
IBM Research

Black-Box Performance Control for
High-Volume Non-Interactive Systems

Chunqiang (CQ) Tang

Sunjit Tara

Rong N. Chang

Chun Zhang

UENIX’09, June 19, 2009

IBM T.J. Watson Research Center

IBM Software Group, Tivoli

IBM T.J. Watson Research Center

IBM T.J. Watson Research Center

2

IBM Research

2

Response Time Driven Performance Control for
Interactive Web Applications

  Interactive users are sensitive to sub-second response time

  Naturally, performance control is driven by response time
▶  E.g, stop admitting new requests if response time exceeds a threshold

▶  Well studied area: admission control, service differentiation, etc.

3

IBM Research

3

But there are Robots that Impact Perf Control

  Many Web services also provide APIs to explicitly work with robots
▶  Twitter API Traffic was 10x of its Web traffic

  Some applications work with interactive users during daytime, and then
are driven by robot tools at nights to perform heavy-duty analytics

  How robots impact performance control
▶  They often have tons of work to do and hence are throughput centric
▶  They may not require sub-second response time, e.g., crawler and analytics

4

IBM Research

4

IT Monitoring and Mgmt: a World where Robots Rule

  Before an IT service mgmt system (ITSM) can manage a data center, it
must manage itself well
▶  Withstand event flash crowd triggered by, e.g., router failure

▶  Achieve high event-processing throughput by driving up resource utilization

▶  Avoid resource saturation as sysadmins may want to do manual investigation

Data center

5

IBM Research

5

Simplified View of IBM Tivoli Netcool/Impact
  It provides a reusable framework for integrating all kinds of siloed monitoring and mgmt tools
  It is built atop a J2EE engine but cannot use response-time driven performance control

6

IBM Research

6

Why Perf Control is Difficult in Netcool/Impact

  Work with third-party software provided by many vendors

  We cannot greedily maximize performance without considering congestion

  Bottleneck can be anything anywhere: CPU, disk, memory, network, etc.

  Bottleneck depends on how users write their code atop Netcool/Impact

  Not a simple static topology like web->app->DB

  No simple perf indicator like packet loss or response time violation

7

IBM Research

7

Black-Box Approach: Throughput-guided
Concurrency Control (TCC)

  Why not simply use TCP to maximize throughput
▶  We deal with general distributed systems rather than just network

▶  No packet loss as performance indicator

▶  Unlike router, a general server’s service time is not a constant

8

IBM Research

8

Simplified State-Transition Diagram for Thread Tuning

  base state: reduce threads by w%

  add-thread state: repeatedly add threads so long as every p%
increase in threads improves throughput by q% or more

  remove-thread state: repeatedly remove threads by r% each time so
long as throughput does not decrease significantly

9

IBM Research

9

Conditions for Friendly Resource Sharing

  Repeatedly add threads so long as every p% increase in
threads improves throughput by q% or more

  Reduce threads by w% at the beginning of exploration

e.g., double threads (p=100%) and then see
thruput increases by q=1%. This is no good.

The base state must be sufficiently
low so that it will end up with less
threads if resource is saturated

10

IBM Research

10

Conditions for Friendly Resource Sharing

  If there is an uncontrolled competing program,
NCI shares 44–49% of the bottleneck resource

  Two instances of NCI share bottleneck
resources in a friendly manner

  However, three or more instances of NCI need
coordination from the master

11

IBM Research

11

Drive up Resource Utilization to Achieve
High Throughput

  TCC is friendly but also sufficiently
aggressive to drive up resource utilization

12

IBM Research

12

Throughput Measurement 1:
Exclude Idle Time from Throughput Calculation

Throughput =

Throughput =

13

IBM Research

13

Throughput Measurement 2:
Minimize Measurement Samples

  Minimize the number of measurement samples while
ensuring a high probability of making correct decisions

Solution

Problem
formulation

14

IBM Research

14

Throughput Measurement 3:
Exclude Outliers from Throughput Calculation

  Extreme activities such as Java garbage collection
introduce large variance
▶  Sometimes GC can take as long as 20 seconds

  There are many known methods to handle outliers

  We found that simply dropping 1% of the largest
samples works well

  This is simple but critical

15

IBM Research

15

Experimental Setup

  In some experiments, we introduce extra network delay

  In some experiments, we control service time of the Web
service and Netcool/Impact user scripts

16

IBM Research

16

Scalability of NCI Cluster

17

IBM Research

17

CPU as the Bottleneck Resource

18

IBM Research

18

Recover from Memory Thrashing

19

IBM Research

19

Disk as the Bottleneck

Reducing threads actually improves disk performance

20

IBM Research

20

Work with an Uncontrolled Competing Program

21

IBM Research

21

Related Work

  Greedy parameter search
▶  Too greedy without considering resource contention

  TCP-style congestion control, e.g., TCP Vegas
▶  Assume minimum RTT is the mean service time

▶  In DB, min response time is the best-case cache hit service time. It
cannot be used to estimate the congestion-free baseline throughput.

  Control theory
▶  Not sufficiently black-box

▶  Need to monitor resource utilization if applied to Netcool/Impact

  Queueing theory
▶  Assume a known static topology and a known bottleneck

22

IBM Research

22

Future Work

  Is it possible to get “TCP-friendly” for general distributed
systems?
▶  Currently three or more instances of NCI need coordination

in order to be friendly to each other

  Can we estimate the utilization of Google’s internal
servers by observing changes in query response time?
▶  This is possible for restricted queuing models

▶  What’s the most general model for which this is still doable?

23

IBM Research

23

Take Home Message

  We need to revisit performance control for systems that
handle workloads generated by software tools (robots)
▶  Mixed human/robot worklaod (Twitter fits here)

▶  Mostly robot workload (Netcool/Impact fits here)

▶  Robot-only workload (Hardoop fits here)

