a pair of transformations
between the event-based and state-based views. This im-
proves the scalability of the kernel implementation, and
leaves the application sufficient flexibility to implement
the appropriate event-management algorithms.

4 Details of the programming interface
An application might not be always interested in

events arriving on all of its open file descriptors. For
example, as mentioned in Section 8.1, the Squid proxy
server temporarily ignores data arriving in dribbles; it
would rather process large buffers, if possible.

Therefore, our API includes a system call allowing a
thread to declare its interest (or lack of interest) in a file
descriptor:

#define EVENT_READ 0x1
#define EVENT_WRITE 0x2
#define EVENT_EXCEPT 0x4

int declare_interest(int fd,
int interestmask,
int *statemask);

The thread calls this procedure with the file descriptor
in question. The interestmask indicate whether or not
the thread is interested in reading from or writing to the
descriptor, or in exception events. If interestmask is zero,
then the thread is no longer interested in any events for
the descriptor. Closing a descriptor implicitly removes
any declared interest.

Once the thread has declared its interest, the kernel
tracks event arrivals for the descriptor. Each arrival is
added to a per-thread queue. If multiple threads are inter-
ested in a descriptor, a per-socket option selects between
two ways to choose the proper queue (or queues). The
default is to enqueue an event-arrival record for each in-
terested thread, but by setting the SO WAKEUP ONE
flag, the application indicates that it wants an event ar-
rival delivered only to the first eligible thread.

If the statemask argument is non-NULL, then de-
clare interest() also reports the current state of the file
descriptor. For example, if the EVENT READ bit is set
in this value, then the descriptor is ready for reading.
This feature avoids a race in which a state change occurs
after the file has been opened (perhaps via an accept()
system call) but before declare interest() has been called.
The implementation guarantees that the statemask value
reflects the descriptor' s state before any events are ad-
ded to the thread' s queue. Otherwise, to avoid missing
any events, the application would have to perform a non-
blocking read or write after calling declare interest().

To wait for additional events, a thread invokes another
new system call:

typedef struct {
int fd;
unsigned mask;

} event_descr_t;

int get_next_event(int array_max,
event_descr_t *ev_array,
struct timeval *timeout);

The ev array argument is a pointer to an array, of
length array max, of values of type event descr t. If any
events are pending for the thread, the kernel dequeues,
in FIFO order, up to array max events1. It reports these
dequeued events in the ev array result array. The mask
bits in each event descr t record, with the same defin-
itions as used in declare interest(), indicate the current

1A FIFO ordering is not intrinsic to the design. In another paper[3],
we describe a new kernel mechanism, called resource containers,
which allows an application to specify the priority in which the ker-
nel enqueues events.



state of the corresponding descriptor fd. The function re-
turn value gives the number of events actually reported.

By allowing an application to request an arbitrary
number of event reports in one call, it can amortize the
cost of this call over multiple events. However, if at least
one event is queued when the call is made, it returns im-
mediately; we do not block the thread simply to fill up its
ev array.

If no events are queued for the thread, then the call
blocks until at least one event arrives, or until the timeout
expires.

Note that in a multi-threaded application (or in an ap-
plication where the same socket or file is simultaneously
open via several descriptors), a race could make the
descriptor unready before the application reads the mask
bits. The application should use non-blocking operations
to read or write these descriptors, even if they appear to
be ready. The implementation of get next event() does
attempt to try to report the current state of a descriptor,
rather than simply reporting the most recent state trans-
ition, and internally suppresses any reports that are no
longer meaningful; this should reduce the frequency of
such races.

The implementation also attempts to coalesce mul-
tiple reports for the same descriptor. This may be of
value when, for example, a bulk data transfer arrives
as a series of small packets. The application might
consume all of the buffered data in one system call; it
would be inefficient if the application had to consume
dozens of queued event notifications corresponding to
one large buffered read. However, it is not possible to en-
tirely eliminate duplicate notifications, because of races
between new event arrivals and the read, write, or similar
system calls.

5 Use of the programming interface
Figure 3 shows a highly simplified example of how

one might use the new API to write parts of an event-
driven server. We omit important details such as error-
handling, multi-threading, and many procedure defini-
tions.

The main loop() procedure is the central event dis-
patcher. Each iteration starts by attempting to dequeue
a batch of events (here, up to 64 per batch), using
get next event() at line 9. If the system call times out,
the application does its timeout-related processing. Oth-
erwise, it loops over the batch of events, and dispatches
event handlers for each event. At line 16, there is a spe-
cial case for the socket(s) on which the application is
listening for new connections, which is handled differ-
ently from data-carrying sockets.

We show only one handler, for these special listen-
sockets. In initialization code not shown here, these
listen-sockets have been set to use the non-blocking op-
tion. Therefore, the accept() call at line 30 will never

block, even if a race with the get next event() call some-
how causes this code to run too often. (For example, a
remote client might close a new connection before we
have a chance to accept it.) If accept() does successfully
return the socket for a new connection, line 31 sets it to
use non-blocking I/O. At line 32, declare interest() tells
the kernel that the application wants to know about future
read and write events. Line 34 tests to see if any data be-
came available before we called declare interest(); if so,
we read it immediately.

6 Implementation
We implemented our new API by modifying Digital

UNIX V4.0D. We started with our improved select() im-
plementation [4], reusing some data structures and sup-
port functions from that effort. This also allows us to
measure our new API against the best known select() im-
plementation without varying anything else. Our current
implementation works only for sockets, but could be ex-
tended to other descriptor types. (References below to
the “protocol stack” would then include file system and
device driver code.)

For the new API, we added about 650 lines of code.
The get next event() call required about 320 lines, de-
clare interest() required 150, and the remainder covers
changes to protocol code and support functions. In con-
trast, our previous modifications to select() added about
1200 lines, of which we reused about 100 lines in imple-
menting the new API.

For each application thread, our code maintains four
data structures. These include INTERESTED.read, IN-
TERESTED.write, and INTERESTED.except, the sets
of descriptors designated via declare interest() as “inter-
esting” for reading, writing, and exceptions, respectively.
The other is HINTS, a FIFO queue of events posted by
the protocol stack for the thread.

A thread' s first call to declare interest() causes cre-
ation of its INTERESTED sets; the sets are resized as ne-
cessary when descriptors are added. The HINTS queue is
created upon thread creation. All four sets are destroyed
when the thread exits. When a descriptor is closed, it is
automatically removed from all relevant INTERESTED
sets.

Figure 4 shows the kernel data structures for an ex-
ample in which a thread has declared read interest in
descriptors 1 and 4, and write interest in descriptor 0.
The three INTERESTED sets are shown here as one-
byte bitmaps, because the thread has not declared interest
in any higher-numbered descriptors. In this example,
the HINTS queue for the thread records three pending
events, one each for descriptors 1, 0, and 4.

A call to declare interest() also adds an element to
the corresponding socket' s “reverse-mapping” list; this
element includes both a pointer to the thread and the
descriptor' s index number. Figure 5 shows the kernel



1 #define MAX_EVENTS 64
2 struct event_descr_t event_array[MAX_EVENTS];
3
4 main_loop(struct timeval timeout)
5 {
6 int i, n;
7
8 while (TRUE) {
9 n = get_next_event(MAX_EVENTS, &event_array, &timeout);

10 if (n < 1) {
11 DoTimeoutProcessing(); continue;
12 }
13
14 for (i = 0; i < n; i++) {
15 if (event_array[i].mask & EVENT_READ)
16 if (ListeningOn(event_array[i].fd))
17 InvokeAcceptHandler(event_array[i].fd);
18 else
19 InvokeReadHandler(event_array[i].fd);
20 if (event_array[i].mask & EVENT_WRITE)
21 InvokeWriteHandler(event_array[i].fd);
22 }
23 }
24 }
25
26 InvokeAcceptHandler(int listenfd)
27 {
28 int newfd, statemask;
29
30 while ((newfd = accept(listenfd, NULL, NULL)) >= 0) {
31 SetNonblocking(newfd);
32 declare_interest(newfd, EVENT_READ|EVENT_WRITE,
33 &statemask);
34 if (statemask & EVENT_READ)
35 InvokeReadHandler(newfd);
36 }
37 }

Fig. 3: Simplified example of how the new API might be used
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Control
Block
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INTERESTED.read
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INTERESTED.write

INTERESTED.except
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1 0 4

1  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0

Fig. 4: Per-thread data structures

data structures for an example in which Process 1 and
Process 2 hold references to Socket A via file descriptors
2 and 4, respectively. Two threads of Process 1 and
one thread of Process 2 are interested in Socket A, so
the reverse-mapping list associated with the socket has
pointers to all three threads.

When the protocol code processes an event (such as
data arrival) for a socket, it checks the reverse-mapping
list. For each thread on the list, if the index number is
found in the thread' s relevant INTERESTED set, then
a notification element is added to the thread' s HINTS
queue.

To avoid the overhead of adding and deleting the
reverse-mapping lists too often, we never remove a
reverse-mapping item until the descriptor is closed. This
means that the list is updated at most once per descriptor
lifetime. It does add some slight per-event overhead for
a socket while a thread has revoked its interest in that
descriptor; we believe this is negligible.

We attempt to coalesce multiple event notifications for
a single descriptor. We use another per-thread bitmap, in-
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Fig. 5: Per-socket data structures

dexed by file descriptor number, to note that the HINTS
queue contains a pending element for the descriptor. The
protocol code tests and sets these bitmap entries; they
are cleared once get next event() has delivered the cor-
responding notification. Thus, N events on a socket
between calls to get next event() lead to just one noti-
fication.

Each call to get next event(), unless it times out,
dequeues one or more notification elements from the
HINTS queue in FIFO order. However, the HINTS queue
has a size limit; if it overflows, we discard it and de-
liver events in descriptor order, using a linear search of
the INTERESTED sets – we would rather deliver things
in the wrong order than block progress. This policy
could lead to starvation, if the array max parameter to
get next event() is less than the number of descriptors,
and may need revision.

We note that there are other possible implementations
for the new API. For example, one of the anonymous re-
viewers suggested using a linked list for the per-thread
queue of pending events, reserving space for one list ele-
ment in each socket data structure. This approach seems
to have several advantages when the SO WAKEUP ONE
option is set, but might not be feasible when each event
is delivered to multiple threads.

7 Performance
We measured the performance of our new API using

a simple event-driven HTTP proxy program. This proxy
does not cache responses. It can be configured to use
either select() or our new event API.

In all of the experiments presented here, we gener-
ate load using two kinds of clients. The “hot” connec-
tions come from a set of processes running the S-Client
software [2], designed to generate realistic request loads,

characteristic of WAN clients. As in our earlier work [4],
we also use a load-adding client to generate a large num-
ber of “cold” connections: long-duration dummy con-
nections that simulate the effect of large WAN delays.
The load-adding client process opens as many as several
thousand connections, but does not actually send any re-
quests. In essence, we simulate a load with a given ar-
rival rate and duration distributionby breaking it into two
pieces: S-Clients for the arrival rate, and load-adding cli-
ents for the duration distribution.

The proxy relays all requests to a Web server, a single-
process event-driven program derived from thttpd [20],
with numerous performance improvements. (This is an
early version of the Flash Web server [17].) We take care
to ensure that the clients, the Web server, and the net-
work itself are never bottlenecks. Thus, the proxy server
system is the bottleneck.

7.1 Experimental environment
The system under test, where the proxy server runs, is

a 500MHz Digital Personal Workstation (Alpha 21164,
128MB RAM, SPECint95 = 15.7), running our modified
version of Digital UNIX V4.0D. The client processes run
on four identical 166Mhz Pentium Pro machines (64MB
RAM, FreeBSD 2.2.6). The Web server program runs on
a 300 MHz Pentium II (128MB RAM, FreeBSD 2.2.6).

A switched full-duplex 100 Mbit/sec Fast Ethernet
connects all machines. The proxy server machine has
two network interfaces, one for client traffic and one for
Web-server traffic.

7.2 API function costs
We performed experiments to find the basic costs of

our new API calls, measuring how these costs scale with
the number of connections per process. Ideally, the costs
should be both low and constant.



In these tests, S-Client software simulates HTTP cli-
ents generating requests to the proxy. Concurrently, a
load-adding client establishes some number of cold con-
nections to the proxy server. We started measurements
only after a dummy run warmed the Web server' s file
cache. During these measurements, the proxy's CPU
is saturated, and the proxy application never blocks in
get next event(); there are always events queued for de-
livery.

The proxy application uses the Alpha' s cycle counter
to measure the elapsed time spent in each system call; we
report the time averaged over 10,000 calls.

To measure the cost of get next event(), we used S-
Clients generating requests for a 40 MByte file, thus
causing thousands of events per connection. We ran tri-
als with array max (the maximum number of events de-
livered per call) varying between 1 and 10; we also varied
the number of S-Client processes. Figure 6 shows that
the cost per call, with 750 cold connections, varies lin-
early with array max, up to a point limited (apparently)
by the concurrency of the S-Clients.

For a given array max value, we found that varying
the number of cold connections between 0 and 2000 has
almost no effect on the cost of get next event(), account-
ing for variation of at most 0.005% over this range.

We also found that increasing the hot-connection
rate did not appear to increase the per-event cost of
get next event(). In fact, the event-batching mechanism
reduces the per-event cost, as the proxy falls further be-
hind. The cost of all event API operations in our imple-
mentation is independent of the event rate, as long as the
maximum size of the HINTS queue is configured large
enough to hold one entry for each descriptor of the pro-
cess.

To measure the cost of the declare interest() system
call, we used 32 S-Clients making requests for a 1 KByte
file. We made separate measurements for the “declar-
ing interest” case (adding a new descriptor to an INTER-
ESTED set) and the “revoking interest” case (removing
a descriptor); the former case has a longer code path.
Figure 7 shows slight cost variations with changes in the
number of cold connections, but these may be measure-
ment artifacts.

7.3 Proxy server performance
We then measured the actual performance of our

simple proxy server, using either select() or our new API.
In these experiments, all requests are for the same (static)
1 Kbyte file, which is therefore always cached in the Web
server' s memory. (We ran additional tests using 8 Kbyte
files; space does not permit showing the results, but they
display analogous behavior.)

In the first series of tests, we always used 32 hot
connections, but varied the number of cold connections
between 0 and 2000. The hot-connection S-Clients are

configured to generate requests as fast as the proxy sys-
tem can handle; thus we saturated the proxy, but never
overloaded it. Figure 8 plots the throughput achieved
for three kernel configurations: (1) the “classical” im-
plementation of select(), (2) our improved implementa-
tion of select(), and (3) the new API described in this
paper. All kernels use a scalable version of the ufalloc()
file-descriptor allocation function [4]; the normal version
does not scale well. The results clearly indicate that our
new API performs independently of the number of cold
connections, while select() does not. (We also found that
the proxy's throughput is independent of array max.)

In the second series of tests, we fixed the number of
cold connections at 750, and measured response time (as
seen by the clients). Figure 9 shows the results. When us-
ing our new API, the proxy system exhibits much lower
latency, and saturates at a somewhat higher request load
(1348 requests/sec., vs. 1291 request/sec. for the im-
proved select() implementation).

Table 2 shows DCPI profiles of the proxy server in the
three kernel configurations. These profiles were made
using 750 cold connections, 50 hot connections, and a
total load of 400 requests/sec. They show that the new
event API significantly increases the amount of CPU idle
time, by almost eliminating the event-notification over-
head. While the classical select() implementation con-
sumes 34% of the CPU, and our improved select() im-
plementation consumes 12%, the new API consumes less
than 1% of the CPU.

8 Related work
To place our work in context, we survey other invest-

igations into the scalability of event-management APIs,
and the design of event-management APIs in other oper-
ating systems.

8.1 Event support in NetBIOS and Win32
The NetBIOS interface[12] allows an application to

wait for incoming data on multiple network connections.
NetBIOS does not provide a procedure-call interface; in-
stead, an application creates a “Network Control Block”
(NCB), loads its address into specific registers, and then
invokes NetBIOS via a software interrupt. NetBIOS
provides a command's result via a callback.

The NetBIOS “receive any” command returns (calls
back) when data arrives on any network “session” (con-
nection). This allows an application to wait for arriving
data on an arbitrary number of sessions, without having
to enumerate the set of sessions. It does not appear pos-
sible to wait for received data on a subset of the active
sessions.

The “receive any” command has numerous limita-
tions, some of which are the result of a non-extensible
design. The NCB format allows at most 254 sessions,
which obviates the need for a highly-scalable implement-
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ation. The command does not allow an application to dis-
cover when a once-full output buffer becomes writable,
nor does it apply to disk files.

In the Win32 programming environment[10], the use
of NetBIOS is strongly discouraged. Win32 includes a
procedure named WaitForMultipleObjects(), declared as:

DWORD WaitForMultipleObjects(
DWORD cObjects,
// number of handles in handle array

CONST HANDLE * lphObjects,
// address of object-handle array

BOOL fWaitAll,
// flag: wait for all or for just one

DWORD dwTimeout
// time-out interval in milliseconds

);

This procedure takes an array of Win32 objects
(which could include I/O handles, threads, processes,
mutexes, etc.) and waits for either one or all of them
to complete. If the fWaitAll flag is FALSE, then the re-
turned value is the array index of the ready object. It is
not possible to learn about multiple objects in one call,
unless the application is willing to wait for completion
on all of the listed objects.

This procedure, like select(), might not scale very well
to large numbers of file handles, for a similar reason:

it passes information about all potential event sources
every time it is called. (In any case, the object-handle ar-
ray may contain no more than 64 elements.) Also, since
WaitForMultipleObjects must be called repeatedly to ob-
tain multiple events, and the array is searched linearly, a
frequent event rate on objects early in the array can starve
service for higher-indexed objects.

Windows NT 3.5 added a more advanced mechanism
for detecting I/O events, called an I/O completion port
(IOCP)[10, 21]. This ties together the threads mech-
anism with the I/O mechanism. An application calls
CreateIoCompletionPort() to create an IOCP, and then
makes an additional call to CreateIoCompletionPort()
to associate each interesting file handle with that IOCP.
Each such call also provides an application-specified
“CompletionKey” value that will be associated with the
file handle.

An application thread waits for I/O completion events
using the GetQueuedCompletionStatus() call:

BOOL GetQueuedCompletionStatus(
HANDLE CompletionPort,
LPDWORD lpNumberOfBytesTransferred,
LPDWORD CompletionKey,
LPOVERLAPPED *lpOverlapped,
DWORD dwMillisecondTimeout);

Upon return, the CompletionKey variable holds the



Classical Scalable New event
select() select() API

CPU % CPU % CPU % Procedure Mode
18.09% 33.01% 59.01% all idle time kernel

33.51% 12.02% 0.68% all kernel select or event functions kernel
13.78% N.A. N.A. soo select() kernel

9.11% N.A. N.A. selscan() kernel
8.40% N.A. N.A. undo scan() kernel
2.22% 12.02% N.A. select() kernel

N.A. 0.57% N.A. new soo select() kernel
N.A. 0.47% N.A. new selscan one() kernel
N.A. N.A. 0.40% get next event() kernel
N.A. N.A. 0.15% declare interest() kernel
N.A. N.A. 0.13% revoke interest() kernel

2.01% 1.95% 1.71% Xsyscall() kernel
1.98% 1.88% 1.21% main() user
1.91% 1.90% 1.69% doprnt() user
1.63% 1.58% 1.54% memset() user
1.29% 1.31% 1.47% read io port() kernel
1.11% 1.15% 1.20% syscall() kernel
1.09% 1.11% 1.11% XentInt() kernel
1.08% 1.06% 1.19% malloc() kernel

750 cold connections, 50 hot connections, 400 requests/second, 1KB/request

Table 2: Effect of event API on system CPU profile

value associated, via CreateIoCompletionPort(), with the
corresponding file handle. Several threads might be
blocked in this procedure waiting for completion events
on the same IOCP. The kernel delivers the I/O events
in FIFO order, but selects among the blocked threads in
LIFO order, to reduce context-switching overhead.

The IOCP mechanism seems to have no inherent lim-
its on scaling to large numbers of file descriptors or
threads. We know of no experimental results confirming
its scalability, however.

Once a handle has been associated with an IOCP,
there is no way to disassociate it, except by closing the
handle. This somewhat complicates the programmer' s
task; for example, it is unsafe to use as the Completion-
Key the address of a data structure that might be realloc-
ated when a file handle is closed. Instead, the applica-
tion should use a nonce value, implying another level of
indirection to obtain the necessary pointer. And while
the application might use several IOCPs to segregate file
handles into different priority classes, it cannot move a
file handle from one IOCP to another as a way of adjust-
ing its priority.

Some applications, such as the Squid proxy[5, 18],
temporarily ignore I/O events on an active file descriptor,
to avoid servicing data arriving as a lengthy series of
small dribbles. This is easily done with the UNIX se-

lect() call, by removing that descriptor from the input
bitmap; it is not clear if this can be done using an IOCP.

Hu et al.[11] discuss several different NT event dis-
patching and concurrency models in the context of a Web
server, and show how the server' s performance varies
according to the model chosen. However, they did not
measure how performance scales with large numbers of
open connections, but limited their measurements to at
most 16 concurrent clients.

In summary, the IOCP mechanism in Windows NT is
similar to the API we propose for UNIX, and predates
our design by several years (although we were initially
unaware of it). The differences between the designs may
or may not be significant; we look forward to a careful
analysis of IOCP performance scaling. Our contribution
is not the concept of a pending-event queue, but rather its
application to UNIX, and our quantitative analysis of its
scalability.

8.2 Queued I/O completion signals in POSIX
The POSIX[16] API allows an application to request

the delivery of a signal (software interrupt) when I/O is
possible for a given file descriptor. The POSIX Realtime
Signals Extension allows an application to request that
delivered signals be queued, and that the signal handler
be invoked with a parameter giving the associated file



descriptor. The combination of these facilities provides
a scalable notification mechanism.

We see three problems that discourage the use of sig-
nals. First, signal delivery is more expensive than the
specialized event mechanism we propose. On our test
system, signal delivery (for SIGIO) requires 10.7 usec,
versus about 8.4 usec for get next event() (see figure 6),
and (unlike get next event()) the signal mechanism can-
not batch notifications for multiple descriptors in one
invocation. Second, asynchronous invocation of hand-
lers implies the use of some sort of locking mechanism,
which adds overhead and complexity. Finally, the use of
signals eliminates application control over which thread
is invoked.

8.3 Port sets in Mach
The Mach operating system[24] depends on message-

based communication, using “ports” to represent mes-
sage end-points. Ports are protected with capability-like
“send rights” and “receive rights.” All system opera-
tions are performed using messages; for example, vir-
tual memory faults are converted into messages sent to
the backing-store port of the associated memory object.
Other communication models, such as TCP byte streams,
are constructed on top of this message-passing layer.

Each port has a queue of pending messages. A thread
may use the msg receive() system call to retrieve a mes-
sage from the queue of a single port, or wait for a mes-
sage to arrive if the queue is empty.

A thread with receive rights for many ports may cre-
ate a “port set”, a first-class object containing an arbit-
rary subset of these receive rights[7]. The thread may
then invoke msg receive() on that port set (rather than on
the underlying ports), receiving messages from all of the
contained ports in FIFO order. Each message is marked
with the identity of the original receiving port, allowing
the thread to demultiplex the messages. The port set ap-
proach scales efficiently: the time required to retrieve a
message from a port set should be independent of the
number of ports in that set.

Port sets are appropriate for a model in which all com-
munication is done with messages, and in which the sys-
tem provides the necessary facilities to manage message
ports (not necessarily a simple problem[7]). Introducing
port sets into UNIX, where most communication follows
a byte-stream model, might require major changes to ap-
plications and existing components.

9 Future work
The select() mechanism can be confusing in multi-

threaded programs, especially on multiprocessors. Be-
cause select() returns the state of a descriptor, instead
of an event notification, two threads blocked in se-
lect() could awaken at the same time, and would need
additional synchronization to avoid handling the same

descriptor. Our event-based API should make writing
threaded applications more natural, because (with the
SO WAKEUP ONE option described in Section 4) it de-
livers each event at most once. We have not yet explored
this area in detail.

Our existing API requires each thread in a process to
call declare interest() for each descriptor that it is inter-
ested in. This requirement might add excessive overhead
for a multi-threaded program using a large pool of inter-
changeable worker threads. We could augment the API
with another system call:

int declare_processwide_interest(int fd,
int interestmask,
int *statemask);

The result of this system call would be the equivalent
of invoking declare interest() in every existing and future
thread of the calling process. (It might also implicitly set
SO WAKEUP ONE for the descriptor.) After this call,
any thread of the process could wait for events on this
descriptor using get next event().

An application handling thousands of descriptors
might want to set event-delivery priorities, to control the
order in which the kernel delivers events. In another pa-
per [3], we introduced the resource container abstrac-
tion, which (among other benefits) allows an application
to set kernel-level priorities for descriptor processing. In
that paper we showed how an event-based API, such as
the one presented here, is a useful component of end-to-
end priority control in networked applications. We look
forward to gaining experience with the combination of
priority control and an event-based API in complex ap-
plications.

10 Summary
We showed that the scalability of an operating sys-

tem's event notification mechanism has a direct effect on
application performance scalability. We also showed that
the select() API has inherently poor scalability, but that
it can be replaced with a simple event-oriented API. We
implemented this API and showed that it does indeed im-
prove performance on a real application.
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