
STOW: Spatially and Temporally
Optimized Write Caching Algorithm

Binny S. Gill, Michael Ko, Biplob Debnath, Wendy
Belluomini
IBM Almaden Research Center, University of Minnesota

© 2009 IBM Corporation IBM Almaden Research Center

2

  An eviction problem (like read caches)

  Goal: Keep the disk heads busy for the least time

  Some exploit temporal locality

–  To reduce number of destages

–  LRU, CLOCK, FBR, LRU-2, 2Q, LRFU, LIRS, MQ, ARC, CAR

  Some exploit spatial locality

–  Apply temporal locality rules to larger units

–  Tracks (multiple pages), stripes (multiple tracks)

  Some create spatial locality via reordering

–  To reduce the average cost of destages

–  SSTF, SATF, SCAN, CSCAN, LOOK, VSCAN, GSTF, WSTF

  Some do all of the above: WOW (earlier work)

Prior Art: Write Cache Algorithms

A B
Track t

© 2009 IBM Corporation IBM Almaden Research Center

3

WOW Algorithm

CLOCK CSCAN

WOW

© 2009 IBM Corporation IBM Almaden Research Center

4

Is there more to it?

The 5 properties a good write cache serving disks
needs to have:

 Harness temporal locality

 Create spatial locality

 Maintain free space

 Distribute the write load uniformly over time

 Also serve read hits

© 2009 IBM Corporation IBM Almaden Research Center

5

What about the Destage Rate?

  Most cache research revolves around the eviction or
destage order problem

  Destage rate is under-studied, but surprisingly is extremely
important for performance

  If you can tame the destage rate, there is another gold mine
beyond the benefits of WOW

  We had to invent a new destage order (STOW) to control the
destage rate

  STOW becomes the first write caching algorithm to explicitly
allow a good destage order and a good destage rate = a
powerful combination

© 2009 IBM Corporation IBM Almaden Research Center

6

Write Cache Tutorial: How to get it wrong?

  Ignore RAID Parity Groups while destaging

– We need to destage all members of the same parity group
together to the RAID array, not spread out in time

– Simple but important

– WOW already groups based on RAID stripes

© 2009 IBM Corporation IBM Almaden Research Center

7

Tutorial: Destage rate = as quickly as you can

Destage Order =
WOW

SPC1- Like
Workload

© 2009 IBM Corporation IBM Almaden Research Center

8

Tutorial: Destage rate = as quickly as you can only when
the cache occupancy reaches a fixed Threshold

Fixed
Threshold

Destage Order =
WOW

Destage rate
toggles between
none and full force

SPC1- Like
Workload

WOW

© 2009 IBM Corporation IBM Almaden Research Center

9

Tutorial: Destage with Linear Thresholding

© 2009 IBM Corporation IBM Almaden Research Center

10

Tutorial: Destaging with Linear Threshold

Linear threshold
cannot keep cache
away from 100%
full

“Spikes” are due to
long time spent in
sequential and
random regions

Time spent at 100%
is bad. Spikes make
write burst absorption
and destage rate
suffer.

© 2009 IBM Corporation IBM Almaden Research Center

11

Separate Random and Sequential data

Spikes are gone .. now there are two active areas on the disk
platters => destage order suffers

© 2009 IBM Corporation IBM Almaden Research Center

12

Getting Warmer: Add hysteresis to the destages

RanQ SeqQ

Disks

HysteresisCount = 128 * number of spindles

 in RAID array

Focus on one region of the disk
platters for some time before
moving to the next region
=>minimize the negative impact
on destage order

But what if workload has no
sequential or random?

Split 50-50

© 2009 IBM Corporation IBM Almaden Research Center

13

STOW: Adapting the size of RanQ and SeqQ

 Queue sizes are adapted according to workload

 DesiredSeqQSize - - :

– Whenever a second write happens in a RAID stripe in RanQ

 DesiredSeqQSize += n * |RanQ|/|SeqQ| :

– Where, n = number of spindles in array

– Whenever there is a break in the LBA sequence of destages
from SeqQ

  If |SeqQ| > DesiredSeqQSize, then destage from
SeqQ, else destage from RanQ

© 2009 IBM Corporation IBM Almaden Research Center

14

STOW vs Competition

RanQ
SeqQ

Sizes are
dynamically

adapted according
to real-time

marginal utilities

© 2009 IBM Corporation IBM Almaden Research Center

15

Experimental Setup

Full Backend = All Disk
Capacity Targeted

Partial Backend = Outer 1% of
disk capacity targeted

SPC-1 Like Benchmark

© 2009 IBM Corporation IBM Almaden Research Center

16

STOW: No more spikes in cache occupancy

RAID 5 Partial Backend: target 3500 IOPS, threshold: 70/40

© 2009 IBM Corporation IBM Almaden Research Center

17

Full Backend : Throughput vs. Response Time

RAID 5

18% 26% 39% 96% 76%

© 2009 IBM Corporation IBM Almaden Research Center

18

160% 24% 12%

Partial Backend: Throughput vs. Response Time

RAID 5

© 2009 IBM Corporation IBM Almaden Research Center

19

Vary the spread between high and low thresholds

RAID 5, Full Backend: Target: 1200 IOPS

19%

46%

© 2009 IBM Corporation IBM Almaden Research Center

20

Vary the cache size

40%

17%

35%

RAID 5, Full Backend: Target 1050 IOPS ; H/L : 90/80

© 2009 IBM Corporation IBM Almaden Research Center

21

  Tackling both destage order and destage rate =
powerful write cache algorithm

Summary

  STOW

–  Leverages temporal locality

–  Creates spatial locality

–  Maintains steady free space to absorb write bursts

–  Destages uniformly

–  Protects Random data from Sequential bursts

–  Dynamically adapts the sizes of the sequential and
random portions of the cache to maximize
throughput

  STOW > WOW > (LRW, CSCAN)

  Is there still more to it? :)

RanQ
SeqQ

Thank You!

