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Abstract 
 
LOCKSS (Lots Of Copies Keep Stuff Safe) is a 
prototype of a system to preserve access to scientific 
journals published on the Web. It is a majority-voting 
fault-tolerant system that, unlike normal systems, has 
far more replicas than would be required just to survive 
the anticipated failures. We are exploring techniques 
that exploit the surplus of replicas to permit a much 
looser form of coordination between them than 
conventional fault-tolerant technology would require. 

1. Introduction 

In a classic paper Leslie Lamport[lamport] set out the basis 
for building a distributed system with n replicas which 
could tolerate f faults, where f = �(n-1)/3� , by having 
the replicas vote in "elections" to decide the system's 
behavior. 

We describe work in progress to develop a solution to 
an important real-world problem, the preservation for 
future generations of scientific, technical and medical 
(STM) journals published on the web. Any system 
guaranteeing long-term preservation of information 
must tolerate faults such as disk crashes, network 
outages and malicious attacks. Certain special 
characteristics of this problem mean that in our case n 
is much greater than 3f+1. The large number of replicas 
allows us to try a somewhat different approach to fault-
tolerance. If the classic approach is analogous to 
elections, our approach is analogous to opinion polls. 

We start by outlining the problem and generating 
requirements for a solution. We show how these 
requirements led to a design for which n >> 3f+1. We 
describe the design in some detail and provide a brief 
report on the status of the implementation. We compare 
our approach with related work and assess its strengths 
and weaknesses. We conclude by speculating about the 
usefulness of similar techniques to other applications 
for which large numbers of replicas are appropriate. 

2. The Problem 
 
In most respects the Web is a far more effective 
medium for scientific, technical and medical (STM) 
communication than paper. Stanford Library's 
Highwire Press[highwire] led the transition of STM 
publishing from paper to the Web and now publishes 
the on-line editions of about 180 of the top STM 
journals. They pioneered techniques such as datasets in 
spreadsheets behind graphs, dynamic lists of citing 
papers, e-mail notification of citing papers and so on. 
These, added to the basic hyperlinks and searchability, 
make the Web versions both easier to access and more 
useful when accessed than the paper ones. Web 
versions frequently appear earlier and contain much 
more information. Many journals now publish some 
papers only on the Web. 

Librarians have a well-founded confidence in their 
ability to provide their readers with access to material 
published on paper, even if it is centuries old. 
Preservation is a by-product of the need to scatter 
copies around to provide access. Librarians have an 
equally well-founded skepticism about their ability to 
do the same for material published in electronic form. 
Preservation is totally at the whim of the publisher. 

A subscription to a paper journal provides the library 
with an archival copy of the content. Subscribing to a 
Web journal rents access to the publisher's copy. The 
publisher may promise "perpetual access", but there is 
no business model to support the promise. Recent 
events have demonstrated that major journals may 
vanish from the Web at a few months notice. 

This poses a problem for librarians, who subscribe to 
these journals in order to provide both current and 
future readers with access to the material. Current 
readers need the Web editions. Future readers need 
paper; there is no other way to be sure the material will 
survive. 



The transition to the Web will not be complete until 
librarians are willing to buy Web-only subscriptions. 
To do so they need confidence in their ability to 
provide their readers with long-term access to the 
content they are buying. The problem is in three parts: 

• The bits themselves must be preserved. All digital 
storage media have a limited lifetime; the bits need 
to migrate from one medium to another over time. 
In practice it is difficult to fund a bulk copying 
effort when a medium starts decaying, so all but 
the most valuable bits are lost at each transition[bit-

rot]. 

• Access to the bits must be preserved. Suppose a 
reader clicks on a link 20 years from now that 
doesn't resolve because the only copy is now on a 
CD in a secure store. Whom does the reader call to 
get the CD from the store into a specially preserved 
CD drive? Unless links to pages continue to 
resolve, the material will effectively be lost 
because no-one will have the knowledge or 
patience to retrieve it. 

• The ability to parse the bits, once accessed, into 
human-readable form must be preserved[format]. 

It is important to observe that there can be no single 
solution to this problem. A single solution of itself 
would be perceived as vulnerable. By proposing one 
solution we are not arguing that other solutions should 
not be developed and deployed. Diversity is essential to 
successful preservation. 

3. Requirements 

Librarians' technique for preserving access to material 
published on paper has been honed over the years since 
415AD, when much of the world's literature was lost in 
the destruction of the Library of Alexandria[alexandria]. 
Their method may be summarized as: 

Acquire lots of copies. Scatter them around the 
world so that it is easy to find some of them and 
hard to find all of them. Lend or copy your copies 
when other librarians need them. 

In this context, note the distinction between archives, 
which we are not discussing, and general circulating 
collections, which we are: 

• The goal of an archive is preservation, typically of 
material that is unique and/or impossible to 
replicate widely. Access is restricted via locked 

stacks, access logs and so on to ensure 
preservation. 

• The goal of a circulating collection is access, 
typically to replicas of material that is widely 
copied. Risks are taken with preservation to 
achieve access. Copies are on open shelves and are 
loaned to readers on a promise that they will 
eventually be returned. 

Libraries' circulating collections form a model fault-
tolerant distributed system. It is highly replicated, and 
exploits this to deliver a service that is far more reliable 
than any individual component. There is no single point 
of failure, no central control to be subverted. There is a 
low degree of policy coherence between the replicas, 
and thus low systemic risk. The desired behavior of the 
system as a whole emerges as the participants take 
actions in their own local interests and cooperate in ad-
hoc, informal ways with other participants. 

If librarians are to have confidence in an electronic 
system, it will help if the system works in a familiar 
way. The fundamental requirement for LOCKSS (Lots 
Of Copies, Keep Stuff Safe)[lockss] was, therefore, to 
model their techniques as closely as possible for 
material published on the Web. 

If libraries can take physical custody of the journals 
they purchase, in a form that preserves access for their 
readers, they can assume the responsibility for their 
future. If a library takes custody of a copy of the Web 
journal, the copy can behave as a Web cache and 
provide access whether or not it is available from the 
original publisher. If many libraries do so, the caches 
can communicate with each other to increase the 
reliability and availability of the service, as inter-library 
loan increases the reliability and availability of access 
to information on paper. 

Another way of looking at a system of spreading copies 
of Web journals around the world is that the librarians 
running the system are buying insurance for their 
journal subscriptions. What are the librarians insuring 
against? Reasons why their readers would lose access 
to a journal include: 

• Failure to renew a subscription, for example 
because of budget cuts or a price increase by the 
publisher. 

• Change of policy by the publisher, for example 
because a not-for-profit journal was taken over by 
a for-profit publisher. 



• A publisher going out of business. 

• Incompetent or careless management of the 
publisher's web service. 

In all these cases the symptoms are either a refusal by 
DNS to resolve the name in the link URL or a refusal 
by the server named to supply the content. 

Libraries have to trade off the cost of preserving access 
to old material against the cost of acquiring new 
material. They tend to favor acquiring new material. To 
be effective, subscription insurance must cost much less 
than the subscription itself. 

The biggest journal Highwire publishes generates about 
6GB/year. A cheap PC to hold 5 years' worth might 
cost $600 today, which is about 10% of the 
subscription for the 5 years. If the running costs of the 
system can be kept low enough, it should now be 
practical for many libraries to maintain their own 
copies. The prospects for this insurance improve as 
equipment prices fall and subscription prices rise[disk-cost]. 

In this context, Open Source development is crucial: 

• The goal of the project is to inspire confidence. It 
is hard to have well-founded confidence in a 
system whose operations are kept secret. 

• The system's economics mandate free distribution 
of the software; there’s barely a budget for the 
hardware. 

• The longevity of the system will require many 
generations of programmers to refine it as 
problems are encountered. 

4. Implications 
 
Conventional replicated fault-tolerant systems are 
designed around the question "how few replicas are 
needed to survive the anticipated failures?" This 
required number of replicas, perhaps 5, are then 
organized into a tightly administered system. 

To solve our problem, each library wanting to insure 
their subscription must take custody of a copy of the 
Web journal in question. If the system is successful 
there will be many more replicas than needed to survive 
the expected failures. There may be hundreds. It isn't 
possible to administer hundreds of systems, each under 
the control of a separate institution, as tightly as the 
small number of replicas under centralized 

administration in a conventional fault tolerant system. 
Nor is it efficient to have hundreds of systems 
participate in every operation of a distributed system in 
order to survive the failure of a tiny fraction of them. 

In the real world there is no authority controlling 
libraries. Anyone can claim to be a library. Individual 
librarians assess the credibility of such claims on the 
basis of experience. They are suspicious of the long-
term dependability even of neighboring libraries whose 
bona fides are not in question. Creating tightly 
controlled long-term cooperative efforts in this 
environment is not effective. LOCKSS therefore needs 
to trade off its surplus of replicas for a looser form of 
cooperation among the replicas. 

5. Design 
 
The design goal for LOCKSS is to provide librarians 
with a cheap and easy way of running Web caches 
which pre-load the journals they subscribe to, preserve 
them for posterity by never flushing the cache, and 
serve their pages to the library's readers if the publisher 
does not. The design falls into three parts: 

• Pre-loading the cache as new issues of the journals 
are published. 

• Ensuring that readers can access the journals from 
the publisher or from the cache. 

• Preserving the contents of the cache. 

The design takes advantage of some unusual features of 
the Web editions of STM journals: 

• The peer-review system requires that the articles 
are immutable once published. The history of 
publishing on paper has reinforced this feature. 

• The web site for a journal has a logical structure, 
with directories for each volume, each issue within 
the volume, articles within the issue, and so on. 

• New content is published on a fairly regular cycle 
that may be weekly or monthly, not hourly. 

It should be emphasized that we are not designing a 
general-purpose Web content preservation system. 
LOCKSS is designed to preserve only journals 
published by Highwire; we are in control of both ends 
of the process and could if necessary alter the HTML 
Highwire generates to make preservation easier. It may 
be possible to apply the system to other types of 



content, but that is not at present a design goal. 
LOCKSS is clearly not suitable for volatile content. 

It should also be emphasized that we are describing 
work in progress. As this paper is being written we are 
preparing the prototype for the system's first major test, 
using a small group of libraries and a single journal. 
We expect the design to evolve as we gain experience. 

5.1. Collecting 
 
A librarian instructs an instance of LOCKSS to 
preserve a volume of a journal by providing the 
publisher’s root URL for the volume and a frequency of 
publication, say monthly. At that frequency a web-
crawler starts from the root URL and fetches all new 
pages within that sub-tree. The publisher’s web server 
sees this access as coming from an authorized IP 
address, so it is allowed. Note that we don’t depend on 
readers accessing the material to populate the cache. 

This is off-the-shelf technology; we currently use the 
w3mir crawler[w3mir], which is written in Perl and easy to 
adapt to our needs. The only change needed was an 
interlock with the cache preservation code, to prevent 
content being checked while it was being collected. 

5.2. Serving 
 
This is also off-the-shelf technology. The prototype 
uses the Apache[apache] web server to export the contents 
of each cache to the local network’s users. 

Tighter integration with the cache management code 
will be needed in the future to support the code that 
prevents the publisher's access control system being 
subverted [see 6.3.2]. At that point we expect to switch 
to a simple HTTP server in Java, which can check the 
cache manager's internal data structures to determine if 
accesses are appropriate. 

5.3. Preserving 
 
The heart of LOCKSS is the process by which caches 
cooperate to detect and repair damage. The caches 
communicate using an IP multicast protocol to discover 
which URLs should exist and what their contents 
should be. This protocol runs continually but very 
slowly between all the caches. If a cache discovers a 
missing or damaged URL it can fetch a new copy via 
HTTP from the original publisher, or from one of the 
other caches. Care has to be taken not to subvert the 
publisher's access control mechanism; content should 
only be delivered to sites that have rights to it. 

The process works this way. A cache will notice that a 
part of the material it is preserving has gone long 
enough without being checked. It will multicast a call 
for a poll to decide the value of the message digest of 
the sub-tree below the directory representing that part. 
Other caches hearing the call will compute their digests 
and reply. The caches hearing the replies will tally the 
poll. If they are on the winning side their cache is 
intact. If they are on the losing side, their cache 
contains some damage. The damage is located by: 

• Calling a poll to determine the set of names in the 
directory representing the part containing damage. 

• Calling a poll on the message digest of the sub-tree 
below each name. 

The process descends the tree until it finds files instead 
of directories. If the digests agree the file is intact. If 
not the file is damaged and a new copy is fetched1. The 
enumeration of the names in the directories also finds 
any extra names, which are removed, and any missing 
names, which cause the corresponding file or sub-tree 
to be fetched. 

6. Protocol 

We describe the protocol from the bottom up, starting 
with the basic polling mechanism, then the different 
types of polls, and then the policies that string the polls 
together. 

6.1. Elections & Polls 
 
We call the inter-cache protocol LCAP [Library Cache 
Auditing Protocol]. The design was inspired by 
Scalable Reliable Multicast (SRM)[srm], a peer-to-peer 
reliable multicast protocol whose importance for LCAP 
is its use of random timeouts to run a "sloppy" form of 
election. 

All participants in SRM subscribe to and multicast 
packets to a single IP group address. If a missing packet 
is detected, a request is multicast for the packet to be 
re-transmitted. If a request is received for re-
transmission of a packet that has been received a 
random timer is started. If a re-transmission of that 
packet is received while the timer is running, the timer 
is cancelled. Otherwise when the timer expires the 
packet is re-transmitted to the group address. 

                                                 
1 In production, we’ll be more careful. Files won’t be 

overwritten or removed but moved to a backup tree. 



This random timeout mechanism is used to elect a 
participant to perform the re-transmission. It is not a 
perfect mechanism; sometimes failing to elect anyone 
and sometimes electing more than one. If no one is 
elected, the requester times out and tries again. If  more 
than one is elected, the repair is re-transmitted more 
than once, wasting bandwidth but doing no other harm. 

In practice the "sloppy election" mechanism is very 
effective in those cases where delays several times the 
length of a packet round-trip are tolerable. It is 
statistically very likely to elect a single participant. It 
has built-in load balancing, electing a participant at 
random. It tolerates faults; if the participant with the 
shortest random delay fails before transmitting its 
repair another will take its place. For our purposes these 
multicast, random timeout based "sloppy elections" 
have many attractive features: 

• Each election selects its own electorate; there is no 
configuration database to maintain in a consistent 
state. 

• They load-balance automatically. If there are more 
than enough potential voters the actual voters will 
be chosen at random. 

• The elections survive lost packets very well. 

In the real world elections are tightly controlled and 
very expensive procedures. A register of electors must 
be maintained, with rigorous procedures for qualifying 
those who may vote. Voters have to identify themselves 
at the polls. Long experience has led to many 
precautions against fraud. 

Opinion polls have none of this overhead yet almost 
always predict the result of an election correctly. They 
do require careful attention to sampling and question 
design, but because they don't need the administrative 
structures nor the mass participation of a real election 
they are much cheaper and quicker. 

LOCKSS uses a variant of the SRM "sloppy election" 
technique to implement something akin to an opinion 
poll. The caller of a poll announces: 

• the subject of the poll, the URL to which it applies, 
and 

• a hurdle for the poll, the number of agreeing votes 
needed to make it valid, and 

• a duration for the poll, setting the time that will 
elapse before the votes will be tallied, and 

• a challenge for the poll, a random string that is 
prepended to the data to be digested. 

These values appear in the header of each packet sent 
as part of a poll. 

A participant receiving a call chooses a random delay 
in the duration when it plans to vote. The voter chooses 
a random verifier string, prepends the challenge and the 
verifier to the data, and computes a message digest. 
When the timer expires it multicasts the remaining 
duration, the challenge, the verifier and the message 
digest. The challenge and the verifier prevent replays 
and force each voter to prove that they have the content 
in question at the time of the poll. 

Votes are tallied at each participant receiving them by 
prepending the challenge and the verifier from the vote 
to the local copy of the data and computing the 
message digest. If this digest matches the one in the 
vote it is an agreeing vote, otherwise it is a disagreeing 
vote. 

A participant receiving more than the hurdle number of 
agreeing votes before their timer expires can, if the 
agreeing votes are the majority, decide that there is no 
need to vote and cancel the timer2. In determining that 
it agrees with the majority it will have checked its local 
copy. There’s no harm in voting unnecessarily, but 
participants need not tally excess votes. 

There's no "electoral register" determining who can and 
cannot vote. If a cache has a copy of the data in 
question it can vote, because it is doing the job of 
preserving access to the data. This models the real 
world; there is no authority deciding who is qualified to 
be a library. 

6.2. Operations 
 
The cache consistency checking process uses two 
different types of polls: 

• A compare poll asks voters to compute the 
message digest of the challenge, their verifier and 
the data in the sub-tree below the subject URL. 

                                                 
2 In practice the timer is not cancelled but suspended, in 
case of a late rush of disagreeing votes, see 7.2.4. 



• An expand poll asks voters to compute the 
message digest of the challenge, their verifier and 
the set of names in the directory named by the 
subject URL. Voters in an expand poll also send 
the set of names in their directory. 

A participant tallying a compare poll will either: 

• Agree with the majority, in which case nothing 
need be done. It has been established that the 
system as a whole is storing at least the hurdle 
number of good copies. 

• Disagree with the majority, in which case part or 
all of the local copy of the sub-tree named by the 
subject is bad. The participant chooses a random 
timeout and, if another participant has not already 
done so, calls an expand poll on the subject URL. 

A participant tallying an expand poll counts the number 
of votes for each set of names. The set with the most 
votes, provided it reaches the hurdle, is the winner. The 
participant then compares the winning set with their set: 

• Names in the local set but not in the winning set 
need to be removed. 

• Names in the winning set but not in the local set 
need to be fetched. 

• Names in both sets need to be compared. For each 
such name the participant chooses a random 
timeout. When it expires, provided some other 
participant has not already done so, the participant 
calls a compare poll on the name. 

In this way the checking process walks the directory 
tree to locate and repair damage. 

6.3. Policies 
 
The system depends on a number of parameterized 
policies.  Over time, our experience with the system 
will determine if the current set of policies and the 
corresponding parameter values are adequate.  

6.3.1. Rate Limits & Poll Durations 
 

Before we started implementing LOCKSS we expected 
it to run very slowly just because there was no need for 
speed. Two things changed this: 

• Voting in a top-level poll takes a long time simply 
because top-level polls typically check an entire 
issue of a journal, which will range between a few 
hundred megabytes to a few gigabytes. The voter 
needs to compute the message digest of all this 
data once for its own vote, and once for each other 
vote it checks. The data will normally be hashed 
about the hurdle number of times. The obsolete 
100-200MHz PCs we're using can take an hour or 
two to do this for our test journal. 

• Integrity considerations [see 7.2.2] imply running 
as slowly as possible is important. The system must 
run fast enough to compare cached data on average 
several times between losses, but no faster.  

While the need to compute message digests makes top-
level polls take a long time, polls checking an 
individual file could happen much more quickly. The 
caller of a poll decides on a duration by measuring how 
long it takes to compute its own digest, multiplying by 
the hurdle number it chooses, and by a safety factor. 
The system limits bandwidth consumption by imposing 
a minimum duration for polls. 

6.3.2. Access Control 
 
Each time a cache votes on the winning side it is 
demonstrating that it has a good copy of the sub-tree in 
question. Caches remember the winning votes they hear 
in compare polls for some time, longer than the 
expected time between failures. They will provide 
repairs only to caches they remember having voted on 
the winning side in a poll for the corresponding sub-
tree. 

In this way they avoid subverting access control. The 
only way to get a copy other than from the publisher is 
to have shown in the recent past that you used to have a 
copy. At some point this recursion arrives at a copy that 
came from the publisher, and thus satisfied at that time 
the publisher's access control restrictions. 

6.3.3. Maintaining Redundancy 

If polls of a given sub-tree consistently fail to reach the 
hurdle number, this signifies that there aren't enough 
copies being preserved and the content is at risk. At this 
stage we believe it is appropriate to notify the people 
running the system, who can arrange for more copies to 
be created. At a later stage it might be possible to have 
LOCKSS instances keep a reserve of disk space in 
which they can store copies of at-risk material while 
people cope with the situation. 



7. Integrity 

So far, we have described a system in an ideal world 
without malicious participants. Alas, even libraries 
have enemies[enemies]. Governments and corporations have 
tried to rewrite history. Ideological zealots have tried to 
suppress research of which they disapprove. We have 
to assume that bad guys will try to subvert LOCKSS if 
it gets deployed. 

7.1. Conventional Approaches 
 
One approach to preventing the bad guy rewriting 
history that is often suggested is to have the publishers 
sign the articles they publish. Readers could then check 
the signature to determine that the document had not 
been modified since it was signed. We encourage 
publishers to sign articles (they don't at present) but 
even if they did it wouldn't guarantee preservation: 

• For the future reader to get an article, access to it 
has to be preserved. Signing the articles helps to 
verify a copy as authentic once one is obtained, but 
doesn't help to get a copy in the first place. 

• For the future reader, or cache, to be able to check 
the signature on an article and verify that their 
copy is authentic they have to obtain the 
publisher's certificate, check that a trusted 
Certificate Authority has signed it, and that it 
hasn’t been revoked. This reduces the problem of 
preserving access to information under the 
librarians' control (the articles) to the problem of 
preserving access to smaller units of information 
outside the librarians' control (the certificates). 
There's no guarantee that the Certificate Authority 
will survive the many decades of our timescale. 

• The validity of the signature depends on the 
publisher's private key being kept secret, and on 
the encryption and hash algorithms involved 
remaining unbroken. Neither is very likely over 
our timescale. 

Although certificates and signatures are not useful over 
the long term it is certainly possible to design a system 
for preserving access in which they are used only over 
limited periods of time. 

Suppose an institution is established which decides 
from time to time which other institutions are eligible 
and competent to take part in the preservation effort. It 
would maintain a registry of certificates a participant 
could use to decrypt and validate communications from 

other participants. This system need not use multicast 
communication, it would have a rendezvous point 
similar to the Service Location Protocol's daemon[slp]. 
Participants would use this to locate one another. As 
institutions were subverted or failed to maintain 
adequate standards of preservation the registry would 
be updated to delete or revoke their certificates. 

Again, the problem of preserving access to information 
under the librarians' control has been reduced to the 
problem of preserving smaller units of information 
outside the librarians' control. Only this time the design 
has a single point of failure, the registry. Once the bad 
guy has subverted the registry the entire system is 
compromised. 

The fundamental weakness of conventional approaches 
is that they divide guys into good and bad by having 
some external authority place white or black hats on 
them. A guy with a white hat is free to subvert the 
system. Just because an institution is a library, it doesn't 
mean that everyone will, or should trust it. A university 
library in Greece might, for example, regard a 
university library in Turkey, as a reliable source of 
information about chemistry but unreliable on the 
topics of Aegean geography or Kurdish history. 
Equally, just because some years ago a library was 
trustworthy, that doesn't mean they're trustworthy now. 
The government funding the library may have been 
replaced with a less scrupulous one. 

7.2. Alternative Approach 
 
The approach we're experimenting with in LOCKSS is 
to divide guys into good and bad by observing and 
remembering their behavior over a period of time. For 
our purposes, a good guy is one who: 

• maintains a good copy of the journal content, 

• votes in polls to prove that the copy is good and to 
help others prove that their copies are good too, 

• remembers that others have voted in the majority 
for a long time, 

• and supplies good copies to others when requested 
to repair damage. 

A bad guy is one who, among many potential crimes: 

• votes too early or too often, 

• votes on the losing side of too many polls, 



• fails to verify their vote on request, 

• or supplies bad copies to others. 

Note that these are all public actions, observed by 
others. 

7.2.1. Maintaining a Reputation 

Its not important for the functioning of LOCKSS that a 
participant actually be a library, only that the 
participant exhibit the behavior of a library over a 
period of time. Because LCAP is a peer-to-peer 
multicast protocol, the behavior of each participant is 
visible to the others. They can observe, remember and 
make their own estimates of the participant's reliability. 

This system has many analogies to "reputation 
mechanisms" in on-line game environments like Ultima 
Online[ultima]. Just as in our case, there's no way of 
knowing "who a participant really is". Indeed, part of 
the attraction of the game is that players can experiment 
with multiple identities. The avatar of a particular 
identity carries a reputation based on its recent actions 
as observed by other avatars. A bad reputation can be 
cleaned up over time by performing actions others 
judge as laudable. Note, however, that games maintain 
a central registry of avatars’ reputations. In the 
LOCKSS model there is no central registry, each 
"player" maintains its own registry of other players’ 
reputations. 

7.2.2. Running Slowly 

Recent actions have higher weight in determining 
credibility than ancient ones, reflecting the fact that bad 
guys can reform, and that good guys can be subverted. 
The latter observation leads to the interesting 
conclusion that the system must be designed to run 
extremely slowly, both in the sense of wall-clock time, 
and the number of operations needed to make a 
significant change to the cached information: 

• Running very slowly limits the damage that a guy 
who turns bad can do while he retains a reputation 
based on his actions before he was subverted. 

• Running very slowly means that in order to do 
significant damage a guy must persist in taking bad 
actions over a long period of time. If a bad guy 
calls your telephone, your goal should be to 
prolong the conversation. This allows law 
enforcement to track the offender down. In our 
case the system requires the bad guy to take actions 

that are both public and obviously bad over a long 
period of time, allowing the good guys time for 
location and dissuasion. No system can be immune 
from penetration; systems should be designed to 
slow the bad guy's progress and limit the potential 
damage. 

• It is easy to mount a denial of service attack against 
any multicast protocol. Forcing the protocol to run 
very slowly makes these attacks unattractive to the 
bad guy. Sending lots of bogus packets to the 
LOCKSS IP multicast group address will cause 
polls underway to fail to reach the hurdle and 
prevent new ones being called. But as soon as the 
flood stops the system reverts to normal operation. 
Preventing the system achieving its goal of long-
term preservation requires the bad guy to flood the 
group for years on end. 

7.2.3. Detecting Bad Guys 

If no bad guys are active and no participants are losing 
data, top-level compare polls will be taking place 
infrequently, and each will be a landslide. To maintain 
credibility, participants must vote on the winning side 
in these polls. Doing so is hard work; it requires the 
voter to compute message digests of hundreds of 
megabytes of data several times over. This is a good 
thing: 

• It achieves the goal of making the system run 
slowly in wall-clock terms. 

• It provides the system with some inertia and 
requires the bad guy to invest a lot of effort before 
he can make an impact on its behavior. 

• It makes sure each participant's reputation 
information is up-to-date. This allows the 
credibility of inactive or subverted participants to 
decay quickly, limiting the amount of damage 
subversion can do. 

If no bad guys are active but occasionally participants 
lose data, polls will descend the tree on occasion and 
some will have a few dissenting votes. This is the 
normal behavior of the system. 

The structure of a typical journal web site places many 
intermediate directories between the root and the actual 
journal articles. It takes many polls to descend from the 
root to an actual article the bad guy might target. If 
polls are observed close to the leaves of the tree in 
which the result is close, or even where there are 



substantial numbers of dissenters, one or more bad guys 
are active. The people running the participants can take 
measures to stamp them out. 

7.2.4. Preventing Fraud 

Each participant in a poll verifies a proportion of the 
votes they tally to help prevent fraud. Very few votes 
are verified if the poll is a landslide; the proportion 
rises as the poll becomes an even contest. 

The verifier in the vote is actually the digest of a 
random string that the voter keeps private. The tallier 
verifies the vote by unicasting a verification request to 
the sending address in the vote naming the subject and 
the challenge. The voter replies with the subject, the 
challenge and a string whose message digest is the 
verifier in their vote. Voters failing to verify one of 
their votes after several attempts lose credibility 
quickly; it is likely that they are being spoofed. 

7.2.5. Advantages 

This system is strong in some unusual ways: 

• There is no central coordination point that can be 
attacked. Each participant is independent; acting in 
its own interests, trusting others only as far as 
necessary and no further than experience shows 
them to deserve trust. The design goal is that the 
only way to subvert the system would be to subvert 
a majority of the participants. 

• The system makes as few demands on the 
infrastructure as possible. It doesn't depend on 
services such as the Domain Name System, or a 
Public Key Infrastructure or some mythical Library 
Certification Organization. All that's needed is for 
the underlying network to route IP unicast and 
multicast datagrams. 

• It doesn't depend on preserving any meta-
information. Provided enough participants preserve 
the journal articles themselves, a site can corrupt or 
lose any or all of its information. The more it does, 
the less its credibility will be among the other 
participants for a while. 

• It doesn't depend on keeping anything secret for 
any length of time, especially not passwords or 
encryption keys. Voters need to keep the string that 
generated their verifier secret for the length of the 
poll, but this is all. 

• It doesn’t depend on encryption or hash algorithms 
resisting attack, because it doesn't use encryption. 
It does use a hash algorithm during a poll, but this 
need resist attack only for the duration of enough 
polls to build or destroy a reputation. 

• By operating slowly even on human timescales the 
system makes it easier to detect an attacker and 
limits the damage he can do before being stopped. 

8. Implementation 
 
The prototype's implementation of the LCAP protocol 
is in Java. It makes heavy use of threads to maintain the 
context for ongoing polls, and to ensure that time-
consuming operations like computing the message 
digest of a few hundred megabytes of journal data don't 
interfere with other tasks. The source will be released 
under a Stanford equivalent of the U.C. Berkeley 
license. 

It uses SHA-1[digest]  as the message digest function, 
combined with a filter that parses the HTML of an 
article to isolate the part that represents the text the 
authors wrote. This is necessary because successive 
fetches of a given article from Highwire do not return 
exactly the same bytes: 

• Some journals place advertisements on their pages; 
the advertising system selects different ads at 
different times. 

• Some features of the article presentation, such as 
the list of citing articles, change over time. 

The current filter is rather crude, more sophisticated 
versions will be needed before the system goes into 
production. 

9. Production Use 
 
When LOCKSS gets into production, librarians will 
have to install new instances, manage them through 
their useful life and replace them when they fail or fill 
up. 

9.1. Installation 

For the prototype, we are developing an installation 
process based on the Linux Router Project's[lrp] 
distribution. The librarian will download the image of a 
generic boot floppy disk, boot it, answer a few 
configuration questions and then choose an option that 
re-writes the floppy disk into a configured boot floppy 



for the new system. This will be write-locked and used 
to boot the system in production. 

Each time the system boots it will start with a clean, 
known-good system image in RAM-disk. It will then 
download, install and run the LOCKSS code. The only 
data on the hard disk that survives across reboots will 
be the cache contents and meta-data. 

9.2. Management 

One major goal of the initial tests is to provide the 
information needed to design a management interface 
for the system. We don't yet understand what librarians 
will need in order to understand and have confidence in 
the normal operation of the system, nor to detect and 
respond to abnormal events. 

9.3. Replacement 

When a LOCKSS instance fails or fills up it can simply 
be replaced by a new, empty instance assigned to the 
same journal. The new instance will detect the missing 
data and reload it from the publisher or other caches. 
To avoid wasting time and bandwidth, we expect to 
provide a "clone" option that would allow the librarian 
to nominate an existing instance from which the new 
instance's cache would be copied.  

10. Performance 
 
There are three important performance metrics for 
LOCKSS once it is deployed in production: 

• What does it cost a library to run it? 

• How often does the system as a whole lose or 
corrupt journal articles? 

• What is the probability that a reader will encounter 
a missing or corrupt article? 

Credible numbers for these metrics will not be available 
for many years. The best we can do right now is some 
back-of-the-envelope estimates of the I/O, bandwidth 
and failure rates. These encouraged us to go ahead with 
the alpha test, but are too sketchy to publish. We expect 
to report measurements from the alpha test when we 
present this paper. 

11. Related Work 

11.1. Fault Tolerance 

The conventional approach to fault tolerance through a 
limited number of replicas is brilliantly illustrated by 
Miguel Castro & Barbara Liskov[castro], who built a 
replicated, fault-tolerant implementation of NFS that 
benchmarked only 3% slower than the baseline 
implementation when no failures were encountered 
and, of course, infinitely faster when they were. 

11.2. Internet Archive 

LOCKSS is not an archive, and it does not attempt to 
preserve general Web content. An ambitious attempt to 
archive the entire Web is underway at the Internet 
Archive[archive]. They have currently collected almost 
15TB of data, which is primarily stored in a tape robot. 
As an archive, their mission is primarily preservation, 
which they plan to ensure by careful treatment of stored 
data and media migration, not replication. They do not 
attempt to ensure that the original URLs continue to 
resolve. 

11.3. Intermemory 

In the opposite direction, a team at NEC's Princeton 
labs built a replicated, distributed Internet-scale file 
system[nec]. Machines joining the system volunteer disk 
space to the file store, which uses hashing techniques to 
smear stored information across multiple replicas. This 
preserves access to files via the names assigned to them 
when they are stored, and to their contents via 
replication. This Intermemory system shares with 
LOCKSS the basic approach to preservation through 
replication and copying among unreliable storage 
systems, but differs in that it exports a file system 
interface rather than a Web interface, and that its 
internal workings are obscure to the uninitiated. 

11.4. Digital Library research 

The NSF is coordinating a major research initiative into 
the general problem of constructing a Digital library[dlr]. 
Projects funded by this DLI2 initiative address a much 
broader set of issues than LOCKSS, including 
versioning documents as they change, a vast range of 
protocols and formats not just HTTP/HTML, and issues 
around metadata. Because their problem is much harder 
their technology is not yet deployable. 

11.5. Robust URLs 

Thomas Phelps and Robert Wilensky[words] at U.C. 
Berkeley  have discovered that a Web document can be 
found uniquely with very high probability if a 
surprisingly small number, from 5 to 8,  of carefully 



chosen words from the document are given to a search 
engine. They propose that links to documents be 
augmented with these signature words to provide 
browsers with a viable fallback if the URL fails to 
resolve. This is an interesting idea, but it assumes that 
the document is somewhere accessible to the search 
engine after its original publisher has failed, and that 
the search engine has permission to read it. 

This insight could usefully be combined with ideas 
from Freenet[freenet], a distributed, search-based 
information store. Freenet shares with LOCKSS the 
goal of a system free of the vulnerabilities of central 
administration and control, but it does not attempt to 
preserve information whose value is not related to its 
popularity, and each server appears to trust every other 
server to supply authentic copies of data being stored. 

11.6. Napster 

Napster[napster] provides an interesting example of 
combining many replicas of a single data item, in their 
case a song in MP3 form, to form a highly available 
data resource. Of course, the Napster directory service 
is itself a single point of failure. The Gnutella 
distributed directory service would have been more 
relevant to our problem. 

12. Assessment 
 
We stated three goals for LOCKSS. How does the 
design rate against them? 

• The bits must be preserved. If enough replicas can 
be deployed the system should have a very low 
probability of losing bits accidentally. The system's 
effectiveness at preventing malicious actions 
destroying bits is open to debate. It may be 
necessary to use encryption and to identify and 
authorize the participants. 

• Access to the bits must be preserved. Readers in 
participating institutions should have a high 
probability of having their original links resolve to 
good copies of articles. 

• The ability to parse the bits into human-readable 
form must be preserved. The process of continual 
gradual replacement of the software, driven by the 
need to replace the hardware as it breaks or fills up, 
allows for format conversion as it becomes 
necessary. 

13. Future Work 

 
We're running an initial test of the prototype for a 
couple of months with about a dozen instances and a 
single journal starting in April 2000. We plan to assess 
this test, incorporate the experience and run a second 
test at a much more realistic scale later in the year. We 
hope this test will include an attack team trying to 
subvert the system. 

We're also exploring the suitability of LOCKSS for 
applications other than journals. One obvious example 
is the government documents that used to be kept on 
paper in the "depository library" system, but which are 
now being published on the Web. 

Broader applications of the underlying model of fault 
tolerance through massive replication and “sloppy” 
elections are harder to see. LOCKSS as an application 
has many unusual characteristics. Nevertheless, we 
remain convinced that there is something 
fundamentally interesting in the idea of a system based 
on multicast protocols in which all actions are public 
and participants can make their own independent 
assessments of each other’s credibility.  

One valid criticism of LOCKSS is that all monocultures 
are vulnerable, and if deployed en masse LOCKSS 
would be a monoculture. A bug in the implementation 
could wipe out information system-wide. It would be 
very valuable to have multiple independent 
implementations of the LCAP protocol. We hope that 
by keeping the protocol very simple we will encourage 
other implementations. 
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