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Enterprise appliances

Network attached storage, routers, etc.

* High performance
* Scalable and highly-available access



Example Appliance

e Monolithic kernel
 Kernel components

Problems:
 Faultisolation

e Performance isolation
* Resource provisioning




Split architecture




Benefits of virtualization
High availability

* Fault-isolation
* Micro-reboots
* Partial functionality in case of failure

Performance isolation

Resource allocation
* Consolidation and load balancing, VM migration

Non-disruptive updates
* Hardware upgrades via VM migration
e Software updates as micro-reboots

Computation to data migration



Main Problem: Performance

Is it possible to match performance of a monolithic
environment?

* Large amount of data movement between components
* Mostly cross-core
* Connection oriented (established once)
 Throughput optimized (asynchronous)
* Coarse grained (no one-word messages)
* Multi-stage data processing

* Main cost contributors
* Transitions to hypervisor
 Memory map/copy operations
 Not VM context switches (multi-cores)
* Not IPC marshaling



Main Insight: Relaxed Trust Model

Appliance is built by a single organization
Components:

* Pre-tested and qualified
e Collaborative and non-malicious

Share memory read-only across VMs!

Fast inter-VM communication

* Exchange only pointers to data
* No hypervisor calls (only cross-core notification)
 No memory map/copy operations

e Zero-copy across entire appliance



Contributions

e Fast inter-VM communication mechanism

e Abstraction of a single address space for traditional
systems

e Case study
* Realistic microkernelized network attached storage



Design



Design Goals

e Performance
* High-throughput

* Practicality
* Minimal guest system and hypervisor dependencies
* No intrusive guest kernel changes

* Generality

* Support for different communication mechanisms in the
guest system
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Transitive Zero Copy

Goal

» Zero-copy across entire appliance
* No changes to guest kernel

Observation
* Multi-stage data processing
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Pseudo Global Virtual Address Space
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Pseudo Global Virtual Address Space
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Pseudo Global Virtual Address Space
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Transitive Zero Copy
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Fido: High-level View




Fido: High-level View




IPC Organization

e Shared memory ring
e Pointers to data

HEEEEEEEN
- Requests -
- -
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Responses
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IPC Organization

e Shared memory ring
e Pointers to data

 For complex data structures
* Scatter-gather array

Responses
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IPC Organization

e Shared memory ring
e Pointers to data

 For complex data str res
* Scatter-gathepdrray

* Translate pointefs

Responses
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IPC Organization

e Shared memory ring
e Pointers to data

 For complex data str
* Scatter-gathepdrray

* Translate pointefs
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Fast device-level communication

MMNet

* Link-level
e Standard network device interface
* Supports full transitive zero-copy

MMBIk

* Block-level

e Standard block device interface
* /ero-copy on write

* Incurs one copy on read

22



Evaluation



MMNet Evaluation
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e AMD Opteron with 2 2.1GHz 4-core CPUs (8 cores
total)

e 16GB RAM

 NVidia 1Gbps NICs

e 64-bit Xen (3.2), 64-bit Linux (2.6.18.8)

* Netperf benchmark (2.4.4)
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MMBIlk Evaluation

Monolithic XenBlk MMNet

Same hardware
 AMD Opteron with 2 2.1GHz 4-core CPUs (8 cores total)
e 16GB Ram

* NVidia 1Gbps NICs

VMs are configured with 4GB and 1GB RAM

3 GB in-memory file system (TMPFS)

|OZone benchmark
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MMBIk Sequential Writes
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Case Study



Network-attached Storage




Network-attached Storage

RAM
 VMs have 1GB each, except FS VM (4GB)
* Monolithic system has 7GB RAM
Disks :
 RAIDS5 over 3 64MB/s disks
Benchmark
* |0Zone reads/writes 8GB file over NFS (async)
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Throughput (MB/s)
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Throughput (MB/s)
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TPC-C (On-Line Transactional Processing)
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Conclusions

We match monolithic performance
* “Microkernelization” of traditional systems is possible!

Fast inter-VM communication
e The search for VM communication mechanisms is not over

Important aspects of design

e Trust model
* VM as a library (for example, FSVA)

* End-to-end zero copy
e Pseudo Global Virtual Address Space

There are still problems to solve
* Full end-to-end zero copy
* Cross-VM memory management
e Full utilization of pipelined parallelism
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Thank you.

aburtsev@flux.utah.edu
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Related Work

Traditional microkernels [L4, Eros, CoyotOS]
* Synchronous (effectively thread migration)

e Optimized for single-CPU, fast context switch, small
messages (often in registers), efficient marshaling (IDL)

Buffer management [Fbufs, IOLite, Beltway Buffers]
» Shared buffer is a unit of protection
e Fast-forward — fast cache-to-cache data transfer

VMs [Xen split drivers, XWay, XenSocket, XenLoop]

* Page flipping, later buffer sharing
e |VC, VMCI

Language-based protection [Singularity]
e Shared heap, zero-copy (only pointer transfer)
Hardware acceleration [Solarflare]

Multi-core OSes [Barrelfish, Corey, FOS]
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