
1

Zephyr: Efficient Incremental Reprogramming of Sensor
Nodes using Function Call Indirections and Difference

Computation

Rajesh Krishna Panta
Saurabh Bagchi

Samuel P. Midkiff

Dependable Computing Systems Laboratory (DCSL)
Purdue University

2

Introduction: What is Wireless Sensor
Network Reprogramming?

•  Uploading new software while the nodes are in situ,
embedded in their sensing environment

3

Requirements of Network
Reprogramming

•  For correctness, all nodes in the network should
receive the code completely

•  For performance, code upload should minimize
–  reprogramming time so that sensor nodes can quickly

resume their normal function

–  reprogramming energy spent in disseminating code
through the network since sensor nodes have limited
energy

4

Zephyr: Motivation

•  In practice, software running on the sensor nodes evolves with

incremental changes to its functionality
•  TinyOS [Berkeley] does not support dynamic linking on the

sensor nodes
–  Cannot transfer just the components that have changed and link them in at the

node

•  SOS [Han05] and Contiki [Dunkels04] support dynamic
linking on the nodes
–  Limitations of position independent code in SOS
–  Wireless transfer of symbol and relocation tables in Contiki is costly

[Berkeley] www.tinyos.net
[Dunkels04] Dunkels, A., Gronvall, B. and Voigt, T., “Contiki-a lightweight and flexible operating system for
tiny networked sensors”, Proceedings of the 29th Annual IEEE Conference on Local Computer Networks.
[Han05] Han, C.C., Kumar, R., Shea, R., Kohler, E. and Srivastava, M., “A Dynamic Operating System for
Sensor Nodes”, Proceedings of the 3rd Conference on Mobile Systems, applications and services.

5

Zephyr: Approach

•  Instead of transferring the entire image, Zephyr transfers the

difference between the old and new versions of the software

•  The size of the difference is reduced by using
–  application level modifications to mitigate the effect of software

component shifts

–  efficient byte level comparison that compares the binary images to
produce a small difference

•  Sensor nodes build the new image from the difference and the
old image

•  Zephyr transfers relatively small amount of data – reduces
reprogramming time and energy

6

Overview of Zephyr

Application level
modifications

Byte level
comparison

Delta
Script

Application level
modifications

Delta
distribution

stage

Delta script
downloaded

by nodes

New user
application

Old user
application

Old
application

Image
rebuild

and load
stage

New
application

Difference (Delta) generation stage

Executed on host computer

Executed on wireless sensor nodes

7

Rsync

•  Rsync[Tridgell99] algorithm was originally

developed to update binary data between computers
over a low bandwidth network

•  It divides the binary data into fixed size blocks

•  Both sender and receiver compute the pair
(Checksum, MD4) over each block
–  Sensor nodes cannot afford to perform expensive MD4 computation

–  We modify Rsync so that all the expensive operations for delta
computations are performed on the host computer

[Tridgell99] Trigdell, A. , “Efficient algorithms for Sorting and Synchronization”, Ph.D.
Thesis, Australian University, 1999.

8

Rsync Algorithm
 Compute and store (Checksum,MD4)
for each block of the old image

curPosn=0

Is curPosn < S?

Compute Checksum cnew for block of
bytes [curPosn,curPosn+B] of new image

Is cnew present
in the old image?

Does MD4
also match ?

Tag the current block as a matching block and any
previous unmatched bytes as non matching block

curPosn=curPosn+B

curPosn=curPosn+1

Stop
No

Yes

Yes

No

No

Yes

B=Block size

S= Size of new image

9

Delta Script

•  After running Rsync algorithm, Zephyr generates a

list of COPY and INSERT commands for matching
and non matching blocks respectively

COPY <oldOffset> <newOffset> <len>

INSERT <newOffset> <len> <data>

•  Goal : Minimize the size of the delta script that has to
be wirelessly transmitted to all the sensor nodes in the
network

10

Rsync Optimization

•  If there are n contiguous blocks in the new image that match n

contiguous blocks in the old image, Rsync generates n number
of COPY commands

•  Zephyr optimizes Rsync to find the maximal super block (i.e.
largest contiguous matching block)

Rsync:
 COPY y x B

 COPY y+1 x+1 B

Semi optimized Rsync:
 COPY y x 2*B

 (Super block)

Optimized Rsync:
 COPY z x 4*B

 (Maximal super
block)

x
x+1
x+2
x+3
x+4 z+1

z+2
z+3
z+4

z

y+1
y

New Image Old Image

.

.

.

11

Byte Level Comparison Alone is Not
Sufficient

•  To see the drawback of using optimized Rsync alone, consider the
following two cases of software changes:
–  Case 1 (Changing Blink application)

•  Changing an application from blinking a green LED every second to blinking every 2 seconds
•  A single parameter change (very small change)
•  Delta script produced with optimized Rsync is 23 bytes - proportional to the amount of the

actual change made in the software

–  Case 2 (Adding few lines of code to Blink application)
•  This is also a small change
•  But delta script is 2183 bytes - disproportionately larger than the amount of actual change made

in the software

•  None of the functions shift in Case 1. Functions following the added lines
get shifted in Case 2 causing all the call statements referring to the shifted
functions to change

Size of the delta script produced by byte level comparison alone may be huge
even if the actual amount of change is small. So application level modifications

are necessary before performing byte level comparison

12

Possible Solutions

•  [Koshy05] leaves empty space (slop region)

after each function
–  Waste of program memory
–  How to decide the size of the slop region?

•  Use position independent code (PIC) [Han05]
–  Not all architectures and compilers support this. For

example, AVR platforms allow relative jumps within 4KB
only and for MSP430, no compiler is known to fully
support PIC

[Koshy05] Koshy, J. and Pandey,R., “Remote incremental linking for energy-efficient reprogramming of sensor
networks” (EWSN 2005).
[Han05] Han, C.C., Kumar, R., Shea, R., Kohler, E. and Srivastava, M., “A Dynamic Operating System for
Sensor Nodes”, Proceedings of the 3rd Conference on Mobile Systems, applications and services.

13

Function Call Indirections

Old program New program

Old program with Zephyr
function call indirections

New program with Zephyr
function call indirections

14

Other Optimizations

•  Zephyr uses meta commands – higher level commands

that summarize the commonly occurring binary
patterns

•  Zephyr modifies the linking stage to always put the
interrupt service routines at fixed locations in the
program memory so that the targets of the calls in the
interrupt vector table do not change

With application level modifications, size of the delta script is
280 bytes instead of 2183 bytes for case 2

15

Delta Distribution, Image Rebuild and Load Stages

Image 0
(Dissemination component)

Image 1
(Delta script)

Image 2
(User app version n)

Image 3
(User app version n-1)

Unused part

External flash

Bootloader

Program memory

Image 2
(User app
version n)

Image 0
(Dissemination compnent)

Image 1
(Delta script)

Image 2
(User app version n)

Image 3
(User app version n-1)

Unused part

External flash

Bootloader

Program memory

Image 2
(User app
version n)

User app
version n

Ind
Table

User app
version n+1

Ind
Table

- Delta
script

Base
node

Base node Sensor node

(generated
in the host
computer)

Image 1
(New delta script)

Reboot from image 0

Reboot from
Image 0

(broadcast)

Image 0
(Dissemination component)

Image 2
(User app version n)

Image 0
(Dissemmination

component)

Broadcast reboot command
(controlled flooding)

Image 0
(Dissemination component)

Image 2
(User app version n)

Image 0
(Dissemination

component)

Inject delta script

Delta script
disseminated using
3-way handshake

(adv-request-data)

Image 1
(New delta script)

Bootloader

Image 0
(Dissemination
Component)

Image 0
(Dissemination component)

Image 1
(New delta script)

Image 2
(user app version n)

Image 3
(user app version n-1)

Unused part

Image
rebuilder Image 3

(user app version n+1)
Read new

app

Load new
app

Image 3
(user app
ver n+1)

Image 3
(user app version n+1)

Image 0
(Dissemination component)

Program memory External flash

16

Experiments

Case 1 Blink application blinking green LED every second to blinking every

2 seconds.
Small change (SC)

Case 2 Few lines added to the Blink application Moderate change (MC)

Case 3 Blink application to CntToLedsAndRfm Very large change (VLC)

Case 4 CntToLeds to CntToLedsAndRfm Very large change (VLC)

Case 5 Blink to CntToLeds Large change (LC)

Case 6 Blink to Surge Very large change (VLC)

Case 7 CntToRfm to CntToLedsAndRfm Large change (LC)

Case A An application that samples battery voltage and temperature from
MTS310 sensor board to one where few functions are added to sample
the photo sensor also.

Large change (LC)

Case B Few functions were deleted to remove the light sampling features. Large change (LC)

Case C Added the features for sampling all the sensors on the MTS310 board
except light (e.g. magnetometer, accelerometer, microphone).
Collected mean and mean square values of the samples taken during a
user specified window size.

Very large change (VLC)

Case D Same as Case C but with addition of few lines of code to get
microphone peak value over the user specified window size.

Moderate change (MC)

Case E Removed the feature of sensing and wirelessly transmitting to the base
node the microphone mean value.

Moderate change (MC)

Case F Added the feature of allowing the user to put the nodes to sleep for the
user specified duration.

Very large change (VLC)

Case G Changed the microphone gain parameter. Small change (SC)

Standard TinyOS
applications

eStadium
applications

17

Testbed Experiments

•  Topology: 2x2, 3x3, and 4x4 grid networks; Linear network with

2, 3, …, 10 nodes (mica2 motes)

•  A node at one corner of the grid or the end of the line acts as a
base node.
–  Base node generates delta for the various software change cases discussed

above and injects the delta in the network

•  Compare delta script size, network reprogramming time and
energy of Zephyr with Deluge[1], Stream[2], Rsync[3], and
Optimized Rsync
–  Use number of packets transmitted in the network as a measure of

reprogramming energy

[1] J.W. Hui and D. Culler, “The dynamic behavior of a data dissemination protocol for network programming at
scale.” SenSys 2004.
[2] R.K.Panta, I. Khalil, S. Bagchi, “Stream: Low Overhead Wireless Reprogramming for Sensor Networks,”
Infocom 2007.
[3]J. Jeong, D. Culler, “Incremental network programming for wireless sensors,” SECON 2004.

18

Block Size for Byte Level Comparison

•  In all experiments, we use the block size that gives the
smallest delta script for corresponding protocol

19

Size of Delta Script

Case 1 Case 2 Case 3 Case 4 Case

5
Case

6
Case 7 Case

A
Case

B
Case

C
Case D Case E Case F Case G

Deluge : Zephyr
1400.82 85.05 4.52 4.29 8.47 1.83 29.76 7.60 7.76 2.63 203.57 243.25 2.75 1987.2

Stream : Zephyr
779.29 47.31 2.80 2.65 4.84 1.28 18.42 5.06 5.17 1.82 140.93 168.40 1.83 1324.8

Rsync : Zephyr
35.88 20.81 2.06 1.96 3.03 1.14 8.34 3.35 3.38 1.50 36.03 42.03 1.50 49.6

SemiOptRsync :
Zephyr 6.47 11.75 1.80 1.72 2.22 1.11 5.61 2.66 2.71 1.39 14.368 17.66 1.36 6.06

OptRsync :
Zephyr 1.35 7.79 1.64 1.57 2.08 1.07 3.87 2.37 2.37 1.35 7.84 9.016 1.33 1.4

Deluge needs to transfer up to 1987 times more bytes than Zephyr.
Optimized Rsync generates delta script of size up to 9.01 times more than

Zephyr.

Small
change

Moderate
change

Large
change

Very large
change

20

Reprogramming Time

Zephyr is up to 48.9, 40.1 and 4.09 times faster than Deluge, Stream, and
optimized Rsync without application level modifications, respectively.

Class 1 (SC) Class 2 (MC) Class 3 (LC) Class 4 (VLC)

Min Max Avg Min Max Avg Min Max Avg Min Max Avg

Deluge:Zephyr 22.39 48.9 32.25 25.04 48.7 30.79 14.89 33.24 17.42 1.92 3.08 2.1

Stream:Zephyr 14.06 27.84 22.13 16.77 40.1 22.92 10.26 20.86 10.88 1.54 2.23 1.46

Optimized
Rsync:Zephyr

1.01 1.1 1.03 2.01 4.09 2.71 2.05 3.55 2.54 1.27 1.55 1.35

21

Reprogramming Energy

Class 1 (SC) Class 2 (MC) Class 3 (LC) Class 4 (VLC)

Min Max Avg Min Max Avg Min Max Avg Min Max Avg

Deluge:Zephyr 90.01 215.3 162.5 40 204.3 101.1 12.27 55.46 25.65 2.51 2.9 2.35

Stream:Zephyr 53.76 117.9 74.63 28.16 146.1 82.57 8.6 36.19 15.97 1.62 2.17 1.7

Optimized
Rsync:Zephyr

1.13 1.69 1.3 4.38 22.97 9.47 2.72 10.58 3.95 1.38 1.64 1.49

Deluge, Stream, and optimized Rsync without application level modifications
transfer up to 215, 146 and 22 times more bytes than Zephyr, respectively.

22

TOSSIM Simulation Results

Zephyr is up to 92.9, 73.4, and 6.3 times faster than Deluge, Stream, and
optimized Rsync without application level modifications, respectively.

Deluge, Stream, and optimized Rsync transmit up to 146.4, 97.9 and 6.4
times more number of packets than Zephyr, respectively.

23

Conclusion

•  Contributions:

–  Application level modifications

–  Efficient byte level comparison

•  Achievement : Significant reduction in reprogramming
time and energy

•  Future work
–  To remove latency due to function call indirection. When the

bootloader loads the new image from the external flash to the
program memory, it can eliminate the indirection by using the
exact function address from the indirection table

–  Efficient reprogramming of heterogeneous sensor networks

24

Thank you !!!

