
The Beauty and the Beast
Vulnerabilities in Red Hat’s Packages

Stephan Neuhaus <Stephan.Neuhaus@disi.unitn.it>
Thomas Zimmermann <tzimmer@microsoft.com>

mailto:Stephan.Neuhaus@disi.unitn.it
mailto:Stephan.Neuhaus@disi.unitn.it
mailto:Stephan.Neuhaus@disi.unitn.it
mailto:Stephan.Neuhaus@disi.unitn.it

Vulnerabilities are important because fixing them costs a lot of money (2005 FBI study: 67 Bn
$). There are 3241 packages (or were, by August 2008) offered by Red Hat. (There are
certainly more being offered for Red Hat!)

Vulnerabilities are important because fixing them costs a lot of money (2005 FBI study: 67 Bn
$). There are 3241 packages (or were, by August 2008) offered by Red Hat. (There are
certainly more being offered for Red Hat!)

Vulnerabilities are important because fixing them costs a lot of money (2005 FBI study: 67 Bn
$). There are 3241 packages (or were, by August 2008) offered by Red Hat. (There are
certainly more being offered for Red Hat!)

Explain colours: white = no vulnerabilities, blue -> red: progressively more

Explain colours: white = no vulnerabilities, blue -> red: progressively more

Explain colours: white = no vulnerabilities, blue -> red: progressively more

Explain colours: white = no vulnerabilities, blue -> red: progressively more

Explain colours: white = no vulnerabilities, blue -> red: progressively more

Explain colours: white = no vulnerabilities, blue -> red: progressively more

Distribution of RHSAs

Number of RHSAs

N
u
m

b
er

 o
f

P
ac

k
ag

es

0 8 18 30 41 73 88 112 129

1
1
0

1
0
0

6
0
0

kernel, kernel-doc

php-related

top not shown
2/3 of packages

Note logarithmic y-axis. 3241 packages in total, about 2/3 with no known vulnerabilities.

Properties of packages, not properties of the software in the package

Are there properties that
correlate with vulnerabilities?

Properties of packages, not properties of the software in the package

Are there properties that
correlate with vulnerabilities?

Are there properties that
increase or decrease the risk?

Properties of packages, not properties of the software in the package

Are there properties that
correlate with vulnerabilities?

Are there properties that
increase or decrease the risk?

Can we predict whether a package
contains unknown vulnerabilities?

Properties of packages, not properties of the software in the package

Are there properties that
correlate with vulnerabilities?

Are there properties that
increase or decrease the risk?

Can we predict whether a package
contains unknown vulnerabilities?

✔ Dependencies

Properties of packages, not properties of the software in the package

Are there properties that
correlate with vulnerabilities?

Are there properties that
increase or decrease the risk?

Can we predict whether a package
contains unknown vulnerabilities?

✔ Dependencies

✔ Beauties and
Beasts

Properties of packages, not properties of the software in the package

Are there properties that
correlate with vulnerabilities?

Are there properties that
increase or decrease the risk?

Can we predict whether a package
contains unknown vulnerabilities?

✔ Dependencies

✔ Machine Learning

✔ Beauties and
Beasts

Properties of packages, not properties of the software in the package

Dependencies

amanda-server

Dependencies

amanda-server

glibc

Dependencies

amanda-server

readline

amanda glibc xinetd

gnuplot

grep

libtermcapcoreutils

perl

Dependencies

Dependencies and
Vulnerabilities

• Dependency A → B exists because A wants
to use the services offered by B

• Vulnerability exists in A if

• A is in an insecure domain (domains are
characterised by dependencies)

• B is insecure and fix in B spills over to A; or

• B is difficult to use securely

Packages in same domain will tend to have same dependencies.
Domain examples are: compilers, games, office applications,

Red Hat Dependencies

0
10

0
20

0
30

0
40

0

Distribution of Package Dependencies

Number of Packages

N
um

be
r o

f D
ep

en
de

nc
ie

s

0 4 8 13 19 25 31 37 43 50 56 62 75 81 88 96

kdebase

development packages
containing headers

Distribution is apparently logarithmic with a long tail. This is not transitive closure. kdebase
has 14 RHSAs (but 96 dependencies), kernel has 129 (but 0 dependencies), so number of
dependencies is not a good predictor of number of RHSAs

Are there properties that
correlate with vulnerabilities?

Are there properties that
increase or decrease the risk?

Can we predict whether a package
contains unknown vulnerabilities?

✔ Dependencies

✔ Machine Learning

✔ Beauties and
Beasts

Where does the addition of
dependencies significantly increase/

decrease the risk?

Where does the addition of
dependencies significantly increase/

decrease the risk?

1. Data structure: concept lattice

Where does the addition of
dependencies significantly increase/

decrease the risk?

1. Data structure: concept lattice

2. Compute change in risk

Where does the addition of
dependencies significantly increase/

decrease the risk?

1. Data structure: concept lattice

2. Compute change in risk

3. Include only statistically significant changes

Step 1: Data Structure

Start with no knowledge about dependencies (top node contains all packages). Add
knowledge of glibc (node contains all packages depending on glibc), then qt (node contains
all packages depending on qt and glibc), then xorg-x11-libs (node contains all packages
depending on xorg-x11-libs and qt and glibc). Since we know the packages contained in
each node, we can compute the probability of a package in this node being vulnerable.

∅

Step 1: Data Structure

Start with no knowledge about dependencies (top node contains all packages). Add
knowledge of glibc (node contains all packages depending on glibc), then qt (node contains
all packages depending on qt and glibc), then xorg-x11-libs (node contains all packages
depending on xorg-x11-libs and qt and glibc). Since we know the packages contained in
each node, we can compute the probability of a package in this node being vulnerable.

Block 1: All packages depending on glibc

∅

glibc

Step 1: Data Structure

Start with no knowledge about dependencies (top node contains all packages). Add
knowledge of glibc (node contains all packages depending on glibc), then qt (node contains
all packages depending on qt and glibc), then xorg-x11-libs (node contains all packages
depending on xorg-x11-libs and qt and glibc). Since we know the packages contained in
each node, we can compute the probability of a package in this node being vulnerable.

Block 1: All packages depending on glibc

kdelibs

∅

glibc

Step 1: Data Structure

…

Start with no knowledge about dependencies (top node contains all packages). Add
knowledge of glibc (node contains all packages depending on glibc), then qt (node contains
all packages depending on qt and glibc), then xorg-x11-libs (node contains all packages
depending on xorg-x11-libs and qt and glibc). Since we know the packages contained in
each node, we can compute the probability of a package in this node being vulnerable.

Block 1: All packages depending on glibc
Block 2: All packages depending on glibc, qt
Block 3: All packages depending on glibc, qt, xorg-x11-libs

kdelibs

qt

xorg-x11-libs

∅

glibc

Step 1: Data Structure

…

Start with no knowledge about dependencies (top node contains all packages). Add
knowledge of glibc (node contains all packages depending on glibc), then qt (node contains
all packages depending on qt and glibc), then xorg-x11-libs (node contains all packages
depending on xorg-x11-libs and qt and glibc). Since we know the packages contained in
each node, we can compute the probability of a package in this node being vulnerable.

Block 1: All packages depending on glibc
Block 2: All packages depending on glibc, qt
Block 3: All packages depending on glibc, qt, xorg-x11-libs

kdelibs

qt

xorg-x11-libs

∅

glibc

Step 1: Data Structure

…

Start with no knowledge about dependencies (top node contains all packages). Add
knowledge of glibc (node contains all packages depending on glibc), then qt (node contains
all packages depending on qt and glibc), then xorg-x11-libs (node contains all packages
depending on xorg-x11-libs and qt and glibc). Since we know the packages contained in
each node, we can compute the probability of a package in this node being vulnerable.

∅
32.9% vulnerable

(1065 out of 3241)

glibc
33.5% vulnerable
(692 out of 2066)

kdelibs
85.6% vulnerable
(143 out of 167)

glibc, qt
77.4% vulnerable
(120 out of 155)

glibc, qt, xorg-x11-libs
79.4% vulnerable

(27 out of 34)

Step 2:
Compute Risk Change

Question: Is the rise of 43.9% when going from {glibc} to {glibc, qt} just some random
fluctuation? We test this using statistical tests (Chi^2 or Fischer exact) and discard the
“random fluctuation” hypothesis when the probability of such a increase happening
by chance is 1% or less. So we expect that we wrongly attribute an increase to an
actual effect 1% of the time.

∅
32.9% vulnerable

(1065 out of 3241)

glibc
33.5% vulnerable
(692 out of 2066)

kdelibs
85.6% vulnerable
(143 out of 167)

glibc, qt
77.4% vulnerable
(120 out of 155)

glibc, qt, xorg-x11-libs
79.4% vulnerable

(27 out of 34)

+0.6% +52.7%

+43.9%

+2.0%

Step 2:
Compute Risk Change

Question: Is the rise of 43.9% when going from {glibc} to {glibc, qt} just some random
fluctuation? We test this using statistical tests (Chi^2 or Fischer exact) and discard the
“random fluctuation” hypothesis when the probability of such a increase happening
by chance is 1% or less. So we expect that we wrongly attribute an increase to an
actual effect 1% of the time.

∅
32.9% vulnerable

(1065 out of 3241)

glibc
33.5% vulnerable
(692 out of 2066)

kdelibs
85.6% vulnerable
(143 out of 167)

glibc, qt
77.4% vulnerable
(120 out of 155)

glibc, qt, xorg-x11-libs
79.4% vulnerable

(27 out of 34)

+0.6% +52.7%

+43.9%

+2.0%

Risk change by adding qt
only when already dependent
on glibc! (glibc is the context)

Step 2:
Compute Risk Change

Question: Is the rise of 43.9% when going from {glibc} to {glibc, qt} just some random
fluctuation? We test this using statistical tests (Chi^2 or Fischer exact) and discard the
“random fluctuation” hypothesis when the probability of such a increase happening
by chance is 1% or less. So we expect that we wrongly attribute an increase to an
actual effect 1% of the time.

• Risk changes with significance p < 0.01

• No significant and more general context
exists for this dependency

• Risk goes up: “beast”

• Risk goes down: “beauty”

Step 3: Include Only Significant Changes

Context Dependency Risk before Risk after Change

∅ openoffice.org-core 0.329 1.000 0.671

∅ kdelibs 0.329 0.856 0.527

∅ cups-libs 0.329 0.774 0.445

∅ libmng 0.329 0.769 0.440

glibc qt 0.335 0.774 0.439

glibc krb5-libs 0.335 0.769 0.434

Selected Beasts
The complete list can be found in the paper

Explain packages, don’t just list names

Context Dependency Risk before Risk after Change

glibc xorg-x11-server-Xorg 0.335 0.015 -0.320
compat-

glibc, glibc,
zlib

audiofile 0.613 0.359 -0.254

glibc, glibc-
debug, zlib audiofile 0.590 0.351 -0.239

∅ gnome-keyring 0.329 0.101 -0.228

glibc, zlib gnome-libs 0.456 0.281 -0.175

∅ python 0.329 0.132 -0.197

Selected Beauties
The complete list can be found in the paper

Explain possible consequences: new applications: choose less risky dependencies

Are there properties that
correlate with vulnerabilities?

Are there properties that
increase or decrease the risk?

Can we predict whether a package
contains unknown vulnerabilities?

✔ Dependencies

✔ Machine Learning

✔ Beauties and
Beasts

Is it possible to predict…

• from the dependencies which packages are
vulnerable (classification)?

• which packages will have the most vulnerabilities
(ranking)?

Experiment

X Y

D
ep

en
de

nc
ie

s

Vu
ln

er
ab

ili
tie

s

Repeat 50x
This “self-testing” is a standard evaluation technique for machine learning methods

Experiment

X Y

D
ep

en
de

nc
ie

s

Vu
ln

er
ab

ili
tie

s

Repeat 50x
This “self-testing” is a standard evaluation technique for machine learning methods

Experiment

f

X Y
Train

Model

D
ep

en
de

nc
ie

s

Vu
ln

er
ab

ili
tie

s

Repeat 50x
This “self-testing” is a standard evaluation technique for machine learning methods

Experiment

f

X Y
Train

Test

Y’

Model

D
ep

en
de

nc
ie

s

Vu
ln

er
ab

ili
tie

s

Repeat 50x
This “self-testing” is a standard evaluation technique for machine learning methods

Experiment

f

X Y
Train

Test

Y’

Model

D
ep

en
de

nc
ie

s

Vu
ln

er
ab

ili
tie

s

Repeat 50x
This “self-testing” is a standard evaluation technique for machine learning methods

Indicators

Don’t mention -1. We want values near 1.

Indicators
C

la
ss

ifi
ca

tio
n

Don’t mention -1. We want values near 1.

Indicators
precision =

true positives

true positives + false positives

recall =
true positives

true positives + false negativesC
la

ss
ifi

ca
tio

n

Don’t mention -1. We want values near 1.

Indicators
precision =

true positives

true positives + false positives

recall =
true positives

true positives + false negativesC
la

ss
ifi

ca
tio

n

0

1

Don’t mention -1. We want values near 1.

Indicators
precision =

true positives

true positives + false positives

recall =
true positives

true positives + false negativesC
la

ss
ifi

ca
tio

n
R

an
ki

ng

0

1

Don’t mention -1. We want values near 1.

Indicators
precision =

true positives

true positives + false positives

recall =
true positives

true positives + false negatives

1
2
3
4

1
2
3
4

C
la

ss
ifi

ca
tio

n
R

an
ki

ng

0

1

1

Don’t mention -1. We want values near 1.

Indicators
precision =

true positives

true positives + false positives

recall =
true positives

true positives + false negatives

1
2
3
4

1
2
3
4

1
2
3
4

2
4
1
3

C
la

ss
ifi

ca
tio

n
R

an
ki

ng

0

1

0 1

Don’t mention -1. We want values near 1.

Indicators
precision =

true positives

true positives + false positives

recall =
true positives

true positives + false negatives

1
2
3
4

4
3
2
1

1
2
3
4

1
2
3
4

1
2
3
4

2
4
1
3

C
la

ss
ifi

ca
tio

n
R

an
ki

ng

0

1

-1 0 1

Don’t mention -1. We want values near 1.

Indicators
precision =

true positives

true positives + false positives

recall =
true positives

true positives + false negatives

1
2
3
4

4
3
2
1

1
2
3
4

1
2
3
4

1
2
3
4

2
4
1
3

C
la

ss
ifi

ca
tio

n
R

an
ki

ng

0

1

-1 0 1

Don’t mention -1. We want values near 1.

●●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

● ●●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●
● ●

●

●

●

0.4 0.5 0.6 0.7 0.8 0.9

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Precision versus Recall

Recall

Pr
ec

isi
on

● SVM
Decision Tree

Results of 50 random splits: train with 2/3 of the packages, predict with the rest, record
precision and recall.

●●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

● ●●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●
● ●

●

●

●

0.4 0.5 0.6 0.7 0.8 0.9

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Precision versus Recall

Recall

Pr
ec

isi
on

● SVM
Decision Tree

Results of 50 random splits: train with 2/3 of the packages, predict with the rest, record
precision and recall.

●●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

● ●●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●
● ●

●

●

●

0.4 0.5 0.6 0.7 0.8 0.9

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Precision versus Recall

Recall

Pr
ec

isi
on

● SVM
Decision Tree

Results of 50 random splits: train with 2/3 of the packages, predict with the rest, record
precision and recall.

●●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

● ●●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●
● ●

●

●

●

0.4 0.5 0.6 0.7 0.8 0.9

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Precision versus Recall

Recall

Pr
ec

isi
on

● SVM
Decision Tree

Decision Trees worse than SVMs

Results of 50 random splits: train with 2/3 of the packages, predict with the rest, record
precision and recall.

●●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

● ●●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●
● ●

●

●

●

0.4 0.5 0.6 0.7 0.8 0.9

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Precision versus Recall

Recall

Pr
ec

isi
on

● SVM
Decision Tree

Decision Trees worse than SVMs

Results of 50 random splits: train with 2/3 of the packages, predict with the rest, record
precision and recall.

●●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

● ●●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●
● ●

●

●

●

0.4 0.5 0.6 0.7 0.8 0.9

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Precision versus Recall

Recall

Pr
ec

isi
on

● SVM
Decision Tree

Decision Trees worse than SVMs

Results of 50 random splits: train with 2/3 of the packages, predict with the rest, record
precision and recall.

●●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

● ●●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●
● ●

●

●

●

0.4 0.5 0.6 0.7 0.8 0.9

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Precision versus Recall

Recall

Pr
ec

isi
on

● SVM
Decision Tree

Predictions are correct
83% of the time

65% of all vulnerable
packages predicted

Results of 50 random splits: train with 2/3 of the packages, predict with the rest, record
precision and recall.

0.52 0.54 0.56 0.58 0.60 0.62

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Rank Correlation

Rank Correlation Coefficient

Fr
ac

tio
n

of
 S

pl
its

●
●

●
●

●
●

●
●
●

●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●

●
●

●
●

●
●

Even though “self-evaluation” is a standard technique, what we realy want to know is if the
method is able to predict the future... (next slide)

January 1, 2008 August 31, 2008

predict evaluate

Top 25 out of 2181 73 new vulnerable

Package Name

mod_php

php-dbg

php-dbg-server

perl-DBD-Pg

kudzu

irda-utils

hpoj

libbdevid-python

mrtg

evolution28-evolution-data-server

lilo

ckermit

dovecot

kde2-compat

gq

vorbis-tools

k3b

taskjuggler

ddd

tora

libpurple

libwvstreams

pidgin

linuxwacom

policycoreutils-newrole

…

2156 further packages

January 1, 2008 August 31, 2008

predict evaluate

Top 25 out of 2181 73 new vulnerable

Package Name

mod_php

php-dbg

php-dbg-server

perl-DBD-Pg

kudzu

irda-utils

hpoj

libbdevid-python

mrtg

evolution28-evolution-data-server

lilo

ckermit

dovecot

kde2-compat

gq

vorbis-tools

k3b

taskjuggler

ddd

tora

libpurple

libwvstreams

pidgin

linuxwacom

policycoreutils-newrole

…

2156 further packages

January 1, 2008 August 31, 2008

predict evaluate

Top 25 out of 2181 73 new vulnerable

Patch published 2009-05-12

Package Name

mod_php

php-dbg

php-dbg-server

perl-DBD-Pg

kudzu

irda-utils

hpoj

libbdevid-python

mrtg

evolution28-evolution-data-server

lilo

ckermit

dovecot

kde2-compat

gq

vorbis-tools

k3b

taskjuggler

ddd

tora

libpurple

libwvstreams

pidgin

linuxwacom

policycoreutils-newrole

…

2156 further packages

Consequences

• When building new applications, choose less
risky dependencies

– use GNU-SASL instead of cyrus-sasl,
Gnome instead of KDE

• When maintaining existing applications,
prioritise resources

– look at krb5-libs, not at gkermit

Conclusions

• Vulnerabilities correlate with dependencies

• Identification of risky dependencies

• Prediction with high precision, recall, correlation

http://research.microsoft.com/projects/esm/
http://www.artdecode.de/

* Have we worked with Red Hat: yes, have received positive feedback
* Usage Data: nonexistent
* Explain Correlation: See previous slide: domains
* This is not causation: true, but we have high predictive value, so who cares?
* Base Set: future work

http://research.microsoft.com/projects/esm/
http://research.microsoft.com/projects/esm/
http://research.microsoft.com/projects/esm/
http://research.microsoft.com/projects/esm/

