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Vulnerabilities are important because fixing them costs a lot of money (2005 FBI study: 67 Bn 
$). There are 3241 packages (or were, by August 2008) offered by Red Hat. (There are 
certainly more being offered for Red Hat!)
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Note logarithmic y-axis. 3241 packages in total, about 2/3 with no known vulnerabilities.
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Dependencies and 
Vulnerabilities

• Dependency A → B exists because A wants 
to use the services offered by B

• Vulnerability exists in A if

• A is in an insecure domain (domains are 
characterised by dependencies)

• B is insecure and fix in B spills over to A; or

• B is difficult to use securely

Packages in same domain will tend to have same dependencies.
Domain examples are: compilers, games, office applications, 



Red Hat Dependencies 
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Distribution is apparently logarithmic with a long tail. This is not transitive closure. kdebase 
has 14 RHSAs (but 96 dependencies), kernel has 129 (but 0 dependencies), so number of 
dependencies is not a good predictor of number of RHSAs
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Where does the addition of 
dependencies significantly increase/

decrease the risk?

1. Data structure: concept lattice

2. Compute change in risk

3. Include only statistically significant changes



Step 1: Data Structure

Start with no knowledge about dependencies (top node contains all packages). Add 
knowledge of glibc (node contains all packages depending on glibc), then qt (node contains 
all packages depending on qt and glibc), then xorg-x11-libs (node contains all packages 
depending on xorg-x11-libs and qt and glibc).  Since we know the packages contained in 
each node, we can compute the probability of a package in this node being vulnerable.



∅

Step 1: Data Structure

Start with no knowledge about dependencies (top node contains all packages). Add 
knowledge of glibc (node contains all packages depending on glibc), then qt (node contains 
all packages depending on qt and glibc), then xorg-x11-libs (node contains all packages 
depending on xorg-x11-libs and qt and glibc).  Since we know the packages contained in 
each node, we can compute the probability of a package in this node being vulnerable.



Block 1: All packages depending on glibc

∅

glibc

Step 1: Data Structure

Start with no knowledge about dependencies (top node contains all packages). Add 
knowledge of glibc (node contains all packages depending on glibc), then qt (node contains 
all packages depending on qt and glibc), then xorg-x11-libs (node contains all packages 
depending on xorg-x11-libs and qt and glibc).  Since we know the packages contained in 
each node, we can compute the probability of a package in this node being vulnerable.



Block 1: All packages depending on glibc

kdelibs

∅

glibc

Step 1: Data Structure

…

Start with no knowledge about dependencies (top node contains all packages). Add 
knowledge of glibc (node contains all packages depending on glibc), then qt (node contains 
all packages depending on qt and glibc), then xorg-x11-libs (node contains all packages 
depending on xorg-x11-libs and qt and glibc).  Since we know the packages contained in 
each node, we can compute the probability of a package in this node being vulnerable.



Block 1: All packages depending on glibc
Block 2: All packages depending on glibc, qt
Block 3: All packages depending on glibc, qt, xorg-x11-libs

kdelibs

qt

xorg-x11-libs

∅

glibc

Step 1: Data Structure

…

Start with no knowledge about dependencies (top node contains all packages). Add 
knowledge of glibc (node contains all packages depending on glibc), then qt (node contains 
all packages depending on qt and glibc), then xorg-x11-libs (node contains all packages 
depending on xorg-x11-libs and qt and glibc).  Since we know the packages contained in 
each node, we can compute the probability of a package in this node being vulnerable.



Block 1: All packages depending on glibc
Block 2: All packages depending on glibc, qt
Block 3: All packages depending on glibc, qt, xorg-x11-libs

kdelibs

qt

xorg-x11-libs

∅

glibc

Step 1: Data Structure

…

Start with no knowledge about dependencies (top node contains all packages). Add 
knowledge of glibc (node contains all packages depending on glibc), then qt (node contains 
all packages depending on qt and glibc), then xorg-x11-libs (node contains all packages 
depending on xorg-x11-libs and qt and glibc).  Since we know the packages contained in 
each node, we can compute the probability of a package in this node being vulnerable.



∅
32.9% vulnerable

(1065 out of 3241)

glibc
33.5% vulnerable
(692 out of 2066)

kdelibs
85.6% vulnerable
(143 out of 167)

glibc, qt
77.4% vulnerable
(120 out of 155)

glibc, qt, xorg-x11-libs
79.4% vulnerable

(27 out of 34)

Step 2:
Compute Risk Change

Question: Is the rise of 43.9% when going from {glibc} to {glibc, qt} just some random 
fluctuation? We test this using statistical tests (Chi^2 or Fischer exact) and discard the 
“random fluctuation” hypothesis when the probability of such a increase happening 
by chance is 1% or less.  So we expect that we wrongly attribute an increase to an 
actual effect 1% of the time.
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• Risk changes with significance p < 0.01

• No significant and more general context 
exists for this dependency

• Risk goes up: “beast”

• Risk goes down: “beauty”

Step 3: Include Only Significant Changes



Context Dependency Risk before Risk after Change

∅ openoffice.org-core 0.329 1.000 0.671

∅ kdelibs 0.329 0.856 0.527

∅ cups-libs 0.329 0.774 0.445

∅ libmng 0.329 0.769 0.440

glibc qt 0.335 0.774 0.439

glibc krb5-libs 0.335 0.769 0.434

Selected Beasts
The complete list can be found in the paper

Explain packages, don’t just list names



Context Dependency Risk before Risk after Change

glibc xorg-x11-server-Xorg 0.335 0.015 -0.320
compat-

glibc, glibc, 
zlib

audiofile 0.613 0.359 -0.254

glibc, glibc-
debug, zlib audiofile 0.590 0.351 -0.239

∅ gnome-keyring 0.329 0.101 -0.228

glibc, zlib gnome-libs 0.456 0.281 -0.175

∅ python 0.329 0.132 -0.197

Selected Beauties
The complete list can be found in the paper

Explain possible consequences: new applications: choose less risky dependencies
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Is it possible to predict…

• from the dependencies which packages are 
vulnerable (classification)?

• which packages will have the most vulnerabilities 
(ranking)?
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83% of the time
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Results of 50 random splits: train with 2/3 of the packages, predict with the rest, record 
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Even though “self-evaluation” is a standard technique, what we realy want to know is if the 
method is able to predict the future... (next slide)
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Consequences

• When building new applications, choose less 
risky dependencies 

– use GNU-SASL instead of cyrus-sasl, 
Gnome instead of KDE

• When maintaining existing applications, 
prioritise resources 

– look at krb5-libs, not at gkermit



Conclusions

• Vulnerabilities correlate with dependencies

• Identification of risky dependencies

• Prediction with high precision, recall, correlation

http://research.microsoft.com/projects/esm/
http://www.artdecode.de/

* Have we worked with Red Hat: yes, have received positive feedback
* Usage Data: nonexistent
* Explain Correlation: See previous slide: domains
* This is not causation: true, but we have high predictive value, so who cares?
* Base Set: future work

http://research.microsoft.com/projects/esm/
http://research.microsoft.com/projects/esm/
http://research.microsoft.com/projects/esm/
http://research.microsoft.com/projects/esm/

