

Reconstructive Software
Archaeology

Warren Toomey
School of IT, Bond University

This is a case study in restoring the
 1st Edition of UNIX from 1971.

The restoration is interesting in itself, but it
also raises issues that are relevant to

other software fields.

NO

 © Mythbusters

Happy 40th Birthday, UNIX!

© www.cakes-you-can-bake.com

Issues in Restoring
A Computing Artifact

● Computing artifact: hardware, software

● Other resources: documentation, blueprints,
schematics, configuration files, notes, written
and oral anecdotes, contemporary
publications

● What issues need to be considered when
restoring a computing artifact to working
order?

What if the artifact's purpose is
unknown?

What if the documentation
is missing?

What if the documentation is
incomplete?

Is the artifact a blueprint?
Can it be rebuilt?

Do we have the tools
to rebuild it?

Do we have to replace some of the
parts of the artifact?

Do we have to make significant
changes to make it work?

Software Restoration Issues

● Unlike physical hardware, software does not
decay (at least, not while pristine copies exist)

● But in practice, software tends to exhibit what
is commonly known as “bit rot”

● If software does not decay, then what causes
the bit rot?

● Bit rot is a function of the software's
environment, and not the software itself

The UNIX Heritage Society

● I'm a founding member of the Unix Heritage
Society. Our aim is to preserve the knowledge
and artifacts of early UNIX

● Where possible, we try to keep old systems
working. Past successes:
● Restoration of earliest C version of UNIX: 1973
● Restoration of earliest C compiler: also 1973
● Creation of executable environment for UNIX user-

mode binaries, assembled in 1972

● The 1st Edition of UNIX, from 1971, was lost

1st Edition UNIX Features

● Hierarchical filesystem: files, directories,
subdirectories

● Pre-emptive multitasking & processes
● A flexible command-line interpreter
● Multiuser, including e-mail
● Mountable storage making a single filesystem

tree
● Hard links: a file can have multiple names
● Multiple languages: assembly, FORTRAN,
 Basic, TMG, shell scripting

1st Edition UNIX

Dennis & Ken at the PDP-11/20 console

And then...

● A paper document containing a listing of the
1st Edition UNIX kernel was found

Can It Be Restored?

● Needs to be OCR'd and eyeballed
● Contradictory typed & handwritten comments
● No 1st Edition assembler, only later ones
● No bootstrap code in any form
● No filesystem or creation tool, just the docs
● Need a PDP-11/20 simulator: one exists, but not

all the required hardware
● Not sure if existing executables are from 1st

Edition or 2nd Ed: will they be compatible?

What was Done, Part 1

● Document scanned, OCR'd, manually checked &
cross-checked by ~10 people

● Tool written to modify output from 7th Edition
assembler to be compatible with 1st Edition
assembler

● Existing Apout tool allows 7th Ed assembler to run
without a full PDP-11 simulator

● Several logic errors and missing lines found in
the paper listing: fixed

● KE11A support added to PDP-11 simulator
● Result: kernel runs to a point, then hangs

What was Done, Part 2

● “Cold” kernel fixed, builds near-empty filesystem.
● “Warm” kernel boots, init, login & shell work!
● mkfs tool written to build and fully populate the
 root and /usr filesystems
● Result: Now we can run user-mode programs
● Simulator further modified to emulate DC-11
● Result: multiuser UNIX system
● Kernel modified to deal with “0407” executables
● Result: all old executables run; C compiler runs

and can recompile itself

Software Reconstruction

● Software suffers from “bit rot”. We had to:
● Fix typos, missing lines, logic mistakes in the source

code
● Build tools which could assemble the source code,

and construct suitable filesystems
● Modify an existing PDP-11 simulator to provide an

executable environment for the system
● Interpret old documentation: on the whole, it was

excellent, but it was vague or omitted details in
places

● Luck played a role: documentation, preserved
executables, existing tools

Lessons Learned for Now

● Write good documentation
● Keep software current on new platforms
● If necessary, write simulators now while the

hardware details still exist
● Moore's Law helps here

● All software requires an environment. Take a
crucial component away & it stops working:
● Hardware, compilation tools, user manual,

filesystem, even configuration files
● As system complexity increases, the work

needed to resurrect/restore increases

Questions?

Old & New System Calls
1st Edition Linux 2.6 1st Edition Linux 2.6

1: exit exit 15: chmod chmod

2: fork fork 16: chown lchown

3: read read 17: break unused

4: write write 18: stat stat

5: open open 19: seek lseek

7: wait waitpid 20: tell getpid

8: creat creat 21: mount mount

9: link link 22: umount umount

10: unlink unlink 23: setuid setuid

11: exec execve 24: getuid getuid

12: chdir chdir 25: stime stime

13: time time 26: quit ptrace

14: mkdir mknod 28: fstat fstat

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

