
Fido: Fast Inter-Virtual-Machine
Communication for Enterprise

Appliances

Anton Burtsev†, Kiran Srinivasan,
Prashanth Radhakrishnan, Lakshmi N. Bairavasundaram,

Kaladhar Voruganti, Garth R. Goodson

†University of Utah,

School of Computing

NetApp, Inc

Enterprise appliances

2

• High performance
• Scalable and highly-available access

Network attached storage, routers, etc.

Example Appliance

3

• Monolithic kernel
• Kernel components

Problems:

• Fault isolation
• Performance isolation
• Resource provisioning

Split architecture

4

Benefits of virtualization
• High availability

• Fault-isolation
• Micro-reboots
• Partial functionality in case of failure

• Performance isolation

• Resource allocation
• Consolidation and load balancing, VM migration

• Non-disruptive updates
• Hardware upgrades via VM migration
• Software updates as micro-reboots

• Computation to data migration

5

Main Problem: Performance
Is it possible to match performance of a monolithic

environment?

6

• Large amount of data movement between components
• Mostly cross-core

• Connection oriented (established once)

• Throughput optimized (asynchronous)

• Coarse grained (no one-word messages)

• Multi-stage data processing

• Main cost contributors
• Transitions to hypervisor

• Memory map/copy operations

• Not VM context switches (multi-cores)

• Not IPC marshaling

Main Insight: Relaxed Trust Model

• Appliance is built by a single organization
• Components:

• Pre-tested and qualified

• Collaborative and non-malicious

• Share memory read-only across VMs!

• Fast inter-VM communication
• Exchange only pointers to data

• No hypervisor calls (only cross-core notification)
• No memory map/copy operations

• Zero-copy across entire appliance

7

Contributions

• Fast inter-VM communication mechanism

• Abstraction of a single address space for traditional
systems

• Case study
• Realistic microkernelized network attached storage

8

Design

9

Design Goals

• Performance
• High-throughput

• Practicality
• Minimal guest system and hypervisor dependencies

• No intrusive guest kernel changes

• Generality
• Support for different communication mechanisms in the

guest system

10

Transitive Zero Copy

11

• Goal
• Zero-copy across entire appliance
• No changes to guest kernel

• Observation
• Multi-stage data processing

Pseudo Global Virtual Address Space

12

264

0

Insight:
• CPUs support 64-bit
address space
• Individual VMs have
no need in it

Pseudo Global Virtual Address Space

13

264

0

Pseudo Global Virtual Address Space

14

264

0

Transitive Zero Copy

15

Fido: High-level View

16

Fido: High-level View

17

• “c” – connection management
• “m” – memory mapping
• “s” – cross-VM signaling

IPC Organization

18

• Shared memory ring
• Pointers to data

IPC Organization

19

• Shared memory ring
• Pointers to data

• For complex data structures
• Scatter-gather array

IPC Organization

20

• Shared memory ring
• Pointers to data

• For complex data structures
• Scatter-gather array

• Translate pointers

IPC Organization

21

• Shared memory ring
• Pointers to data

• For complex data structures
• Scatter-gather array

• Translate pointers

•Signaling:
• Cross-core interrupts (event channels)
• Batching and in-ring polling

Fast device-level communication

• MMNet
• Link-level

• Standard network device interface

• Supports full transitive zero-copy

• MMBlk
• Block-level

• Standard block device interface

• Zero-copy on write

• Incurs one copy on read

22

Evaluation

23

MMNet Evaluation

24

• AMD Opteron with 2 2.1GHz 4-core CPUs (8 cores
total)

• 16GB RAM
• NVidia 1Gbps NICs
• 64-bit Xen (3.2), 64-bit Linux (2.6.18.8)
• Netperf benchmark (2.4.4)

Loop NetFront MMNetXenLoop

MMNet: TCP Throughput

0

2000

4000

6000

8000

10000

12000

0.5 1 2 4 8 16 32 64 128 256

Th
ro

u
gh

p
u

t
(M

b
p

s)

Message Size (KB)

Monolithic

Netfront

XenLoop

MMNet

25

MMBlk Evaluation

26

• Same hardware
• AMD Opteron with 2 2.1GHz 4-core CPUs (8 cores total)
• 16GB Ram
• NVidia 1Gbps NICs

• VMs are configured with 4GB and 1GB RAM
• 3 GB in-memory file system (TMPFS)
• IOZone benchmark

MMNetXenBlkMonolithic

MMBlk Sequential Writes

27

0

100

200

300

400

500

600

4 8 16 32 64 128 256 512 1K 2K 4K

Th
ro

u
gh

p
u

t
(M

B
/s

)

Record Size (KB)

Monolithic

XenBlk

MMBlk

Case Study

28

Network-attached Storage

29

Network-attached Storage

30

• RAM
• VMs have 1GB each, except FS VM (4GB)
• Monolithic system has 7GB RAM

• Disks :
• RAID5 over 3 64MB/s disks

• Benchmark
• IOZone reads/writes 8GB file over NFS (async)

Sequential Writes

31

0

10

20

30

40

50

60

70

80

90

4 8 16 32 64 128 256 512 1K 2K 4K

Th
ro

u
gh

p
u

t
(M

B
/s

)

Record Size (KB)

Monolithic

Native-Xen

MM-Xen

Sequential Reads

32

0

10

20

30

40

50

60

70

80

4 8 16 32 64 128 256 512 1K 2K 4K

Th
ro

u
gh

p
u

t
(M

B
/s

)

Record Size (KB)

Monolithic

Native-Xen

MM-Xen

TPC-C (On-Line Transactional Processing)

0

50

100

150

200

250

300

350

Tr
an

sa
ct

io
n

s/
m

in
u

te
 (

tp
m

C
)

Monolithic

MMXen

Native-Xen

33

Conclusions
• We match monolithic performance

• “Microkernelization” of traditional systems is possible!

• Fast inter-VM communication
• The search for VM communication mechanisms is not over

• Important aspects of design
• Trust model

• VM as a library (for example, FSVA)

• End-to-end zero copy
• Pseudo Global Virtual Address Space

• There are still problems to solve
• Full end-to-end zero copy
• Cross-VM memory management
• Full utilization of pipelined parallelism

34

Thank you.

aburtsev@flux.utah.edu

35

Backup Slides

36

Related Work

• Traditional microkernels [L4, Eros, CoyotOS]
• Synchronous (effectively thread migration)
• Optimized for single-CPU, fast context switch, small

messages (often in registers), efficient marshaling (IDL)
• Buffer management [Fbufs, IOLite, Beltway Buffers]

• Shared buffer is a unit of protection
• Fast-forward – fast cache-to-cache data transfer

• VMs [Xen split drivers, XWay, XenSocket, XenLoop]
• Page flipping, later buffer sharing
• IVC, VMCI

• Language-based protection [Singularity]
• Shared heap, zero-copy (only pointer transfer)

• Hardware acceleration [Solarflare]
• Multi-core OSes [Barrelfish, Corey, FOS]

37

