
Proceedings of FREENIX Track:
2000 USENIX Annual Technical Conference

San Diego, California, USA, June 18–23, 2000

P E R M A N E N T W E B P U B L I S H I N G

David S. H. Rosenthal and Vicky Reich

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Permanent Web Publishing

David S. H. Rosenthal
Sun Microsystems Laboratories

Vicky Reich
Stanford University Libraries

“Diffused knowledge immortalizes itself”

Vindiciae Gallicae Sir James Mackintosh (1765-1832)

Abstract

LOCKSS (Lots Of Copies Keep Stuff Safe) is a
prototype of a system to preserve access to scientific
journals published on the Web. It is a majority-voting
fault-tolerant system that, unlike normal systems, has
far more replicas than would be required just to survive
the anticipated failures. We are exploring techniques
that exploit the surplus of replicas to permit a much
looser form of coordination between them than
conventional fault-tolerant technology would require.

1. Introduction

In a classic paper Leslie Lamport[lamport] set out the basis
for building a distributed system with n replicas which
could tolerate f faults, where f = �(n-1)/3� , by having
the replicas vote in "elections" to decide the system's
behavior.

We describe work in progress to develop a solution to
an important real-world problem, the preservation for
future generations of scientific, technical and medical
(STM) journals published on the web. Any system
guaranteeing long-term preservation of information
must tolerate faults such as disk crashes, network
outages and malicious attacks. Certain special
characteristics of this problem mean that in our case n
is much greater than 3f+1. The large number of replicas
allows us to try a somewhat different approach to fault-
tolerance. If the classic approach is analogous to
elections, our approach is analogous to opinion polls.

We start by outlining the problem and generating
requirements for a solution. We show how these
requirements led to a design for which n >> 3f+1. We
describe the design in some detail and provide a brief
report on the status of the implementation. We compare
our approach with related work and assess its strengths
and weaknesses. We conclude by speculating about the
usefulness of similar techniques to other applications
for which large numbers of replicas are appropriate.

2. The Problem

In most respects the Web is a far more effective
medium for scientific, technical and medical (STM)
communication than paper. Stanford Library's
Highwire Press[highwire] led the transition of STM
publishing from paper to the Web and now publishes
the on-line editions of about 180 of the top STM
journals. They pioneered techniques such as datasets in
spreadsheets behind graphs, dynamic lists of citing
papers, e-mail notification of citing papers and so on.
These, added to the basic hyperlinks and searchability,
make the Web versions both easier to access and more
useful when accessed than the paper ones. Web
versions frequently appear earlier and contain much
more information. Many journals now publish some
papers only on the Web.

Librarians have a well-founded confidence in their
ability to provide their readers with access to material
published on paper, even if it is centuries old.
Preservation is a by-product of the need to scatter
copies around to provide access. Librarians have an
equally well-founded skepticism about their ability to
do the same for material published in electronic form.
Preservation is totally at the whim of the publisher.

A subscription to a paper journal provides the library
with an archival copy of the content. Subscribing to a
Web journal rents access to the publisher's copy. The
publisher may promise "perpetual access", but there is
no business model to support the promise. Recent
events have demonstrated that major journals may
vanish from the Web at a few months notice.

This poses a problem for librarians, who subscribe to
these journals in order to provide both current and
future readers with access to the material. Current
readers need the Web editions. Future readers need
paper; there is no other way to be sure the material will
survive.

The transition to the Web will not be complete until
librarians are willing to buy Web-only subscriptions.
To do so they need confidence in their ability to
provide their readers with long-term access to the
content they are buying. The problem is in three parts:

• The bits themselves must be preserved. All digital
storage media have a limited lifetime; the bits need
to migrate from one medium to another over time.
In practice it is difficult to fund a bulk copying
effort when a medium starts decaying, so all but
the most valuable bits are lost at each transition[bit-

rot].

• Access to the bits must be preserved. Suppose a
reader clicks on a link 20 years from now that
doesn't resolve because the only copy is now on a
CD in a secure store. Whom does the reader call to
get the CD from the store into a specially preserved
CD drive? Unless links to pages continue to
resolve, the material will effectively be lost
because no-one will have the knowledge or
patience to retrieve it.

• The ability to parse the bits, once accessed, into
human-readable form must be preserved[format].

It is important to observe that there can be no single
solution to this problem. A single solution of itself
would be perceived as vulnerable. By proposing one
solution we are not arguing that other solutions should
not be developed and deployed. Diversity is essential to
successful preservation.

3. Requirements

Librarians' technique for preserving access to material
published on paper has been honed over the years since
415AD, when much of the world's literature was lost in
the destruction of the Library of Alexandria[alexandria].
Their method may be summarized as:

Acquire lots of copies. Scatter them around the
world so that it is easy to find some of them and
hard to find all of them. Lend or copy your copies
when other librarians need them.

In this context, note the distinction between archives,
which we are not discussing, and general circulating
collections, which we are:

• The goal of an archive is preservation, typically of
material that is unique and/or impossible to
replicate widely. Access is restricted via locked

stacks, access logs and so on to ensure
preservation.

• The goal of a circulating collection is access,
typically to replicas of material that is widely
copied. Risks are taken with preservation to
achieve access. Copies are on open shelves and are
loaned to readers on a promise that they will
eventually be returned.

Libraries' circulating collections form a model fault-
tolerant distributed system. It is highly replicated, and
exploits this to deliver a service that is far more reliable
than any individual component. There is no single point
of failure, no central control to be subverted. There is a
low degree of policy coherence between the replicas,
and thus low systemic risk. The desired behavior of the
system as a whole emerges as the participants take
actions in their own local interests and cooperate in ad-
hoc, informal ways with other participants.

If librarians are to have confidence in an electronic
system, it will help if the system works in a familiar
way. The fundamental requirement for LOCKSS (Lots
Of Copies, Keep Stuff Safe)[lockss] was, therefore, to
model their techniques as closely as possible for
material published on the Web.

If libraries can take physical custody of the journals
they purchase, in a form that preserves access for their
readers, they can assume the responsibility for their
future. If a library takes custody of a copy of the Web
journal, the copy can behave as a Web cache and
provide access whether or not it is available from the
original publisher. If many libraries do so, the caches
can communicate with each other to increase the
reliability and availability of the service, as inter-library
loan increases the reliability and availability of access
to information on paper.

Another way of looking at a system of spreading copies
of Web journals around the world is that the librarians
running the system are buying insurance for their
journal subscriptions. What are the librarians insuring
against? Reasons why their readers would lose access
to a journal include:

• Failure to renew a subscription, for example
because of budget cuts or a price increase by the
publisher.

• Change of policy by the publisher, for example
because a not-for-profit journal was taken over by
a for-profit publisher.

• A publisher going out of business.

• Incompetent or careless management of the
publisher's web service.

In all these cases the symptoms are either a refusal by
DNS to resolve the name in the link URL or a refusal
by the server named to supply the content.

Libraries have to trade off the cost of preserving access
to old material against the cost of acquiring new
material. They tend to favor acquiring new material. To
be effective, subscription insurance must cost much less
than the subscription itself.

The biggest journal Highwire publishes generates about
6GB/year. A cheap PC to hold 5 years' worth might
cost $600 today, which is about 10% of the
subscription for the 5 years. If the running costs of the
system can be kept low enough, it should now be
practical for many libraries to maintain their own
copies. The prospects for this insurance improve as
equipment prices fall and subscription prices rise[disk-cost].

In this context, Open Source development is crucial:

• The goal of the project is to inspire confidence. It
is hard to have well-founded confidence in a
system whose operations are kept secret.

• The system's economics mandate free distribution
of the software; there’s barely a budget for the
hardware.

• The longevity of the system will require many
generations of programmers to refine it as
problems are encountered.

4. Implications

Conventional replicated fault-tolerant systems are
designed around the question "how few replicas are
needed to survive the anticipated failures?" This
required number of replicas, perhaps 5, are then
organized into a tightly administered system.

To solve our problem, each library wanting to insure
their subscription must take custody of a copy of the
Web journal in question. If the system is successful
there will be many more replicas than needed to survive
the expected failures. There may be hundreds. It isn't
possible to administer hundreds of systems, each under
the control of a separate institution, as tightly as the
small number of replicas under centralized

administration in a conventional fault tolerant system.
Nor is it efficient to have hundreds of systems
participate in every operation of a distributed system in
order to survive the failure of a tiny fraction of them.

In the real world there is no authority controlling
libraries. Anyone can claim to be a library. Individual
librarians assess the credibility of such claims on the
basis of experience. They are suspicious of the long-
term dependability even of neighboring libraries whose
bona fides are not in question. Creating tightly
controlled long-term cooperative efforts in this
environment is not effective. LOCKSS therefore needs
to trade off its surplus of replicas for a looser form of
cooperation among the replicas.

5. Design

The design goal for LOCKSS is to provide librarians
with a cheap and easy way of running Web caches
which pre-load the journals they subscribe to, preserve
them for posterity by never flushing the cache, and
serve their pages to the library's readers if the publisher
does not. The design falls into three parts:

• Pre-loading the cache as new issues of the journals
are published.

• Ensuring that readers can access the journals from
the publisher or from the cache.

• Preserving the contents of the cache.

The design takes advantage of some unusual features of
the Web editions of STM journals:

• The peer-review system requires that the articles
are immutable once published. The history of
publishing on paper has reinforced this feature.

• The web site for a journal has a logical structure,
with directories for each volume, each issue within
the volume, articles within the issue, and so on.

• New content is published on a fairly regular cycle
that may be weekly or monthly, not hourly.

It should be emphasized that we are not designing a
general-purpose Web content preservation system.
LOCKSS is designed to preserve only journals
published by Highwire; we are in control of both ends
of the process and could if necessary alter the HTML
Highwire generates to make preservation easier. It may
be possible to apply the system to other types of

content, but that is not at present a design goal.
LOCKSS is clearly not suitable for volatile content.

It should also be emphasized that we are describing
work in progress. As this paper is being written we are
preparing the prototype for the system's first major test,
using a small group of libraries and a single journal.
We expect the design to evolve as we gain experience.

5.1. Collecting

A librarian instructs an instance of LOCKSS to
preserve a volume of a journal by providing the
publisher’s root URL for the volume and a frequency of
publication, say monthly. At that frequency a web-
crawler starts from the root URL and fetches all new
pages within that sub-tree. The publisher’s web server
sees this access as coming from an authorized IP
address, so it is allowed. Note that we don’t depend on
readers accessing the material to populate the cache.

This is off-the-shelf technology; we currently use the
w3mir crawler[w3mir], which is written in Perl and easy to
adapt to our needs. The only change needed was an
interlock with the cache preservation code, to prevent
content being checked while it was being collected.

5.2. Serving

This is also off-the-shelf technology. The prototype
uses the Apache[apache] web server to export the contents
of each cache to the local network’s users.

Tighter integration with the cache management code
will be needed in the future to support the code that
prevents the publisher's access control system being
subverted [see 6.3.2]. At that point we expect to switch
to a simple HTTP server in Java, which can check the
cache manager's internal data structures to determine if
accesses are appropriate.

5.3. Preserving

The heart of LOCKSS is the process by which caches
cooperate to detect and repair damage. The caches
communicate using an IP multicast protocol to discover
which URLs should exist and what their contents
should be. This protocol runs continually but very
slowly between all the caches. If a cache discovers a
missing or damaged URL it can fetch a new copy via
HTTP from the original publisher, or from one of the
other caches. Care has to be taken not to subvert the
publisher's access control mechanism; content should
only be delivered to sites that have rights to it.

The process works this way. A cache will notice that a
part of the material it is preserving has gone long
enough without being checked. It will multicast a call
for a poll to decide the value of the message digest of
the sub-tree below the directory representing that part.
Other caches hearing the call will compute their digests
and reply. The caches hearing the replies will tally the
poll. If they are on the winning side their cache is
intact. If they are on the losing side, their cache
contains some damage. The damage is located by:

• Calling a poll to determine the set of names in the
directory representing the part containing damage.

• Calling a poll on the message digest of the sub-tree
below each name.

The process descends the tree until it finds files instead
of directories. If the digests agree the file is intact. If
not the file is damaged and a new copy is fetched1. The
enumeration of the names in the directories also finds
any extra names, which are removed, and any missing
names, which cause the corresponding file or sub-tree
to be fetched.

6. Protocol

We describe the protocol from the bottom up, starting
with the basic polling mechanism, then the different
types of polls, and then the policies that string the polls
together.

6.1. Elections & Polls

We call the inter-cache protocol LCAP [Library Cache
Auditing Protocol]. The design was inspired by
Scalable Reliable Multicast (SRM)[srm], a peer-to-peer
reliable multicast protocol whose importance for LCAP
is its use of random timeouts to run a "sloppy" form of
election.

All participants in SRM subscribe to and multicast
packets to a single IP group address. If a missing packet
is detected, a request is multicast for the packet to be
re-transmitted. If a request is received for re-
transmission of a packet that has been received a
random timer is started. If a re-transmission of that
packet is received while the timer is running, the timer
is cancelled. Otherwise when the timer expires the
packet is re-transmitted to the group address.

1 In production, we’ll be more careful. Files won’t be

overwritten or removed but moved to a backup tree.

This random timeout mechanism is used to elect a
participant to perform the re-transmission. It is not a
perfect mechanism; sometimes failing to elect anyone
and sometimes electing more than one. If no one is
elected, the requester times out and tries again. If more
than one is elected, the repair is re-transmitted more
than once, wasting bandwidth but doing no other harm.

In practice the "sloppy election" mechanism is very
effective in those cases where delays several times the
length of a packet round-trip are tolerable. It is
statistically very likely to elect a single participant. It
has built-in load balancing, electing a participant at
random. It tolerates faults; if the participant with the
shortest random delay fails before transmitting its
repair another will take its place. For our purposes these
multicast, random timeout based "sloppy elections"
have many attractive features:

• Each election selects its own electorate; there is no
configuration database to maintain in a consistent
state.

• They load-balance automatically. If there are more
than enough potential voters the actual voters will
be chosen at random.

• The elections survive lost packets very well.

In the real world elections are tightly controlled and
very expensive procedures. A register of electors must
be maintained, with rigorous procedures for qualifying
those who may vote. Voters have to identify themselves
at the polls. Long experience has led to many
precautions against fraud.

Opinion polls have none of this overhead yet almost
always predict the result of an election correctly. They
do require careful attention to sampling and question
design, but because they don't need the administrative
structures nor the mass participation of a real election
they are much cheaper and quicker.

LOCKSS uses a variant of the SRM "sloppy election"
technique to implement something akin to an opinion
poll. The caller of a poll announces:

• the subject of the poll, the URL to which it applies,
and

• a hurdle for the poll, the number of agreeing votes
needed to make it valid, and

• a duration for the poll, setting the time that will
elapse before the votes will be tallied, and

• a challenge for the poll, a random string that is
prepended to the data to be digested.

These values appear in the header of each packet sent
as part of a poll.

A participant receiving a call chooses a random delay
in the duration when it plans to vote. The voter chooses
a random verifier string, prepends the challenge and the
verifier to the data, and computes a message digest.
When the timer expires it multicasts the remaining
duration, the challenge, the verifier and the message
digest. The challenge and the verifier prevent replays
and force each voter to prove that they have the content
in question at the time of the poll.

Votes are tallied at each participant receiving them by
prepending the challenge and the verifier from the vote
to the local copy of the data and computing the
message digest. If this digest matches the one in the
vote it is an agreeing vote, otherwise it is a disagreeing
vote.

A participant receiving more than the hurdle number of
agreeing votes before their timer expires can, if the
agreeing votes are the majority, decide that there is no
need to vote and cancel the timer2. In determining that
it agrees with the majority it will have checked its local
copy. There’s no harm in voting unnecessarily, but
participants need not tally excess votes.

There's no "electoral register" determining who can and
cannot vote. If a cache has a copy of the data in
question it can vote, because it is doing the job of
preserving access to the data. This models the real
world; there is no authority deciding who is qualified to
be a library.

6.2. Operations

The cache consistency checking process uses two
different types of polls:

• A compare poll asks voters to compute the
message digest of the challenge, their verifier and
the data in the sub-tree below the subject URL.

2 In practice the timer is not cancelled but suspended, in
case of a late rush of disagreeing votes, see 7.2.4.

• An expand poll asks voters to compute the
message digest of the challenge, their verifier and
the set of names in the directory named by the
subject URL. Voters in an expand poll also send
the set of names in their directory.

A participant tallying a compare poll will either:

• Agree with the majority, in which case nothing
need be done. It has been established that the
system as a whole is storing at least the hurdle
number of good copies.

• Disagree with the majority, in which case part or
all of the local copy of the sub-tree named by the
subject is bad. The participant chooses a random
timeout and, if another participant has not already
done so, calls an expand poll on the subject URL.

A participant tallying an expand poll counts the number
of votes for each set of names. The set with the most
votes, provided it reaches the hurdle, is the winner. The
participant then compares the winning set with their set:

• Names in the local set but not in the winning set
need to be removed.

• Names in the winning set but not in the local set
need to be fetched.

• Names in both sets need to be compared. For each
such name the participant chooses a random
timeout. When it expires, provided some other
participant has not already done so, the participant
calls a compare poll on the name.

In this way the checking process walks the directory
tree to locate and repair damage.

6.3. Policies

The system depends on a number of parameterized
policies. Over time, our experience with the system
will determine if the current set of policies and the
corresponding parameter values are adequate.

6.3.1. Rate Limits & Poll Durations

Before we started implementing LOCKSS we expected
it to run very slowly just because there was no need for
speed. Two things changed this:

• Voting in a top-level poll takes a long time simply
because top-level polls typically check an entire
issue of a journal, which will range between a few
hundred megabytes to a few gigabytes. The voter
needs to compute the message digest of all this
data once for its own vote, and once for each other
vote it checks. The data will normally be hashed
about the hurdle number of times. The obsolete
100-200MHz PCs we're using can take an hour or
two to do this for our test journal.

• Integrity considerations [see 7.2.2] imply running
as slowly as possible is important. The system must
run fast enough to compare cached data on average
several times between losses, but no faster.

While the need to compute message digests makes top-
level polls take a long time, polls checking an
individual file could happen much more quickly. The
caller of a poll decides on a duration by measuring how
long it takes to compute its own digest, multiplying by
the hurdle number it chooses, and by a safety factor.
The system limits bandwidth consumption by imposing
a minimum duration for polls.

6.3.2. Access Control

Each time a cache votes on the winning side it is
demonstrating that it has a good copy of the sub-tree in
question. Caches remember the winning votes they hear
in compare polls for some time, longer than the
expected time between failures. They will provide
repairs only to caches they remember having voted on
the winning side in a poll for the corresponding sub-
tree.

In this way they avoid subverting access control. The
only way to get a copy other than from the publisher is
to have shown in the recent past that you used to have a
copy. At some point this recursion arrives at a copy that
came from the publisher, and thus satisfied at that time
the publisher's access control restrictions.

6.3.3. Maintaining Redundancy

If polls of a given sub-tree consistently fail to reach the
hurdle number, this signifies that there aren't enough
copies being preserved and the content is at risk. At this
stage we believe it is appropriate to notify the people
running the system, who can arrange for more copies to
be created. At a later stage it might be possible to have
LOCKSS instances keep a reserve of disk space in
which they can store copies of at-risk material while
people cope with the situation.

7. Integrity

So far, we have described a system in an ideal world
without malicious participants. Alas, even libraries
have enemies[enemies]. Governments and corporations have
tried to rewrite history. Ideological zealots have tried to
suppress research of which they disapprove. We have
to assume that bad guys will try to subvert LOCKSS if
it gets deployed.

7.1. Conventional Approaches

One approach to preventing the bad guy rewriting
history that is often suggested is to have the publishers
sign the articles they publish. Readers could then check
the signature to determine that the document had not
been modified since it was signed. We encourage
publishers to sign articles (they don't at present) but
even if they did it wouldn't guarantee preservation:

• For the future reader to get an article, access to it
has to be preserved. Signing the articles helps to
verify a copy as authentic once one is obtained, but
doesn't help to get a copy in the first place.

• For the future reader, or cache, to be able to check
the signature on an article and verify that their
copy is authentic they have to obtain the
publisher's certificate, check that a trusted
Certificate Authority has signed it, and that it
hasn’t been revoked. This reduces the problem of
preserving access to information under the
librarians' control (the articles) to the problem of
preserving access to smaller units of information
outside the librarians' control (the certificates).
There's no guarantee that the Certificate Authority
will survive the many decades of our timescale.

• The validity of the signature depends on the
publisher's private key being kept secret, and on
the encryption and hash algorithms involved
remaining unbroken. Neither is very likely over
our timescale.

Although certificates and signatures are not useful over
the long term it is certainly possible to design a system
for preserving access in which they are used only over
limited periods of time.

Suppose an institution is established which decides
from time to time which other institutions are eligible
and competent to take part in the preservation effort. It
would maintain a registry of certificates a participant
could use to decrypt and validate communications from

other participants. This system need not use multicast
communication, it would have a rendezvous point
similar to the Service Location Protocol's daemon[slp].
Participants would use this to locate one another. As
institutions were subverted or failed to maintain
adequate standards of preservation the registry would
be updated to delete or revoke their certificates.

Again, the problem of preserving access to information
under the librarians' control has been reduced to the
problem of preserving smaller units of information
outside the librarians' control. Only this time the design
has a single point of failure, the registry. Once the bad
guy has subverted the registry the entire system is
compromised.

The fundamental weakness of conventional approaches
is that they divide guys into good and bad by having
some external authority place white or black hats on
them. A guy with a white hat is free to subvert the
system. Just because an institution is a library, it doesn't
mean that everyone will, or should trust it. A university
library in Greece might, for example, regard a
university library in Turkey, as a reliable source of
information about chemistry but unreliable on the
topics of Aegean geography or Kurdish history.
Equally, just because some years ago a library was
trustworthy, that doesn't mean they're trustworthy now.
The government funding the library may have been
replaced with a less scrupulous one.

7.2. Alternative Approach

The approach we're experimenting with in LOCKSS is
to divide guys into good and bad by observing and
remembering their behavior over a period of time. For
our purposes, a good guy is one who:

• maintains a good copy of the journal content,

• votes in polls to prove that the copy is good and to
help others prove that their copies are good too,

• remembers that others have voted in the majority
for a long time,

• and supplies good copies to others when requested
to repair damage.

A bad guy is one who, among many potential crimes:

• votes too early or too often,

• votes on the losing side of too many polls,

• fails to verify their vote on request,

• or supplies bad copies to others.

Note that these are all public actions, observed by
others.

7.2.1. Maintaining a Reputation

Its not important for the functioning of LOCKSS that a
participant actually be a library, only that the
participant exhibit the behavior of a library over a
period of time. Because LCAP is a peer-to-peer
multicast protocol, the behavior of each participant is
visible to the others. They can observe, remember and
make their own estimates of the participant's reliability.

This system has many analogies to "reputation
mechanisms" in on-line game environments like Ultima
Online[ultima]. Just as in our case, there's no way of
knowing "who a participant really is". Indeed, part of
the attraction of the game is that players can experiment
with multiple identities. The avatar of a particular
identity carries a reputation based on its recent actions
as observed by other avatars. A bad reputation can be
cleaned up over time by performing actions others
judge as laudable. Note, however, that games maintain
a central registry of avatars’ reputations. In the
LOCKSS model there is no central registry, each
"player" maintains its own registry of other players’
reputations.

7.2.2. Running Slowly

Recent actions have higher weight in determining
credibility than ancient ones, reflecting the fact that bad
guys can reform, and that good guys can be subverted.
The latter observation leads to the interesting
conclusion that the system must be designed to run
extremely slowly, both in the sense of wall-clock time,
and the number of operations needed to make a
significant change to the cached information:

• Running very slowly limits the damage that a guy
who turns bad can do while he retains a reputation
based on his actions before he was subverted.

• Running very slowly means that in order to do
significant damage a guy must persist in taking bad
actions over a long period of time. If a bad guy
calls your telephone, your goal should be to
prolong the conversation. This allows law
enforcement to track the offender down. In our
case the system requires the bad guy to take actions

that are both public and obviously bad over a long
period of time, allowing the good guys time for
location and dissuasion. No system can be immune
from penetration; systems should be designed to
slow the bad guy's progress and limit the potential
damage.

• It is easy to mount a denial of service attack against
any multicast protocol. Forcing the protocol to run
very slowly makes these attacks unattractive to the
bad guy. Sending lots of bogus packets to the
LOCKSS IP multicast group address will cause
polls underway to fail to reach the hurdle and
prevent new ones being called. But as soon as the
flood stops the system reverts to normal operation.
Preventing the system achieving its goal of long-
term preservation requires the bad guy to flood the
group for years on end.

7.2.3. Detecting Bad Guys

If no bad guys are active and no participants are losing
data, top-level compare polls will be taking place
infrequently, and each will be a landslide. To maintain
credibility, participants must vote on the winning side
in these polls. Doing so is hard work; it requires the
voter to compute message digests of hundreds of
megabytes of data several times over. This is a good
thing:

• It achieves the goal of making the system run
slowly in wall-clock terms.

• It provides the system with some inertia and
requires the bad guy to invest a lot of effort before
he can make an impact on its behavior.

• It makes sure each participant's reputation
information is up-to-date. This allows the
credibility of inactive or subverted participants to
decay quickly, limiting the amount of damage
subversion can do.

If no bad guys are active but occasionally participants
lose data, polls will descend the tree on occasion and
some will have a few dissenting votes. This is the
normal behavior of the system.

The structure of a typical journal web site places many
intermediate directories between the root and the actual
journal articles. It takes many polls to descend from the
root to an actual article the bad guy might target. If
polls are observed close to the leaves of the tree in
which the result is close, or even where there are

substantial numbers of dissenters, one or more bad guys
are active. The people running the participants can take
measures to stamp them out.

7.2.4. Preventing Fraud

Each participant in a poll verifies a proportion of the
votes they tally to help prevent fraud. Very few votes
are verified if the poll is a landslide; the proportion
rises as the poll becomes an even contest.

The verifier in the vote is actually the digest of a
random string that the voter keeps private. The tallier
verifies the vote by unicasting a verification request to
the sending address in the vote naming the subject and
the challenge. The voter replies with the subject, the
challenge and a string whose message digest is the
verifier in their vote. Voters failing to verify one of
their votes after several attempts lose credibility
quickly; it is likely that they are being spoofed.

7.2.5. Advantages

This system is strong in some unusual ways:

• There is no central coordination point that can be
attacked. Each participant is independent; acting in
its own interests, trusting others only as far as
necessary and no further than experience shows
them to deserve trust. The design goal is that the
only way to subvert the system would be to subvert
a majority of the participants.

• The system makes as few demands on the
infrastructure as possible. It doesn't depend on
services such as the Domain Name System, or a
Public Key Infrastructure or some mythical Library
Certification Organization. All that's needed is for
the underlying network to route IP unicast and
multicast datagrams.

• It doesn't depend on preserving any meta-
information. Provided enough participants preserve
the journal articles themselves, a site can corrupt or
lose any or all of its information. The more it does,
the less its credibility will be among the other
participants for a while.

• It doesn't depend on keeping anything secret for
any length of time, especially not passwords or
encryption keys. Voters need to keep the string that
generated their verifier secret for the length of the
poll, but this is all.

• It doesn’t depend on encryption or hash algorithms
resisting attack, because it doesn't use encryption.
It does use a hash algorithm during a poll, but this
need resist attack only for the duration of enough
polls to build or destroy a reputation.

• By operating slowly even on human timescales the
system makes it easier to detect an attacker and
limits the damage he can do before being stopped.

8. Implementation

The prototype's implementation of the LCAP protocol
is in Java. It makes heavy use of threads to maintain the
context for ongoing polls, and to ensure that time-
consuming operations like computing the message
digest of a few hundred megabytes of journal data don't
interfere with other tasks. The source will be released
under a Stanford equivalent of the U.C. Berkeley
license.

It uses SHA-1[digest] as the message digest function,
combined with a filter that parses the HTML of an
article to isolate the part that represents the text the
authors wrote. This is necessary because successive
fetches of a given article from Highwire do not return
exactly the same bytes:

• Some journals place advertisements on their pages;
the advertising system selects different ads at
different times.

• Some features of the article presentation, such as
the list of citing articles, change over time.

The current filter is rather crude, more sophisticated
versions will be needed before the system goes into
production.

9. Production Use

When LOCKSS gets into production, librarians will
have to install new instances, manage them through
their useful life and replace them when they fail or fill
up.

9.1. Installation

For the prototype, we are developing an installation
process based on the Linux Router Project's[lrp]
distribution. The librarian will download the image of a
generic boot floppy disk, boot it, answer a few
configuration questions and then choose an option that
re-writes the floppy disk into a configured boot floppy

for the new system. This will be write-locked and used
to boot the system in production.

Each time the system boots it will start with a clean,
known-good system image in RAM-disk. It will then
download, install and run the LOCKSS code. The only
data on the hard disk that survives across reboots will
be the cache contents and meta-data.

9.2. Management

One major goal of the initial tests is to provide the
information needed to design a management interface
for the system. We don't yet understand what librarians
will need in order to understand and have confidence in
the normal operation of the system, nor to detect and
respond to abnormal events.

9.3. Replacement

When a LOCKSS instance fails or fills up it can simply
be replaced by a new, empty instance assigned to the
same journal. The new instance will detect the missing
data and reload it from the publisher or other caches.
To avoid wasting time and bandwidth, we expect to
provide a "clone" option that would allow the librarian
to nominate an existing instance from which the new
instance's cache would be copied.

10. Performance

There are three important performance metrics for
LOCKSS once it is deployed in production:

• What does it cost a library to run it?

• How often does the system as a whole lose or
corrupt journal articles?

• What is the probability that a reader will encounter
a missing or corrupt article?

Credible numbers for these metrics will not be available
for many years. The best we can do right now is some
back-of-the-envelope estimates of the I/O, bandwidth
and failure rates. These encouraged us to go ahead with
the alpha test, but are too sketchy to publish. We expect
to report measurements from the alpha test when we
present this paper.

11. Related Work

11.1. Fault Tolerance

The conventional approach to fault tolerance through a
limited number of replicas is brilliantly illustrated by
Miguel Castro & Barbara Liskov[castro], who built a
replicated, fault-tolerant implementation of NFS that
benchmarked only 3% slower than the baseline
implementation when no failures were encountered
and, of course, infinitely faster when they were.

11.2. Internet Archive

LOCKSS is not an archive, and it does not attempt to
preserve general Web content. An ambitious attempt to
archive the entire Web is underway at the Internet
Archive[archive]. They have currently collected almost
15TB of data, which is primarily stored in a tape robot.
As an archive, their mission is primarily preservation,
which they plan to ensure by careful treatment of stored
data and media migration, not replication. They do not
attempt to ensure that the original URLs continue to
resolve.

11.3. Intermemory

In the opposite direction, a team at NEC's Princeton
labs built a replicated, distributed Internet-scale file
system[nec]. Machines joining the system volunteer disk
space to the file store, which uses hashing techniques to
smear stored information across multiple replicas. This
preserves access to files via the names assigned to them
when they are stored, and to their contents via
replication. This Intermemory system shares with
LOCKSS the basic approach to preservation through
replication and copying among unreliable storage
systems, but differs in that it exports a file system
interface rather than a Web interface, and that its
internal workings are obscure to the uninitiated.

11.4. Digital Library research

The NSF is coordinating a major research initiative into
the general problem of constructing a Digital library[dlr].
Projects funded by this DLI2 initiative address a much
broader set of issues than LOCKSS, including
versioning documents as they change, a vast range of
protocols and formats not just HTTP/HTML, and issues
around metadata. Because their problem is much harder
their technology is not yet deployable.

11.5. Robust URLs

Thomas Phelps and Robert Wilensky[words] at U.C.
Berkeley have discovered that a Web document can be
found uniquely with very high probability if a
surprisingly small number, from 5 to 8, of carefully

chosen words from the document are given to a search
engine. They propose that links to documents be
augmented with these signature words to provide
browsers with a viable fallback if the URL fails to
resolve. This is an interesting idea, but it assumes that
the document is somewhere accessible to the search
engine after its original publisher has failed, and that
the search engine has permission to read it.

This insight could usefully be combined with ideas
from Freenet[freenet], a distributed, search-based
information store. Freenet shares with LOCKSS the
goal of a system free of the vulnerabilities of central
administration and control, but it does not attempt to
preserve information whose value is not related to its
popularity, and each server appears to trust every other
server to supply authentic copies of data being stored.

11.6. Napster

Napster[napster] provides an interesting example of
combining many replicas of a single data item, in their
case a song in MP3 form, to form a highly available
data resource. Of course, the Napster directory service
is itself a single point of failure. The Gnutella
distributed directory service would have been more
relevant to our problem.

12. Assessment

We stated three goals for LOCKSS. How does the
design rate against them?

• The bits must be preserved. If enough replicas can
be deployed the system should have a very low
probability of losing bits accidentally. The system's
effectiveness at preventing malicious actions
destroying bits is open to debate. It may be
necessary to use encryption and to identify and
authorize the participants.

• Access to the bits must be preserved. Readers in
participating institutions should have a high
probability of having their original links resolve to
good copies of articles.

• The ability to parse the bits into human-readable
form must be preserved. The process of continual
gradual replacement of the software, driven by the
need to replace the hardware as it breaks or fills up,
allows for format conversion as it becomes
necessary.

13. Future Work

We're running an initial test of the prototype for a
couple of months with about a dozen instances and a
single journal starting in April 2000. We plan to assess
this test, incorporate the experience and run a second
test at a much more realistic scale later in the year. We
hope this test will include an attack team trying to
subvert the system.

We're also exploring the suitability of LOCKSS for
applications other than journals. One obvious example
is the government documents that used to be kept on
paper in the "depository library" system, but which are
now being published on the Web.

Broader applications of the underlying model of fault
tolerance through massive replication and “sloppy”
elections are harder to see. LOCKSS as an application
has many unusual characteristics. Nevertheless, we
remain convinced that there is something
fundamentally interesting in the idea of a system based
on multicast protocols in which all actions are public
and participants can make their own independent
assessments of each other’s credibility.

One valid criticism of LOCKSS is that all monocultures
are vulnerable, and if deployed en masse LOCKSS
would be a monoculture. A bug in the implementation
could wipe out information system-wide. It would be
very valuable to have multiple independent
implementations of the LCAP protocol. We hope that
by keeping the protocol very simple we will encourage
other implementations.

Acknowledgments

Grateful thanks for consistent support are due to
Michael Keller, the Stanford University Librarian, to
Michael Lesk at the NSF for funding the project with
grant IIS-9907296, and to Sun Microsytems
Laboratories, which has provided both time and funds.

The project was to a large extent inspired by Danny
Hillis & Stewart Brand’s Millennium Clock project[clock].

Our thanks also go to the many people who reviewed
the design and the paper, especially to Mark Seiden,
Bob Sproull, the anonymous Usenix reviewers and
Clem Cole; and to Michael Durket (Stanford University
ITSS), Tony Smith-Grieco and Demian Harvill
(Highwire Press) for help with implementation.

We're very grateful to our long-suffering alpha sites,
and to AAAS, who allowed the valuable content of
Science Online to act as the experimental subject.

References

[lamport] "The implementation of reliable distributed
multiprocess systems" Computer Networks 2, 1978.
Butler Lampson provides a useful exegesis "How to
build a highly available system using consensus" at
http://www.research.microsoft.com/lampson/58-
Consensus\Abstract.html.

[highwire] Highwire Press is at
http://highwire.stanford.edu. A free example of their
work is the British Medical Journal at
http://www.bmj.com.

[bit-rot] Stanford's Conservation Online project
maintains a page on this problem at
http://palimpsest.stanford.edu/bytopic/electronic-
records/electronic-storage-media/.

[format] Howard Besser maintains a website on this
problem at http://sunsite.berkeley.edu/Longevity/. The
NSF held a March 1999 workshop on it. See
http://cecssrv1.cecs.missouri.edu/NSFWorkshop/execsu
m.html.

[alexandria] The Encyclopedia Britannica's article on
the Library of Alexandria is at
http://www.eb.com:180/bol/topic?eu=5704&sctn=1#s_t
op.

[lockss] The LOCKSS project website is at
http://lockss.stanford.edu.

[disk-cost] “The price per megabyte [of disk storage]
has declined at 5% per quarter for more than twenty
years.” Clay Christensen, The Innovators Dilemma
(1997 Harvard Business School Press).

[w3mir] w3mir is supported by Nicolai Langfeldt at
http://www.math.uio.no/~janl/w3mir/.

[apache] The Apache Software Foundation is at
http://www.apache.org/.

[srm] Floyd, S., Jacobson, V., et al, "A Reliable
Multicast Framework for Light-weight Sessions and
Application Level Framing", IEEE/ACM Transactions
on Networking, December 1997, Volume 5, Number 6,

pp. 784-803. See http://www-nrg.ee.lbl.gov/floyd/srm-
paper.html.

[enemies] 1997 was a bad year for libraries - see
http://www.eb.com:180/bol/topic?eu=124351&sctn=1#
s_top. Education efforts on book mutilation include
http://gort.ucsd.edu/preseduc/bmlmutil.htm.

[slp] SLP is specified by RFC2165 at
http://www.ietf.org/rfc/rfc2165.txt.

[ultima] The FAQs on the Ultima Online reputation
system are at http://update.uo.com/repfaq/.

[digest] SHA-1 is specified by FIPS180-1 at
http://www.itl.nist.gov/fipspubs/fip180-1.htm.

[lrp] The Linux Router Project is at
http://www.linuxrouter.org.

[castro] Castro, M. & Liskov, B. "Practical Byzantine
Fault Tolerance", Proc. 3rd Symp. On Operating System
Design and Implementation, New Orleans, Feb 1999.
http://www.pmg.lcs.mit.edu/~castro/osdi99_html/osdi9
9.html.

[archive] The Internet Archive is at
http://www.archive.org.

[nec] Chen, Y., Edler, J., et al, "A Prototype
Implementation of Archival Intermemory", Tech. Rept.
CEGGSY98, NEC Research Institute, Princeton NJ,
Dec. 1998. See http://www.intermemory.org.

[dlr] The DLI2 initiative is at http://www.dli2.nsf.gov/.

[words] Phelps, T. A. & Wilensky, R. Robust
Hyperlinks Cost Just Five Words Each is at
http://HTTP.CS.Berkeley.EDU/~wilensky/robust-
hyperlinks.html.

[freenet] Clarke, I., A Distributed Decentralized
Information Storage and Retrieval System is at
http://freenet.sourceforge.net/Freenet.ps.

[napster] The Napster service is described at
http://www.napster.com. Wired describes the
controversial launch of Gnutella at
http://www.wired.com/news/technology/0,1282,34978,
00.html.

[clock] The Millennium Clock is a project of the Long
Now Foundation at http://longnow.org/.

Remember to follow these links before they go 404!

