Linux Kernel Developer
Responses to
Static Analysis

Bug Reports

Philip J. Guo and Dawson Engler

Stanford University
USENIX Annual Technical Conference A
e

June 18, 2009

Questions

1. Which static analysis bug
reports do developers
actually look at?

2. How are triaged reports
clustered?

3. Are static analysis bugs
actually meaningful?

Methodology

e Quantitative

- 2,125 bug reports in Linux kernel from
static code analysis tool (Coverity)

- Source control revision history (BK & GIT)

e Qualitative

- Email questionnaire

Which static analysis bug

reports do developers
actually look at?

Which bug reports do developers actually look at?

1. depends on checker type

Checker type # reports % triaged relative FP
dynamic buffer overrun

read of uninitialized values

dead code

static buffer overrun

unsafe use before negative test
type/allocation size mismatch
unsafe use before null test
resource leak

null pointer dereference

unsafe use of null return value

use resource after free

unsafe use of negative return value

Which bug reports do developers actually look at?

1. depends on checker type

Checker type # reports % triaged relative FP
dynamic buffer overrun 5 3 Most
read of uninitialized values critical
dead code b

static buffer overrun ugs
unsafe use before negative test
type/allocation size mismatch
unsafe use before null test
resource leak

null pointer dereference

unsafe use of null return value

use resource after free

unsafe use of negative return value

Most false
positives

Which bug reports do developers actually look at?

2. reports in younger files

% triaged vs. file age in years

/1%

+ Lo
R o o o o o S A B S S R I

549%

"More often the people involved in
creating those [younger] files will still be

active kernel developers, and still
interested in the area those files cover.”

Which bug reports do developers actually look at?

3. reports in smaller files

% triaged vs. num. lines in file

64%

1 1
— M ————
1

+ ' :
+++++++++&¢++++++++++

53%

Ll
2000 lines

400 700 1000 1300 1600 1900 2200

Threshold for num. linss in fils
(zymbols in gray are NOT significant at p = 0.01)

“"Possibly, perhaps due to the buried in
warnings syndrome. Perhaps also because
smaller files are easier to modify.”

How are triaged reports

clustered?

How are triaged reports clustered?

1. clustered in space

given:
unconditional

> 1 reports triaged
> 2 reports triaged

Pr(all reports triaged)

Triage all
reports

How are triaged reports clustered?

1. clustered in space

given:
unconditional

> 1 reports triaged
> 2 reports triaged
given:

unconditional

> 1 reports un-triaged
> 2 reports un-triaged

Pr(all reports triaged)

Pr(all reports un-triaged)

Triage all
reports

Triage no
reports

How are triaged reports clustered?

2. clustered 1n time

What happened to reports 1n prev. scan: | Pr(triage)
0 reports triaged

(counting all files with reports in >1 scan)

How are triaged reports clustered?

2. clustered 1n time

What happened to reports 1n prev. scan: | Pr(triage)
0 reports triaged
> 1 reports triaged

(counting all files with reports in >1 scan)

“triaging bug reports can be
quite intimidating [...] Once a
developer has got some
confidence up in a subsystem
they are more likely to step up
to the plate and triage again.”

How are triaged reports clustered?

2. clustered 1n time

What happened to reports 1n prev. scan: | Pr(triage)
0 reports triaged

> 1 reports triaged

~> 1 marked true bug

= 1 marked true bug and fixed

(counting all files with reports in >1 scan)

“triaging bug reports can be
quite intimidating [...] Once a
developer has got some
confidence up in a subsystem
they are more likely to step up
to the plate and triage again.”

How are triaged reports clustered?

2. clustered 1n time

What happened to reports 1n prev. scan: | Pr(triage)
0 reports triaged 50%
> 1 reports triaged 59%
~> 1 marked true bug 67%
= 1 marked true bug and fixed 80%
~> 1 marked false positive 56%

(counting allXiles with reports in >1 scan)

“triaging bug reports can be "False positives tend to lower
quite intimidating [...] Once a the maintainer’s trust of the
developer has got some tool and are more likely then
confidence up in a subsystem to let future reports from the
they are more likely to step up same tool slip.”

to the plate and triage again.”

Are static analysis bugs

actually meaningful?

Are static analysis bugs actually meaningful?

Static analysis bug: null pointer
dereference on Line 36 of sound__driver.c

User-reported bug: Sound Blaster card
emits weird tone when playing demo.wav

Are static analysis bugs actually meaningful?

Static analysis bugs predict
user-reported bugs

Time elapsed since 1nitial scan on Feb 24, 2006
Files in initial scan with: | # files | 1 month 3 months 6 months 1 year & entire lifetime

Percent of files containing fixes for user-reported bugs
no Coverity reports
> 1 reports
> 1 triaged reports
= 2 1eports

(counting all .c files alive during initial scan)

Are static analysis bugs actually meaningful?

Static analysis bugs predict
user-reported bugs

Time elapsed since 1nitial scan on Feb 24, 2006
Files in initial scan with: | # files | 1 month 3 months 6 months 1 year & entire lifetime

Percent of files containing fixes for user-reported bugs
no Coverity reports 4%
> 1 reports
> 1 triaged reports
= 2 1eports

(counting all .c files alive during initial scan)

Are static analysis bugs actually meaningful?

Static analysis bugs predict
user-reported bugs

Time elapsed since 1nitial scan on Feb 24, 2006
Files in initial scan with: | # files | 1 month 3 months 6 months 1 year & entire lifetime

Percent of files containing fixes for user-reported bugs
no Coverity reports 4% 9% 17% 35% 45%
> 1 reports 13% 24% 39% 55% 66%
> 1 triaged reports 14% 25% 41% 58% 68%
> 2 reports 17% 28% 45% 65% 75%

(counting all .c files alive during initial scan)

Are static analysis bugs actually meaningful?

Static analysis bugs predict
user-reported bugs

Time elapsed since 1nitial scan on Feb 24, 2006
Files in initial scan with: | # files | 1 month 3 months 6 months 1 year & entire lifetime

Percent of files containing fixes for user-reported bugs
no Coverity reports 4% 9% 17% 35% 45% 69%
> 1 reports 13% 24% 39% o 66% 92%
> 1 triaged reports 14% 41%
= 2 1eports 17% 28% 45%
Mean number of fixes for user-reported bugs per file
no Coverity reports 7,5C 0.06
> 1 reports 53 0.17
> 1 triaged reports 0.18
> 2 reports 9’ 0.28

(counting all .c files alive during initial scan)

Are static analysis bugs actually meaningful?

Static analysis bugs predict
user-reported bugs

Time elapsed since 1nitial scan on Feb 24, 2006
Files in initial scan with: | # files | 1 month 3 months 6 months 1 year & entire lifetime

Percent of files containing fixes for user-reported bugs
no Coverity reports 4% 9% 17% 35% 45% 69%
= 1 reports 3% 24% 39% Do 66% 92%
> 1 triaged reports 41%
= 2 reports ' 28% 45%
Mean number of fixes for user-reported bugs per file
no Coverity reports 7,5C 0.12 0.27 0.61 098
> 1 reports 53 0.38 0.72 1.35 17
> 1 triaged reports 0.40 0.75 1.44 ¥,

= 2 reports 9 0.63 1.06 1.86 79

(counting all .c files alive during initial scan)

Are static analysis bugs actually meaningful?

“"Coverity and similar tools are a true
opportunity for us to find out and study
suspect parts of our code. Please do not
misuse these tools! The goal is NOT to
make the tools happy next time you run

them, but to actually fix the problems,
once and for all. If you focus too much on
fixing the problems quickly rather than
fixing them cleanly, then we forever lose
the opportunity to clean our code, because
the problems will then be hidden.”

Conclusions: How to make static
analysis tools more effective

. Rank and filter reports by likelihood
of being triaged
. Deeper analysis for important code

. Use to direct attention to code more
likely to contain user-reported bugs

. Encourage finding deeper root
causes rather than quick fixes

"The kernel is such a big
project that triaging bug
reports can be quite
intimidating. Once a developer

has got some confidence up in
a subsystem they are more

likely to step up to the plate
and triage again.”

"It’s horrible, but after
looking deeper, including
looking at the callers, I'm

now convinced it’s correct
(this code only gets called in
64bit kernels where longs
are double the size of ints).”

"I have looked at a few coverity
defects and skipped over them
because a) they looked too hard

to diagnose b) They looked like
false positives but I didn’t have
enough knowledge about the
code to be positive”

"Many maintainers have an
inbox-is-todo-list mentality when
it comes to bugfixes. If they

receive a scan report and don’t
act on it quickly then it’s likely
it’s left the inbox and left the
maintainer’s thoughts forever.”

“"Considering the very important flow
of patches you are sending these
days, I have to admit I am quite
suspicious that you don’t really

investigate all issues individually as
you should, but merely want to fix as
many bugs as possible in a short
amount of time. This is not, IMVHO,
what needs to be done.”

