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Response Time Driven Performance Control for 
Interactive Web Applications 

  Interactive users are sensitive to sub-second response time 

  Naturally, performance control is driven by response time 
▶  E.g, stop admitting new requests if response time exceeds a threshold 

▶  Well studied area: admission control, service differentiation, etc. 
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But there are Robots that Impact Perf Control 

  Many Web services also provide APIs to explicitly work with robots 
▶  Twitter API Traffic was 10x of its Web traffic 

  Some applications work with interactive users during daytime, and then 
are driven by robot tools at nights to perform heavy-duty analytics 

  How robots impact performance control 
▶  They often have tons of work to do and hence are throughput centric 
▶  They may not require sub-second response time, e.g., crawler and analytics 
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IT Monitoring and Mgmt: a World where Robots Rule 

  Before an IT service mgmt system (ITSM) can manage a data center, it 
must manage itself well 
▶  Withstand event flash crowd triggered by, e.g., router failure 

▶  Achieve high event-processing throughput by driving up resource utilization 

▶  Avoid resource saturation as sysadmins may want to do manual investigation 

Data center 
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Simplified View of IBM Tivoli Netcool/Impact 
  It provides a reusable framework for integrating all kinds of siloed monitoring and mgmt tools 
  It is built atop a J2EE engine but cannot use response-time driven performance control 



6 

IBM Research 

6 

Why Perf Control is Difficult in Netcool/Impact 

  Work with third-party software provided by many vendors 

  We cannot greedily maximize performance without considering congestion 

  Bottleneck can be anything anywhere: CPU, disk, memory, network, etc. 

  Bottleneck depends on how users write their code atop Netcool/Impact 

  Not a simple static topology like web->app->DB 

  No simple perf indicator like packet loss or response time violation 
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Black-Box Approach: Throughput-guided 
Concurrency Control (TCC) 

  Why not simply use TCP to maximize throughput 
▶  We deal with general distributed systems rather than just network 

▶  No packet loss as performance indicator 

▶  Unlike router, a general server’s service time is not a constant 
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Simplified State-Transition Diagram for Thread Tuning 

  base state: reduce threads by w% 

  add-thread state: repeatedly add threads so long as every p% 
increase in threads improves throughput by q% or more 

  remove-thread state: repeatedly remove threads by r% each time so 
long as throughput does not decrease significantly 
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Conditions for Friendly Resource Sharing 

  Repeatedly add threads so long as every p% increase in 
threads improves throughput by q% or more 

  Reduce threads by w% at the beginning of exploration 

e.g., double threads (p=100%) and then see 
thruput increases by q=1%. This is no good. 

The base state must be sufficiently 
low so that it will end up with less 
threads if resource is saturated 
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Conditions for Friendly Resource Sharing 

  If there is an uncontrolled competing program, 
NCI shares 44–49% of the bottleneck resource 

  Two instances of NCI share bottleneck 
resources in a friendly manner 

  However, three or more instances of NCI need 
coordination from the master 
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Drive up Resource Utilization to Achieve 
High Throughput  

  TCC is friendly but also sufficiently 
aggressive to drive up resource utilization 
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Throughput Measurement 1:  
Exclude Idle Time from Throughput Calculation 

Throughput   = 

Throughput   = 
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Throughput Measurement 2:  
Minimize Measurement Samples 

  Minimize the number of measurement samples while 
ensuring a high probability of making correct decisions 

Solution 

Problem  
formulation 
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Throughput Measurement 3:  
Exclude Outliers from Throughput Calculation 

  Extreme activities such as Java garbage collection 
introduce large variance  
▶  Sometimes GC can take as long as 20 seconds  

  There are many known methods to handle outliers 

  We found that simply dropping 1% of the largest 
samples works well 

  This is simple but critical 
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Experimental Setup 

  In some experiments, we introduce extra network delay 

  In some experiments, we control service time of the Web 
service and Netcool/Impact user scripts 
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Scalability of NCI Cluster 
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CPU as the Bottleneck Resource 
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Recover from Memory Thrashing 
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Disk as the Bottleneck 

Reducing threads actually improves disk performance 
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Work with an Uncontrolled Competing Program 
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Related Work 

  Greedy parameter search 
▶  Too greedy without considering resource contention 

  TCP-style congestion control, e.g., TCP Vegas 
▶  Assume minimum RTT is the mean service time 

▶  In DB, min response time is the best-case cache hit service time. It 
cannot be used to estimate the congestion-free baseline throughput. 

  Control theory 
▶  Not sufficiently black-box 

▶  Need to monitor resource utilization if applied to Netcool/Impact 

  Queueing theory 
▶  Assume a known static topology and a known bottleneck 
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Future Work 

  Is it possible to get “TCP-friendly” for general distributed 
systems? 
▶  Currently three or more instances of NCI need coordination 

in order to be friendly to each other 

  Can we estimate the utilization of Google’s internal 
servers by observing changes in query response time? 
▶  This is possible for restricted queuing models 

▶  What’s the most general model for which this is still doable? 
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Take Home Message 

  We need to revisit performance control for systems that 
handle workloads generated by software tools (robots) 
▶  Mixed human/robot worklaod (Twitter fits here) 

▶  Mostly robot workload (Netcool/Impact fits here) 

▶  Robot-only workload (Hardoop fits here) 


