
1

Hashing Round-down Prefixes for Rapid
Packet Classification

Fong Pong and Nian-Feng Tzeng*

*Center for Advanced Computer Studies
University of Louisiana, Lafayette, USA

2

Outline

•  Packet Classification

•  Review of Existing Decision Tree and Hash Table-based Methods
•  The HaRP (Hash Round-down Prefixes) Design

•  Evaluation Results
•  Conclusion

3

Packet Classification

•  Perform action A on packets of type T, from S to D, …
–  Packet Filtering – Deny/Accept
–  Policy Routing – Send via designated network
–  Accounting & Billing – Precedence and accounting
–  QoS, Drop Precedence, Rate Limiting or Traffic Shaping

•  Fields used can be widely varying
–  Source IP (prefix)
–  Destination IP (prefix)
–  Transport port numbers (Range)
–  Protocol number (Range)
–  VLAN, Flag, …

•  Challenges
–  High speed/throughput
–  Low storage for growing number of rules
–  Incremental update for dynamic environments
–  Adaptive to changing rule specifications for different purposes

4

Prior Arts

5

Decision Tree-Based Methods
(HyperCuts)

•  An “m-ary” decision tree, at each node
–  max m children,
–  “cuts” made to multiple dimensions

•  Challenges
–  Tree size explosion, sensitive to

•  selection of dimensions
•  number of cuts per dimension
•  wildcard fields (e.g. (SIP=*, DIP))

–  Difficulty in performing incremental updates
•  Refinements

–  “Dead pointer” elimination; careful tuning
of a space factor (SF),

–  Use of “Extended Bit Map” to pack pointers
in consecutive locations

–  Push Common Rules to intermediate nodes

00 01 10 11

6

Hash Table-Based (Tuple Space)

•  What is a tuple?
–  A vector of k integer elements, specifying the number of bits of fields used to

form the hash key

–  For example, a 2-D filter tuple (3, 4) means destination IP DIP|3 and source IP SIP|
4

•  Each tuple is realized by a hash table

prefix
length

source IP
0 1 2 3 4 5 6 …. 32

destination IP

0
1
2
3 F1,F2
4
5 R1,R2
6
:

32

7

Challenges and Optimization

•  Identify a tuple
–  e.g. (216.31.219.19, 69.147.114.16, 80, 2408, TCP), how many bits needed for hash

keys?

•  Reduce number of hash probes and keep small hash tables
•  Optimization schemes include Tuple pruning, Rectangle search, Binary Search

on Columns, Diagonal-based Search

prefix
length

source IP
0 1 2 3 4 5 6 …. 32

destination IP

0
1
2
3 f1 f2 f3 f4 F1
4
5
6
:

32

T’
T

T

T T’

8

Practical Implementation
•  Use two Decision Trees to perform Prefix Match

–  Produce two tuple lists

–  Cross product the two lists to reveal the hash tables for probing

9

Summary

•  Decision tree
–  size explosion

–  difficult to do incremental updates
–  no good ways to tune for ideal configurations

•  Tuple space
–  practical implementation uses tries, combined with hash tables

– may suffer as decision trees
–  “many” hash tables to manage

– markers and pre-computed results increase storage

10

HaRP
(Hash Round-down Prefix)

•  Simple method and data structures enable
–  parallel lookup for high performance

–  high memory efficiency and less storage

–  easy incremental updates

11

Two Stages

• Rules are broken into two parts: (SIP, DIP) + (SP, DP, Proto)
–  1st stage percolate rules by prefix match on (SIP, DIP) via a simple hash

table

–  2nd stage inspects further on ASI (Application-Specific-Information); the
rest of fields (SP, DP, Proto) via a simple linear search

(SIP|a, DIP|b) ASI

(SIP|c, DIP|d) ASI

:: ::

(SIP|m, DIP|n) ASI

R1:(sp, dp, pr)
R2:(sp, dp, pr)
R3:(sp, dp, pr)
R4:(sp, dp, pr)

R5:(sp, dp, pr)
R6:(sp, dp, pr)

R7:(sp, dp, pr)
R8:(sp, dp, pr)
R9:(sp, dp, pr)

12

Prefix Matches on (SIP, DIP)
•  Choose Designated Prefix Length (DPL) {l1, l2, … li, … lm}, for example,

{32, 28, 24, 20, 16, 12, 8, 1}

•  Round down prefix P|w, with li ≤ w < li+1, to P|li , e.g. 23 20

•  Each DPL tread logically defines a hash table, but …

•  Achieve higher storage utilization by lumping all tables in one, and each
bucket has k entries to mitigate hash collisions

•  Storage efficiency (and less hash collisions) is further improved by
migrating (SIP, DIP) among buckets

(SIP|a, DIP|b) ASI

(SIP|c, DIP|d) ASI

:: ::

(SIP|m, DIP|n) ASI

(sp, dp, pr)
(sp, dp, pr)
(sp, dp, pr)
(sp, dp, pr)

(sp, dp, pr)
(sp, dp, pr)

13

Re-balancing by Transitive Property

•  Prefixes P1 >> P2 && P2 >> P3  P1 >> P2 >> P3

•  P3 can be installed in buckets identified by hash(P1), hash (P2)
and hash (P3) so long we search all of them, which we must do
anyway

P|32

P|16

P|8

P|24

14

Adding Rules

•  Rule: (SIP|m, DIP|n, sp, dp, tcp)
– Round DIP|m to next tread t1 in DPL

– Round SIP|n to next tread t2 in DPL

•  HaRP – basic algorithm installs (SIP, DIP) in
–  the bucket indexed by Hash(DIP|t1) or

–  the bucket indexed by Hash(SIP|t2)

–  effectively increase the bucket capacity to “2*k”

•  HaRP* - enhanced algorithm installs (SIP, DIP) in (the “Host”)
–  any one of the buckets indexed by Hash(DIP’), where DIP’ >> DIP, or

–  any one of the buckets indexed by Hash(SIP’), where SIP’ >> SIP

–  effectively increase the bucket capacity to “2*k* (is + id)”

15

Lookup (Exact 2m Hash Probes)

16

Evaluation Results

17

Rule Set Characteristics
(ClassBench)

Seed Filters
(#filters)

Synthetic
(#filters)

FW1
(269)

FW-10K
(9311)

ACL1
(752)

ACL-10K
(9603)

IPC1
(1550)

IPC-10K
(9037)

18

Tunable Parameters

19

(SIP, DIP) Hash Distribution
(Bucket Size k = 4)

20

Search of the ASI Lists

21

Deal with Long ASI Lists

•  Divide a long ASI list to several short lists by
selected yardsticks

22

Storage Requirement

23

Measured Lookup Performance

•  Execute the program on Broadcom’s 4-way Multi-core SoC
–  4 x 700MHz MIPS cores

– Each core is a 4-way superscalar design
–  32KB non-blocking L1 cache that allows 8 outstanding misses

–  1MB shared L2 cache

•  Same result trends are observed for more powerful systems
–  AMD Opteron @2.8GHz w/ 1MB Cache
–  Intel Xeon @3.16GHz w/ 6MB Cache

24

Execution Performance

25

Data Footprint

26

HyperCuts

27

Tuple Space

28

HaRP Search Performance

29

Conclusion

• We propose an innovative hash table-based design

•  A two stage method is shown to be effective
•  The transitive property of prefixes allow migration of elements in

the hash table for more even distribution
–  simple data structures

–  simple operations
–  the smallest amount of storage among existing methods

–  easy incremental update

30

Q&A

Thank You!

31

Comparison Between HaRP* and
d-left (Multiple) Hashing

•  d-left Hashing or Multilevel Hashing
–  d hash tables, [s1, s2,… sd]

–  Use d hash functions to identify d buckets

–  Use the least loaded bucket

–  Tie breaker goes to sj with lower number j

•  HaRP* ≈ d-left with subtle differences

HaRP* d-left

#hash functions 1 d (>=2)

#hash tables 1 m*d (d per tread)

#hash probes 2*m 2*m*d

P|32

P|8

P|28

