
BLOCK MANAGEMENT IN
SOLID-STATE DEVICES

Abhishek Rajimwale (University of Wisconsin-Madison)
Vijayan Prabhakaran (Microsoft Research)
John D Davis (Microsoft Research)

Existing storage stack

  Storage stack has remained static
 Mechanical disk drives for decades
 Narrow block interface existing for years (ATA, SCSI)
 No information flow except block reads/writes

  File systems make assumptions about devices
 Sequential access much faster than random access
 Little or no background activity

  Assumptions true for disk drives
  What if the underlying device changes ?

Block management in SSDs

SSD – A different beast

  SSDs differ from disks
 No mechanical or moving parts
 Contain multiple flash elements
 Different internal architecture
 Complex internal operations

  SSDs differ among themselves
 Low, medium, and high end devices
 Firmware, interconnections, mapping, striping, ganging

  Will the existing file system assumptions hold ?

Block management in SSDs

Problem

  Several assumptions are no longer valid

Block management in SSDs

Assumptions Disks SSDs

Sequential accesses much faster than random

No write amplification

Little background activity

Media does not wear down

Distant LBNs lead to longer access time

  Implications
 Need to modify storage stack for SSDs ?

Results

  Modifications to tune storage stack for SSDs
 Cope with violated assumptions

  Rich interface to convey more information to device
  IO priorities
 Free blocks

  More functionality in device
 Low level block management

  Possible Solution
 Object based storage (OSD)

Block management in SSDs

Talk outline

  SSD benchmarking
  Case studies

 Write amplification
 Background activity
 Device wear-down

  Object-based storage
  Related work
  Conclusion

Block management in SSDs

SSD benchmarking

Block management in SSDs

  Used a range of SSDs for experimentation
 Engineering samples and pre-production samples
 Used both SLC and MLC-based SSDs
 Anonymized the SSDs as S1, S2, S3, S4

  Performed read/write experiments on
 HDD: Seagate Barracuda 7200.11 drive
 SSD samples

SSD benchmarking results

Block management in SSDs

  Random-reads fast in SSDs
  Random-writes getting better with FTL techniques

Device Read (MB/s) Write (MB/s)

Seq Rand Ratio Seq Rand Ratio

HDD 86 0.6 143 86 1.3 66

S1slc 205 18 11 169 53 3.1

S2slc 40 4.4 9 32 0.1 328

S3slc 72 29 2.4 75 0.5 151

S4mlc 68 21 3.2 22 15 1.5

Talk outline

  SSD benchmarking
  Case studies (3 violated assumptions)

 Write amplification
 Background activity
 Device wear-down

  Object-based storage
  Related work
  Conclusion

Block management in SSDs

Methodology

  Measurement on real SSDs
  File system traces from real

machine
  DiskSim simulator (PDL)

 Complete storage stack
 Synthetic trace generator
 External traces

  SSD module extension

Block management in SSDs

Talk outline

  SSD benchmarking
  Case studies

 Write amplification
 Background activity
 Device wear-down

  Object-based storage
  Related work
  Conclusion

Block management in SSDs

Write amplification

  Low-end and medium-range
SSDs

  Reasons
 Write size < stripe size
 Physical page < logical page

Block management in SSDs

Write amplification in real device

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9

Th
ro

ug
hp

ut
 (

M
B/

s)

Write size (MB)

SSD sample S2 – 32GB   Measurements taken on a
real device
  SSD sample S2 – 32GB

(Low end SSD)
  Experiment: Issued

continuous writes of
varying sizes

  Writes are striped
  Stripe size: 1 MB

  Write amplification not
seen in S1, S4

Block management in SSDs

Write amplification improvement

Block management in SSDs

Violated assumption
 No write amplification

Proposed improvement
 Merge requests along stripe boundary in device

Case study implementation
  Implemented logic in simulator SSD module
 Run traces on modified simulator

Write amplification- Results

0

0.2

0.4

0.6

0.8

1

1.2

0.0 0.2 0.4 0.6 0.8

N
or

m
al

iz
ed

 R
es

po
ns

e
tim

e

Probability of sequential access

Normalized response time

Block management in SSDs

Benchmark Improvement (%)

Postmark 1.15

TPCC 3.08

Exchange 4.89

IOzone 36.54

Synthetic trace Real benchmark traces

Talk outline

  SSD benchmarking
  Case studies

 Write amplification
 Background activity
 Device wear-down

  Object-based storage
  Related work
  Conclusion

Block management in SSDs

Background activity

Violated Assumption
 Storage device passive - little or no background activity
 SSD does cleaning and wear-leveling

Problem
 Host can’t control background activity
 Prevent effect of background operations on priority

requests
Proposed Improvement: Priority-aware cleaning

  Inform device about priorities
 Device avoids background operations

Block management in SSDs

Priority-aware cleaning - Implementation

Methodology
 DiskSim supports priority request queuing
 Used synthetic trace generator
 Modified simulator SSD module

Improvement: Priority-aware cleaning
 Two cleaning thresholds

  Low
 Critical

 Outstanding priority requests
 Clean only if below the critical watermark

Block management in SSDs

Priority-aware cleaning - Results

  10% improvement
in response time of
priority requests

  Improvement at the
cost of non-priority
traffic

Block management in SSDs

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

20 40 60 80

Re
sp

on
se

 ti
m

e
 (

m
s)

Write percentage

Priority unaware cleaning
Priority aware cleaning

Priority requests

Non- Priority
requests

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

20 40 60 80

Re
sp

on
se

 ti
m

e
 (

m
s)

Write percentage

Priority unaware cleaning

Priority requests

Non- Priority
requests IO-Scheduling

Talk outline

  SSD benchmarking
  Case studies

 Write amplification
 Background activity
 Device wear-down

  Object-based storage
  Related work
  Conclusion

Block management in SSDs

Device wear-down

Violated Assumption
 Media does not wear down
 SSD: Blocks have finite erase cycles

Problem
 Must reduce writes to blocks

Proposed Improvement: Informed Cleaning
 File system has free block information
  Inform device about block freeing
 Free blocks need not be copied in cleaning

Block management in SSDs

Informed cleaning - Example

Block management in SSDs

1 2 3 4 5 6 7 8 9 SSD

File System 2,3,4,5,6,7,8,9

Free block
information

1

File system
used blocks

1,2,3,4,5,6,7,8 9 1,3,5,7 2,4,6,8,9

Informed cleaning - Implementation

Methodology
 Used postmark benchmark traces

from real machine
  Intercepted block-free calls at

pseudo driver below FS
 Generate real traces with free

block information
Improvement: Informed Cleaning

 Modified simulator SSD module
  Track freed blocks
  Skip copying free blocks for

reclamation

Block management in SSDs

Informed cleaning - Results

  Cleaning efficiency
 One-third pages moved
 Cleaning efficiency

improved by factor of 3
 Device lifetime improved

  Cleaning time
 30 to 40 % improvement
 Response time improved 0

50

100

150

200

250

300

5K 6K 7K 8K

#
 P

ag
es

 m
ov

ed
 (

th
ou

sa
nd

s)

transactions (postmark)

without free info with free info

Block management in SSDs

Summary of improvements

Block management in SSDs

  Write amplification
 Need “stripe size” from device

  Background activity (Priority aware cleaning)
 Need “IO priority” information from OS

  Device wear-down (Informed cleaning)
 Need “free block” information from FS

  Need richer interface

Possible solution

Block management in SSDs

  SSD has intricate knowledge of its internals
  Amount of parallelism

  Ganging ?
  Shared bus and/or shared data ?

  Logical to physical mapping
  Super-paging ?
  Striping ?

  Internal background operations
  When cleaning and wear-leveling ?
  Separate unit for cleaning ?

Solution:
  Rich interface to convey higher level semantics
  Device handles block management

SSD as OSD

Block management in SSDs

  OSD manages space for objects
  Informed cleaning
 Stripe aligned accesses
 Logical to physical mapping

  OSD has object attributes
 Wear-leveling using cold data information
 Priority assigned to objects

  OSD handles low-level operations
 Block management in SSD

Related work

  Design tradeoffs for SSDs
  MEMS-based storage devices and standard disk

interfaces
  Operating system management of MEMS based

storage devices
  Bridging the information gap in storage protocol stacks
  Non-Volatile Memory Host Controller Interface 1.0
  Object-based storage
  Track-aligned extents

Block management in SSDs

Conclusion

  Revisited storage specific assumptions for SSDs
 Several assumptions violated

  Proposed improvements to tune storage stack for
SSDs

  Need for richer interface
  More functionality in devices
  One possible solution: OSD

 Understands high-level semantics
 Handles low-level operations

Block management in SSDs

Questions

Block management in SSDs

