Hashing Round-down Prefixes for Rapid
Packet Classification

Fong Pong and Nian-Feng Tzeng*

*Center for Advanced Computer Studies
University of Louisiana, Lafayette, USA

Outline

* Packet Classification

* Review of Existing Decision Tree and Hash Table-based Methods
* The HaRP (Hash Round-down Prefixes) Design

° Evaluation Results

* Conclusion

Packet Classification

* Perform action A on packets of type T, from Sto D, ...
— Packet Filtering — Deny/Accept
— Policy Routing — Send via designated network
— Accounting & Billing — Precedence and accounting
— QoS, Drop Precedence, Rate Limiting or Traffic Shaping
* Fields used can be widely varying
— Source IP (prefix)
— Destination IP (prefix)
— Transport port numbers (Range)
— Protocol number (Range)
— VLAN, Flag, ...
* Challenges
— High speed/throughput
— Low storage for growing number of rules
— Incremental update for dynamic environments
— Adaptive to changing rule specifications for different purposes

evérything‘

Prior Arts

Decision Tree-Based Methods
(HyperCuts)

An “m-ary” decision tree, at each node
— max m children, »-fi=o
— “cuts” made to multiple dimensions
Challenges

— Tree size explosion, sensitive to
* selection of dimensions Rules
* number of cuts per dimension
* wildcard fields (e.g. (SIP=*, DIP))
— Difficulty in performing incremental updates
Refinements

— “Dead pointer” elimination; careful tuning
of a space factor (SF),

#splits <SF X\/ #rules holding true at the node

— Use of “Extended Bit Map” to pack pointers The real rules, stored in a consecutive array
in consecutive locations

— Push Common Rules to intermediate nodes A
BROADCOM.
N w

Connecting

everything’

Pushing

C)]

Hash Table-Based (Tuple Space)

* What is a tuple?
— A vector of k integer elements, specifying the number of bits of fields used to

form the hash key
— For example, a 2-D filter tuple (3, 4) means destination IP DIP|3 and source IP SIP|

4
* Each tuple is realized by a hash table

prefix source IP Rules

length 5 6 | ...
0 F1:101*, 1110*
F2: 110*, 0101*

|

R1:10111%, 10*
R2: 11010, 01*

dl uonjeunsap

BBOAADCOM.
g

Connec tin

evérything'

Challenges and Optimization

* |dentify a tuple
— e.g.(216.31.219.19, 69.147.114.16, 80, 2408, TCP), how many bits needed for hash
keys?
* Reduce number of hash probes and keep small hash tables

* Optimization schemes include Tuple pruning, Rectangle search, Binary Search
on Columns, Diagonal-based Search

prefix source IP
length 516]...
Rules

0
Pre-computed F1:101*, 1110*
Best match rules Markers
f4: 101* 111*

£3: 101* 11*
f2: 101* 1*
f1: 101* *

no match

dl uoljeui}sap

Search Start —| n
BROADCOM.
NS -

Connec tin

evérything'

Practical implementation

* Use two Decision Trees to perform Prefix Match
— Produce two tuple lists
— Cross product the two lists to reveal the hash tables for probing

(sipll, dip|m, [spy,, SPyl, [dPjo, dPyl; [Proto,,, protoy])

g

Connecting

everything’

Summary

* Decision tree
— size explosion

— difficult to do incremental updates
— no good ways to tune for ideal configurations

* Tuple space
— practical implementation uses tries, combined with hash tables
— may suffer as decision trees
— “many” hash tables to manage
— markers and pre-computed results increase storage

evc;rything'

HaRP
(Hash Round-down Prefix)

® Simple method and data structures enable
— parallel lookup for high performance
— high memory efficiency and less storage
— easy incremental updates

eve'rything'

Two Stages

* Rules are broken into two parts: (SIP, DIP) + (SP, DP, Proto)

— 1t stage percolate rules by prefix match on (SIP, DIP) via a simple hash
table

— 2" stage inspects further on ASI (Application-Specific-Information); the
rest of fields (SP, DP, Proto) via a simple linear search

a R1:(sp, dp, pr) R5:(sp, dp, pr)
(SIPla, DIPID) " "R2:(sp, dp, pr) . R6:(sp, dp, pr)
(SIP|c, DIP|d) R3:(sp, dp, pr)
R4:(sp, dp, pr)

R7:(sp, dp, pr)
R8:(sp, dp, pr)
R9:(sp, dp, pr)

(SIP|m, DIPn) -

evérything‘

Prefix Matches on (SIP, DIP)

* Choose Designated Prefix Length (DPL) {/,, I, ...

{32, 28, 24, 20, 16, 12, 8, 1}

[, ... 1.}, for example,

Round down prefix P|w, with ;s w<[,,,to P|/; e.g. 23> 20
Each DPL tread logically defines a hash table, but ...

Achieve higher storage utilization by lumping all tables in one, and each
bucket has k entries to mitigate hash collisions

Storage efficiency (and less hash collisions) is further improved by
migrating (SIP, DIP) among buckets

Total entries = B buckets * k entries per bucket

Hash table for prefixes P|/,,

: Hash table for prefixes P|/g

Collapse, :
! 1
*Qy

(SIPJa, DIP|b)

ASI

—> (sp,dp,pr) —> (sp,dp, pr)

(SIP[c, DIP|d)

ASI

(sp, dp, pr) (sp, dp, pr)

(sp, dp, pr)
(sp, dp, pr)

(SIP|m, DIP|n)

ASI

everythung

~

Re-balancing by Transitive Property

° Prefixes P1>> P2 && P2 >>P3 - P1>>P2>>P3

* P3 can be installed in buckets identified by hash(P1), hash (P2)
and hash (P3) so long we search all of them, which we must do

anyway

Hash Table

11000000_10101000_00000000_00000001

11000000_10101000_00000000_00000001

Migrate

11000000_10101000_00000000_00000001

11000000_10101000_00000000_00000001

Connect ing
everything’

Adding Rules

° Rule: (SIP|m, DIP|n, sp, dp, tcp)
— Round DIP|m to next tread t1 in DPL
— Round SIP|n to next tread t2 in DPL
* HaRP - basic algorithm installs (SIP, DIP) in
— the bucket indexed by Hash(DIP|t1) or
— the bucket indexed by Hash(SIP|t2)

— effectively increase the bucket capacity to “2*k”

* HaRP* - enhanced algorithm installs (SIP, DIP) in (the “Host”)

— any one of the buckets indexed by Hash(DIP’), where DIP’ >> DIP, or
— any one of the buckets indexed by Hash(SIP’), where SIP’ >> SIP
— effectively increase the bucket capacity to “2*k* (is + id)”

Lookup (Exact 2m Hash Probes)

Input: (SIP, DIP, SP, DP, Proto)

#define mask(L) ~((0x01 <<L) -1)
int match_rule_id = n_rules;
Hash_Probe (key_select) ::
key = (key_select == USE_DIP) ? dip : sip;
for each tread t in DPL { /* e.g. {32, 24, 20,} */
h = hash_func(key&mask(t), t); /* round down prefix & hash */
for each entry s in hash set LuHa[h] {
if (PfxMatch((s.dip_prefix, dip), s.dip_prefix_length) &&
PfxMatch((s.sip_prefix, sip), s.sip_prefix_length) {
for each asi entry e in the chunk pointed by s.asi_pointer {
if (e.sport_low <= sport <= e.sport_high &&
e.dport_low <= dport <= e.dport_high &&
e.proto_low <= proto <= e.proto_high) {
I* Match! Choose rule with lower rule number */
if (match_rule_id >= e.ruleno)
match_rule_id = e.ruleno;

1

Hash_Probe(USE_DIP);
Hash_Probe(USE_SIP);

H(SIP|32)

~

H(SIP|24)

H(SIP|16)

H(SIP|1)

H(DIP|32)

Hash Table

H(DIP|24)

H(DIP|16)

H(DIP|1)

A

BROADCOM.
N\

Connecting

everything’

Evaluation Results

Rule Set Characteristics
(c'assa‘nch) * 60% of prefix pairs have

« Short prefixes | at least one wild-card
» Weakness of HaRP*, (p1>>p2 i address
means p2->->p1), if p2 is short, [
the chance for finding p1 »j « weakness of Trie-based
dwindles i methods
* Weakness can be easily . |
overcome by |o? - * Tree size explosion,
*» more DPL treads (smaller i difficult to be solved
strides between treads)
* multiple hashing

Seed Filters
(#filters)

Synthetic
(#filters)

FW1
(269)

FW-10K
(9311)

ACL1
(752)

ACL-10K
(9603)

IPC1
(1550)

IPC-10K
(9037)

DIP Prefix Length

» Majority comprises long
and specific prefix pairs

SIP Prefix Length A
BROADCOM.
N w

Connecting

everything’

Tunable Parameters

* Dilation Factor o, table entry provision relative to the number of rules
— In theory, a larger table has fewer overflows

* Number of DPL Treads, |DPL| =m

— More treads gives better (SIP, DIP) load distributions at the cost of more hash
probes (2*m)

— Fewer treads mean wider strides between treads, and more prefixes rounded down
to the same tread, which lead to congestions and busy buckets (overflows)

S e e e

32 28 24 20 16 12

evérything'

(SIP, DIP) Hash Distribution
(Bucket Size k = 4)

HaRP', with dilation factor = 2 and DPL of 8 treads HaRP*, with dilation factor = 2 and DPL of 6 treads
100%
¢ FW1 —&—FW1
= ACL 80% —aACLH

~& - IPC1 & -IPC1

-~ FW-10K 50% 4 -~ FW-10K
—5—ACL10K . —8—ACL10K

-0~ IPC-10K > 40% \ -~ |PC-10K
[)

Percentage(/Total Sets)

20%

- ' 0% 1
7 8 9 10 11 12 13 14 15 16 17 18 19 20 0

Number of Prefix Pairs in a Set

Number of Prefix Pairs in a Set

Overflow occurs when more than 4 eReduee numberebtirad fremfitabtand use HaRP* to migrate elements.
Basic HaRP with 8 treads show 4%-6Regluoeleventiowiog:biickets to 2%.

HaRP*, with dilation factor = 1.5 and DPL of 6 treads HaRP*, with dilation factor = 1.5 and DPL of 4 treads
100%

- FWI -4 FWI

—=—ACUt Red Jlce...table...size,..d,oes‘.not....dramatcallyﬁhanxge the results.
~&-—IPC1 —-&-—IPC1
-~ -FW-10K 60% T -~ - FW-10K
—8—ACL-10K ’ —8—ACL10K
~--0--- IPC-10K

40% 4 o IPC-10K

Percentage(/Total Sets)

I
20%

Percentage(/Total Sets),

0% 4

Number of Prefix Pairs in a Set Number of Prefix Pairs in a Set

Further reducing the number of treads causes more busy buckets, but overflows are still contained.
cannoallno

everything’

Search of the ASI Lists

e FW1

—m— ACLA1

~a-IPC1

-+ - FW-10K

—=— ACL-10K

o IPC-10K

o
[
=
o
[
@
7]
<C
©
A
o
|—
=
[0
(=]
©
ot
[
[
o
S
[
o

Num. of ASI Entries per List

* Most ASl lists are short (90% <=2, 95% <=5)
* Linear search is found to be adequate
* When long ASl lists do happen, they can be dealt with by simple methods

g

Connecting

everything’

Deal with Long ASI Lists

A
216.1

Destination Port

0 2161

Source Port

Divide a long ASI list to several short lists by
selected yardsticks

everything

Storage Requirement

Total Storage (in KB, or
otherwise MB as specified)

Memory Efficiency

HaRP*
(p=1.5)

Tuple
Space

Hyper-
Cuts
(sf=2)

HaRP*
(p=L.5)

Tuple
Space

Hyper-
Cuts
(sf=2)

FW1

4.64

22.72

10.19

1.35

3.60

1.93

ACLI1

13.79

44.19

20.24

1.31

2.51

1.38

IPCl1

29.17

56.26

91.19

1.31

1.55

3.01

FW-5K

101.0

629.5

4.10M

1.32

5.77

46.21

ACL-5K

76.54

157.7

136.8

1.31

1.52

1.59

IPC-5K

90.56

199.4

332.6

1.31

1.91

3.82

FW-10K

217.3

1.68M

25.05M

1.31

7.88

141.0

ACL-10K

192.5

403.4

279.4

1.31

1.79

1.49

IPC-10K

187.5

4498

649.5

1.37

2.12

3.68

|

BROADCOM.
N\

Connecting

everything’

Measured Lookup Performance

* Execute the program on Broadcom’s 4-way Multi-core SoC
— 4 x T00MHz MIPS cores
— Each core is a 4-way superscalar design
— 32KB non-blocking L1 cache that allows 8 outstanding misses
— 1MB shared L2 cache

e Same result trends are observed for more powerful systems

— AMD Opteron @2.8GHz w/ 1MB Cache
— Intel Xeon @3.16GHz w/ 6MB Cache

evc;rything'

(DsINDBAA 01 3[8IS AN

BROADCOM.
everything’

Connecting

N O ® O < AN
N AN o -
| | | | 1 |

(¥)«d¥eH

(¥)dyeH

(¥)erdny

(p)sinoledAH

(2)«d¥eH

(2)dyeH

(2)e1dny

(2)sinoiedAH

(1).d¥eH

(1)dyeH

@

(1)e1dny

8 HyperCuts(4)

@ HaRP(1)
& Tuple(2)
& HaRP

(1)sinpiedAH

20T-1DdI
2A0T-TIOV
20T-TMA
AS-10dI
AS-TIOV
AS-TMA
o4
IOV
MA

Tuple(1)

& HyperCuts(2)
HaRP*(2)

O HaRP4)

.
S)
=
te
E
)
W
o
S
-
4
=)
o
_u

B HyperCuts(1)

O HaRP*(1)
O HaRP(2)
@ Tuple(4)

Data Footprint

B Basic HaRP i W Basic HaRP
O HaRP* i O HaRP*

B Tuple Space B Tuple Space
W HyperCuts i

B HyperCuts

FWi1 ACLI IPC1 FW-5K ACL-5K IPC-5K FW-10K ACL- IPC-10K FW1 ACL1 IPC1 FW-5K ACL-5K IPC-5K FW-10K ACL- IPC-10K
10K 10K

Average number of byte fetched per lookup Worse case number of bytes accessed

+ Average Case: HC & Tuple >> HaRP
* Worst Case: HC >> Tuple >> HaRP
+ FW data sets always show the worst results (due to wildcard addresses)

N S

Connecting

everything’

HyperCuts

Total
Nodes

Total Stored
Rules

Total Pushed
Rules

FW-10K

820,294

6,476,700

121,177

ACL-10K

3,818

16472

1,180

IPC-10K

21,075

73,597

5,769

CE) e

The real rules, stored in a consecutive array

Connecting

everything’

Tuple Space

Average number of accessed tuples per lookup

ACLI

[PC1

FW-5K

ACL-5K

IPC-5K

FW-10K

ACL-10K

IPC-10K

6.30

11.45

68.2

10.68

9.24

67.76

6.73

8.69

SIP

|

BROADCOM.
T -

Connecting

everything’

HaRP Search Performance

LuHa Search ASI Search
* %
p=2,HaRP [p=1.5 HaRP |p =2,HaRP |p=1.5, HaRP
Mean number of prefix pair Mean number of entries

FW1
ACLI1
IPC1
FW-5K
ACL-5K
[PC-5K
FW-10K
ACL-10K
[PC-10K

|

BROADCOM.
N\

Connecting

everything’

Conclusion

* We propose an innovative hash table-based design
* A two stage method is shown to be effective

* The transitive property of prefixes allow migration of elements in
the hash table for more even distribution
— simple data structures
— simple operations
— the smallest amount of storage among existing methods
— easy incremental update

evérything‘

Q&A

Thank You!

Comparison Between HaRP* and

d-left (Multiple) Hashing

* d-left Hashing or Multilevel Hashing
— d hash tables, [s1, s2,... sd]
— Use d hash functions to identify d buckets
— Use the least loaded bucket
— Tie breaker goes to sj with lower number j

* HaRP* = d-left with subtle differences

d-left

#hash functions d (>=2)

#hash tables m*d (d per tread)

#hash probes 2*m*d

Connect ing
everything’

