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Abstract
Managing data centers is a challenging endeavor. State-
of-the-art management systems often rely on analytical
modeling to assess the performance, availability, and/or
energy implications of potential management decisions
or system configurations. In this paper, we argue that
actual experiments are cheaper, simpler, and more ac-
curate than models for many management tasks. To sup-
port this claim, we built an infrastructure for experiment-
based management of virtualized data centers, called
JustRunIt. The infrastructure creates a sandboxed en-
vironment in which experiments can be run—on a very
small number of machines—using real workloads and
real system state, but without affecting the on-line sys-
tem. Automated management systems or the system ad-
ministrator herself can leverage our infrastructure to per-
form management tasks on the on-line system. To evalu-
ate the infrastructure, we apply it to two common tasks:
server consolidation/expansion and evaluating hardware
upgrades. Our evaluation demonstrates that JustRunIt
can produce results realistically and transparently, and be
nicely combined with automated management systems.

1 Introduction

Managing data centers is a challenging endeavor, es-
pecially when done manually by system administrators.
One of the main challenges is that performing many man-
agement tasks involves selecting a proper resource allo-
cation or system configuration out of a potentially large
number of possible alternatives. Even worse, evaluating
each possible management decision often requires under-
standing its performance, availability, and energy con-
sumption implications. For example, a common man-
agement task is to partition the system’s resources across
applications to optimize performance and/or energy con-
sumption, as is done in server consolidation and virtual
machine (VM) placement. Another example is the eval-
uation of software or hardware upgrades, which involves

determining whether application or system behavior will
benefit from the candidate upgrades and by how much.
Along the same lines, capacity planning is a common
management task that involves selecting a proper system
configuration for a set of applications.

Previous efforts have automated resource-partitioning
tasks using simple heuristics and/or feedback control,
e.g. [1, 6, 18, 21, 28, 29]. These policies repeatedly
adjust the resource allocation to a change in system be-
havior, until their performance and/or energy goals are
again met. Unfortunately, when this react-and-observe
approach is not possible, e.g. when evaluating software
or hardware upgrades, these policies cannot be applied.

In contrast, analytical modeling can be used to auto-
mate all of these management tasks. Specifically, mod-
eling can be used to predict the impact of the possible
management decisions or system configurations on per-
formance, availability, and/or energy consumption. With
these predictions, the management system can make
the best decision. For example, researchers have built
resource-partitioning systems for hosting centers that use
models to predict throughput and response time, e.g.
[9, 27]. In addition, researchers have built systems that
use models to maximize energy conservation in data cen-
ters, e.g. [7, 13]. Finally, researchers have been build-
ing models that can predict the performance of Internet
applications on CPUs with different characteristics [23];
such models can be used in deciding whether to upgrade
the server hardware.

Performance models are often based on queuing the-
ory, whereas availability models are often based on
Markovian formalisms. Energy models are typically
based on simple (but potentially inaccurate) models of
power consumption, as a function of CPU utilization or
CPU voltage/frequency. On the bright side, these models
are useful in data center management as they provide in-
sight into the systems’ behaviors, can be solved quickly,
and allow for large parameter space explorations. Essen-
tially, the models provide an efficient way of answering



“what-if” questions during management tasks.
Unfortunately, modeling has a few serious shortcom-

ings. First, modeling consumes a very expensive re-
source: highly skilled human labor to produce, calibrate,
and validate the models. Second, the models typically
rely on simplifying assumptions. For example, memory-
less arrivals is a common assumption of queuing models
for Internet services [24]. However, this assumption is
invalid when requests come mostly from existing ses-
sions with the service. Another common simplifying
assumption is the cubic relationship between CPU fre-
quency and power consumption [7]. With advances in
CPU power management, such as clock gating, the exact
power behavior of the CPU is becoming more complex
and, thus, more difficult to model accurately. Third, the
models need to be re-calibrated and re-validated as the
systems evolve. For example, the addition of new ma-
chines to a service requires queuing models to be cali-
brated and validated for them.

Given these limitations, in this paper we argue that
actual experiments are a better approach than modeling
for supporting many management tasks. Actual experi-
ments exchange an expensive resource (human labor) for
much cheaper ones (the time and energy consumed by
a few machines in running the experiments). Moreover,
they do not rely on simplifying assumptions or require
calibration and validation. Thus, actual experiments are
cheaper, simpler, and more accurate than models in their
ability to answer “what-if” questions. We further argue
that the experiments can be performed in a flexible, real-
istic, and transparent manner by leveraging current virtu-
alization technology.

To support our claims in a challenging environment,
we built JustRunIt, an infrastructure for experiment-
based management of virtualized data centers hosting
multiple Internet services. JustRunIt creates a sand-
boxed environment in which experiments can be run on
a small number of machines (e.g., one machine per tier
of a service) without affecting the on-line system. Jus-
tRunIt clones a small subset of the on-line VMs (e.g.,
one VM per tier of the service) and migrates them to the
sandbox. In the sandbox, JustRunIt precisely controls
the resources allocated to the VMs, while offering the
same workload to them that is offered to similar VMs
on-line. Workload duplication is implemented by Jus-
tRunIt’s server proxies. For flexibility, the administra-
tor can specify the resources (and the range of alloca-
tions) with which to experiment and how long experi-
ments should be run. If there is not enough time to run
all possible experiments (i.e., all combinations of accept-
able resource allocations), JustRunIt uses interpolation
between actual experimental results to produce the miss-
ing results but flags them as potentially inaccurate.

Automated management systems or the system admin-

istrator can use the JustRunIt results to perform manage-
ment tasks on the on-line system. If any interpolated
results are actually used by the system or administra-
tor, JustRunIt runs the corresponding experiments in the
background and warns the administrator if any experi-
mental result differs from the corresponding interpolated
result by more than a threshold amount.

To evaluate our infrastructure, we apply it to systems
that automate two common management tasks: server
consolidation/expansion and evaluation of hardware up-
grades. Modeling has been used in support of both tasks
[7, 24], whereas feedback control is only applicable for
some cases of the former [7]. JustRunIt combines nicely
with both systems. Our evaluation demonstrates that
JustRunIt can produce results realistically and transpar-
ently, enabling automated management systems to per-
form their tasks effectively. In fact, JustRunIt can pro-
duce system configurations that are as good as those re-
sulting from idealized, perfectly accurate models, at the
cost of the time and energy dedicated to experiments.

The remainder of the paper is organized as follows.
The next section describes JustRunIt in detail. Section
3 describes the automated management systems that we
designed for our two case studies. Section 4 presents our
evaluation of JustRunIt and the results of our case stud-
ies. Section 5 overviews the related work. Finally, Sec-
tion 6 draws our conclusions, discusses the limitations of
JustRunIt, and mentions our future work.

2 JustRunIt Design and Implementation

2.1 Target Environment

Our target environment is virtualized data centers that
host multiple independent Internet services. Each service
comprises multiple tiers. For instance, a typical three-tier
Internet service has a Web tier, an application tier, and a
database tier. Each tier may be implemented by multiple
instances of a software server, e.g. multiple instances of
Apache may implement the first tier of a service. Each
service has strict response-time requirements specified
in SLAs (Service Level Agreements) negotiated between
the service provider and the data center.

In these data centers, all services are hosted in VMs
for performance and fault isolation, easy migration, and
resource management flexibility. Moreover, each soft-
ware server of a service is run on a different VM. VMs
hosting software servers from different services may co-
locate on a physical machine (PM). However, VMs host-
ing software servers from the same service tier are hosted
on different PMs for high availability. All VMs have
network-attached storage provided by a storage server.
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Figure 1: Overview of JustRunIt. “X” represents a re-
sult obtained through experimentation, whereas “I” rep-
resents an interpolated result. “T” represents an interpo-
lated result that has been used by the management entity.

2.2 System Infrastructure

Figure 1 shows an overview of the system infrastruc-
ture of JustRunIt. There are four components: exper-
imenter, driver, interpolator, and checker. Theexperi-
menterimplements the VM cloning and workload dupli-
cation mechanism to run experiments. Each experiment
tests a possible configuration change to a cloned soft-
ware server under the current live workload. A configu-
ration change may be a different resource allocation (e.g.,
a larger share of the CPU) or a different hardware setting
(e.g., a higher CPU voltage/frequency). The results of
each experiment are reported as the server throughput,
response time, and energy consumption observed under
the tested configuration.

The experimentdriver chooses which experiments to
run in order to efficiently explore the configuration pa-
rameter space. The driver tries to minimize the number
of experiments that must be run while ensuring that all
the experiments complete within a user-specified time
bound. The driver and experimenter work together to
produce a matrix of experimental results in the config-
uration parameter space. The coordinates of the matrix
are the configuration parameter values for each type of
resource, and the values recorded at each point are the
performance and energy metrics observed for the corre-
sponding resource assignments.

Blank entries in the matrix are filled in by theinterpo-
lator, based on linear interpolation from the experimen-
tal results in the matrix. The filled matrix is provided
to the management entity–i.e., the system administrator
or an automated management system–for use in deciding
resource allocations for the production system.

If the management entity uses any of the interpolated
performance or energy values, thecheckerinvokes the
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Figure 2: Virtualized data center and JustRunIt sandbox.
Each box represents a VM, whereas each group of boxes
represents a PM. “W2”, “A2”, and “D2” mean Web, ap-
plication, and database server of service 2, respectively.
“S A2” means sandboxed application server of service 2.

experimenter to run experiments to validate those val-
ues. If it turns out that the difference between the ex-
perimental results and the interpolated results exceeds a
user-specified threshold value, then the checker notifies
the management entity.

We describe the design of each component of Jus-
tRunIt in detail in the following subsections.

2.2.1 Experimenter

To run experiments, the experimenter component of Jus-
tRunIt transparently clones a subset of the live produc-
tion system into a sandbox and replays the live workload
to the sandbox system. VM cloning instantly brings the
sandbox to the same operational state as the production
system, complete with fully warmed-up application-level
and OS-level caches (e.g., file buffer cache). Thus, tests
can proceed with low startup time on a faithful replica
of the production system. By cloning only a subset of
the system, JustRunIt minimizes the physical resources
that must be dedicated to testing. Workload replay to the
sandbox is used to emulate the timing and functional be-
havior of the non-duplicated portions of the system.

The use of JustRunIt in a typical virtualized data cen-
ter is illustrated in Figure 2. The figure shows VMs of
multiple three-tier services sharing each PM. Each ser-
vice tier has multiple identically configured VMs placed
on different PMs. (Note that VMs of one tier do not share
PMs with VMs of other tiers in the figure. Although Jus-
tRunIt is agnostic to VM placement, this restriction on
VM placement is often used in practice to reduce soft-
ware licensing costs [18].) For simpler management, the



set of PMs in each tier is often homogeneous.
The figure also shows one VM instance from each

tier of service 2 being cloned into the sandbox for test-
ing. This is just an example use of JustRunIt; we can
use different numbers of PMs in the sandbox, as we dis-
cuss later. Configuration changes are applied to the clone
server, and the effects of the changes are tested by replay-
ing live traffic duplicated from the production system.
The sandbox system is monitored to determine the re-
sulting throughput, response time, and energy consump-
tion. The experimenter reports these results to the driver
to include in the matrix described in Section 2.2. If ex-
periments are run with multiple service tiers, a different
matrix will be created for each tier.

Although it may not be immediately obvious, the ex-
perimenter assumes that the virtual machine monitor
(VMM) can provide performance isolation across VMs
and includes non-work-conserving resource schedulers.
These features are required because the experiments per-
formed in the sandbox must be realistic representations
of what would happen to the tested VM in the produc-
tion system, regardless of any other VMs that may be
co-located with it. We can see this by going back to Fig-
ure 2. For example, the clone VM from the application
tier of service 2 must behave the same in the sandbox
(where it is run alone on a PM) as it would in the produc-
tion system (where it is run with A1, A3, or both), given
the same configuration. Our current implementation re-
lies on the latest version of the Xen VMM (3.3), which
provides isolation for the setups that we consider.

Importantly, both performance isolation and non-
work-conserving schedulers are desirable characteris-
tics in virtualized data centers. Isolation simplifies the
VM placement decisions involved in managing SLAs,
whereas non-work-conserving schedulers allow more
precise resource accounting and provide better isolation
[18]. Most critically, both characteristics promote per-
formance predictability, which is usually more important
than achieving the best possible performance (and ex-
ceeding the SLA requirements) in hosting centers.

Cloning. Cloning is accomplished by minimally ex-
tending standard VM live migration technology [8, 16].
The Xen live migration mechanism copies dirty memory
pages of a running VM in the background until the num-
ber of dirty pages is reduced below a predefined thresh-
old. Then VM execution is paused for a short time (tens
of milliseconds) to copy the remaining dirty pages to the
destination. Finally, execution transfers to the new VM,
and the original VM is destroyed. Our cloning mecha-
nism changes live migration to resume execution on both
the new VM and the original VM.

Since cloning is transparent to the VM, the clone VM
inherits the same network identity (e.g., IP/MAC ad-
dresses) as the production VM. To avoid network address

conflicts, the cloning mechanism sets up network address
translation to transparently give the clone VM a unique
external identity exposed to the network while conceal-
ing the clone VM’s internal addresses. We implemented
this by extending Xen’s backend network device driver
(“netback”) to perform appropriate address translations
and protocol checksum corrections for all network traffic
to and from the clone VM.

The disk storage used by the clone VMs must also
be replicated. During the short pause of the produc-
tion system VM at the end of state transfer, the cloning
mechanism creates a copy-on-write snapshot of the block
storage volumes used by the production VM, and as-
signs them to the clone VM. We implemented this us-
ing the Linux LVM snapshot capability and by exporting
volumes to VMs over the network using iSCSI or ATA
Over Ethernet. Snapshotting and exporting the storage
volumes incurs only a sub-second delay during cloning.
Storage cloning is transparent to the VMs, which see log-
ical block devices and do not know that they are access-
ing network storage.

JustRunIt may also be configurednot to perform VM
cloning in the sandbox. This configuration allows it to
evaluate upgrades of the server software (e.g., Apache),
operating system, and/or service application (as long as
the application upgrade does not change the application’s
messaging behavior). In these cases, the management
entity has to request experiments that are long enough
to amortize any cold-start caching effects in the sandbox
execution. However, long experiments are not a problem,
since software upgrades typically do not have stringent
time requirements.

Proxies. To carry out testing, the experimenter replays
live workload to the VMs in the sandbox. Two low-
overhead proxies, called in-proxy and out-proxy, are in-
serted into communication paths in the production sys-
tem to replicate traffic to the sandbox. The proxies are
application protocol-aware and can be (almost entirely)
re-used across services that utilize the same protocols, as
we detail below. The in-proxy mimics the behavior of all
the previous tiers before the sandbox, and the out-proxy
mimics the behavior of all the following tiers. The local
view of a VM, its cloned sandbox VM, and the proxies
is shown in Figure 3.

After cloning, the proxies create as many connections
with the cloned VM as they have with the original VM.
The connections that were open between the proxies and
the original VM at the time it was cloned will timeout at
the cloned VM. In fact, no requests that were active in
the original VM at the time of cloning get successfully
processed at the cloned VM.

The in-proxy intercepts requests from previous tiers
to the tested VM. When a request arrives, the in-proxy
records the request (Reqn in Figure 3) and its arrival
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Figure 3: Cloned VM and proxy data structures.

time (tn). The in-proxy forwards the request to the on-
line production system and also sends a duplicate request
to the sandbox for processing. To prevent the sandbox
system from running ahead of the production system,
the transmission of the duplicate request is delayed by
a fixed time interval (it is sufficient for the fixed time
shift to be set to any value larger than the maximum re-
sponse time of the service plus the cloning overhead).
Both systems process the duplicated requests and eventu-
ally generate replies that are intercepted by the in-proxy.
For the reply from the production system, the in-proxy
records its arrival time (Tn′) and forwards the reply back
to the previous tier. Later, when the corresponding reply
from the sandbox arrives, the in-proxy records its arrival
time (tsn′). The arrival times are used to measure the
response times of the production and sandbox systems.

The production and sandbox VMs may need to send
requests to the next tier to satisfy a request from the pre-
vious tier. These (duplicated) requests are intercepted by
the out-proxy. The out-proxy records the arrival times
(t0n) and content of the requests from the production
system, and forwards them to the next tier. The out-proxy
also records the arrival times (t0n′) and content of the
corresponding replies, and forwards them to the produc-
tion system. When the out-proxy receives a request from
the sandbox system, it uses hash table lookup to find the
matching request that was previously received from the
production system. (Recall that the matching request will
certainly have been received because the replay to the
sandbox is time-shifted by more than the maximum re-
sponse time of the service.) The out-proxy transmits the
recorded reply to the sandbox after a delay. The delay is
introduced to accurately mimic the delays of the subse-
quent tiers and is equal to the delay that was previously
experienced by the production system (t0n′ − t0n) for
the same request-reply pair.

At the end of an experiment, the in-proxy reports the
throughput and response time results for the production
and sandbox systems. The throughput for each system
is determined by the number of requests successfully

served from the tiers following the in-proxy. The re-
sponse time for each system is defined as the delay after
a request arrives to the in-proxy until its reply is received.
Since out-proxies enforce that the delays of subsequent
tiers are equal for the production and sandbox system,
the difference of throughput and response time between
the production and sandbox systems is the performance
difference between the original VM and cloned VM.

The proxies can be installed dynamically anywhere in
the system, depending on which VMs the management
entity may want to study at the time. However, we have
only implemented in-proxies and out-proxies for Web
and application servers so far. Cross-tier interactions be-
tween proxies, i.e. the communication between the out-
proxy of the Web tier and the in-proxy of the application
tier, occur in exactly the same way as the communication
between regular servers.

In future work, we plan to implement an in-proxy for
database servers by borrowing code from the Clustered-
JDBC (C-JDBC) database middleware [5]. Briefly, C-
JDBC implements a software controller between a JDBC
application and a set of DBMSs. In its full-replication
mode, C-JDBC keeps the content of the database repli-
cated and consistent across the DBMSs. During experi-
mentation, our in-proxy will do the same for the on-line
and sandboxed DBMSs. Fortunately, C-JDBC already
implements the key functionality needed for cloning,
namely the ability to integrate the sandboxed DBMS
and update its content for experimentation. To complete
our in-proxy, we plan to modify C-JDBC to record the
on-line requests and later replay them to the sandboxed
DBMS. We have modified C-JDBC in similar ways [17].

Non-determinism. A key challenge for workload replay
is to tolerate non-deterministic behavior in the produc-
tion and sandbox systems. We address non-determinism
in three ways. First, to tolerate network layer non-
determinism (e.g., packet drops) the proxies replicate
application-layer requests and replies instead of replicat-
ing network packets directly.

Second, the replay is implemented so that the sand-
boxed servers canprocessrequests and replies in a dif-
ferent order than their corresponding on-line servers;
only the timing of the messagearrivals at the sandboxed
servers is guaranteed to reflect that of the on-line servers.
This ordering flexibility tolerates non-determinism in the
behavior of the software servers, e.g. due to multithread-
ing. However, note that this flexibility is only acceptable
for Web and application-tier proxies, since requests from
different sessions are independent of each other in those
tiers. We will need to enforce ordering more strictly in
the in-proxy for database servers, to prevent the origi-
nal and cloned databases from diverging. Our in-proxy
will do so by forcing each write (and commit) to execute
by itself during experimentation onlyforcing a complete



ordering between all pairs of read-write and write-write
operations; concurrent reads will be allowed to execute
in any order. We have successfully created this strict or-
dering in C-JDBC before [17] and saw no noticeable per-
formance degradation for one of the services we study in
this paper.

Third, we tolerate application-layer non-determinism
by designing the proxies to be application protocol-
aware (e.g., the Web server in-proxies understand HTTP
message formats). The proxies embody knowledge of
the fields in requests and replies that can have non-
deterministic values (e.g., timestamps, session IDs).
When the out-proxy sees a non-deterministic value in
a message from the sandbox, the message is matched
against recorded messages from the production system
using wildcards for the non-deterministic fields.

Our study of two services (an auction and a bookstore)
shows that our proxies effectively tolerate their non-
determinism. Even though some messages in these ser-
vices have identical values except for a non-deterministic
field, our wildcard mechanism allows JustRunIt to prop-
erly match replies in the production and sandbox systems
for two reasons. First, all replies from the sandbox are
dropped by the proxies, preventing them from disrupting
the on-line system. Second, using different replies due to
wildcard mismatch does not affect the JustRunIt results
because the replies are equivalent and all delays are still
accounted for.

We plan to study non-determinism in an even broader
range of services. In fact, despite our promising ex-
perience with the auction and bookstore services, some
types of non-determinism may be hard for our proxies to
handle. In particular, services that non-deterministically
change their messaging behavior (not just particular
fields or the destination of the messages) or their load
processing behavior (e.g., via non-deterministic load-
shedding) would be impossible to handle. For example, a
service in which servers may send an unpredictable num-
ber of messages in response to each request cannot be
handled by our proxies. We have not come across any
such services, though.

2.2.2 Experiment Driver

Running experiments is not free. They cost time and en-
ergy. For this reason, JustRunIt allows the management
entity to configure the experimentation using a simple
configuration file. The entity can specify the tier(s) with
which JustRunIt should experiment, which experiment
heuristics to apply (discussed below), which resources to
vary, the range of resource allocations to consider, how
many equally separated allocation points to consider in
the range, how long each experiment should take, and
how many experiments to run. These parameters can di-

rectly limit the time and indirectly limit the energy con-
sumed by the experiments, when there are constraints on
these resources (as in Section 3.1). When experiment
time and energy are not relevant constraints (as in Sec-
tion 3.2), the settings for the parameters can be looser.

Based on the configuration information, the experi-
ment driver directs the experimenter to explore the pa-
rameter space within the time limit. The driver starts
by running experiments to fill in the entries at the cor-
ners of the result matrix. For example, if the experiments
should vary the CPU allocation and the CPU frequency,
the matrix will have two dimensions and four corners:
(min CPU alloc, min CPU freq), (min CPU alloc, max CPU
freq), (max CPU alloc, min CPU freq), and(max CPU alloc,
max CPU freq). The management entity must configure
JustRunIt so at least these corner experiments can be per-
formed. After filling in the corner coordinates, the driver
then proceeds to request experiments exactly in the mid-
dle of the unexplored ranges defined by each resource
dimension. After those are performed, it recursively sub-
divides the unexplored ranges in turn. This process is
repeated until the number of experiments requested by
the management entity have been performed or there are
no more experiments to perform.

We designed two heuristics for the driver to use to
avoid running unnecessary experiments along each ma-
trix dimension. The two observations behind the heuris-
tics are that: 1) beyond some point, resource additions
do not improve performance; 2) the performance gain
for the same resource addition to different tiers will not
be the same, and the gains drop consistently and contin-
ually (diminishing returns).

Based on observation 1), the first heuristic cancels the
remaining experiments with larger resource allocations
along the current resource dimension, if the performance
gain from a resource addition is less than a threshold
amount. Based on observation 2), the second heuristic
cancels the experiments with tiers that do not produce
the largest gains from a resource addition. As we add
more resources to the current tier, the performance gains
decrease until some other tier becomes the tier with the
largest gain from the same resource addition. For ex-
ample, increasing the CPU allocation on the bottleneck
tier, say the application tier, will significantly improve
overall response time. At some point, however, the bot-
tleneck will shift to other tiers, say the Web tier, at which
point the driver will experiment with the Web tier and
gain more overall response time improvement with the
same CPU addition.

2.2.3 Interpolator and Checker

The interpolator predicts performance results for points
in the matrix that have not yet been determined through



experiments. For simplicity, we use linear interpolation
to fill in these blanks, and we mark the values to indicate
that they are just interpolated.

If the management entity uses any interpolated results,
the checker tries to verify the interpolated results by in-
voking the experimenter to run the corresponding exper-
iments in the background. If one of these background
experimental results differs from the corresponding in-
terpolated result by more than a user-specified threshold
value, the checker raises a flag to the management entity
to decide how to handle this mismatch.

The management entity can use this information in
multiple ways. For example, it may reconfigure the
driver to run more experiments with the corresponding
resources from now on. Another option would be to re-
configure the range of allocations to consider in the ex-
periments from now on.

2.3 Discussion

Uses of JustRunIt. We expect that JustRunIt will be use-
ful for many system management scenarios. For exam-
ple, in this paper we consider resource management and
hardware upgrade case studies. In these and other sce-
narios, JustRunIt can be used by the management entity
to safely, efficiently, and realistically answer the same
“what-if” questions that modeling can answer given the
current workload and load intensity.

Moreover, like modeling, JustRunIt can benefit from
load intensity prediction techniques to answer questions
about future scenarios. JustRunIt can do so because its
request replay is shifted in time and can be done at any
desired speed. (Request stream acceleration needs to
consider whether requests belong to an existing session
or start a new session. JustRunIt can properly acceler-
ate requests because it stores enough information about
them to differentiate between the two cases.) Section 6
discusses how the current version of JustRunIt can be
modified to answer “what-if” questions about different
workload mixes as well.

Although our current implementation does not imple-
ment this functionality, JustRunIt could also be used to
select the best values for software tunables, e.g. the num-
ber of threads or the size of the memory cache in Web
servers. Modeling does not lend itself directly to this
type of management task. Another possible extension
could be enabling JustRunIt to evaluate the correctness
of administrator actions, as in action-validation systems
[15, 17]. All the key infrastructure required by these sys-
tems (i.e., proxies, cloning, sandboxing) is already part
of the current version of JustRunIt, so adding the ability
to validate administrator actions should be a simple ex-
ercise. Interestingly, this type of functionality cannot be
provided by analytic models or feedback control.

Obviously, JustRunIt can answer questions and vali-
date administrator actions at the cost of experiment time
and energy. However, note that the physical resources
required by JustRunIt (i.e., enough computational re-
sources for the proxies and for the sandbox) can be a very
small fraction of the data center’s resources. For exam-
ple, in Figure 2, we show that just three PMs are enough
to experiment with all tiers of a service at the same time,
regardless of how large the production system is. Even
fewer resources, e.g. one PM, can be used, as long as we
have the time to experiment with VMs sequentially. Fur-
thermore, the JustRunIt physical resources can be bor-
rowed from the production system itself, e.g. during pe-
riods of low load.

In essence, JustRunIt poses an interesting tradeoff be-
tween the amount of physical resources it uses, the ex-
periment time that needs to elapse before decisions can
be made, and the energy consumed by its resources.
More physical resources translate into shorter experi-
ment times but higher energy consumption. For this rea-
son, we allow the management entity to configure Jus-
tRunIt in whatever way is appropriate for the data center.

Engineering cost of JustRunIt. Building the JustRunIt
proxies is the most time-consuming part of its implemen-
tation. The proxies must be designed to properly handle
the communication protocols used by services. Our cur-
rent proxies understand the HTTP, modjk, and MySQL
protocols. We have built our proxies starting from the
publicly available Tinyproxy HTTP proxy daemon [2].
Each proxy required only between 800 and 1500 new
lines of C code. (VM cloning required 42 new lines
of Python code in the xend control daemon and the xm
management tool, whereas address translation required
244 new lines of C code in the netback driver.) The vast
majority of the difference between Web and application
server proxies comes from their different communication
protocols.

The engineering effort required by the proxies can be
amortized, as they can be reused for any service based
on the same protocols. However, the proxies may need
modifications to handle any non-determinism in the ser-
vices themselves. Fortunately, our experience with the
auction and bookstore services suggests that the effort
involved in handling service-level non-determinism may
be small. Specifically, it took one of us (Zheng) less than
one day to adapt the proxies designed for the auction to
the bookstore. This is particularly promising in that he
had no prior knowledge of the bookstore whatsoever.

One may argue that implementing JustRunIt may re-
quire a comparable amount of effort to developing ac-
curate models for a service. We have experience with
modeling the performance, energy, and temperature of
server clusters and storage systems [4, 13, 12, 19] and
largely agree with this claim. However,we note that Jus-



tRunIt is much more reusable than models, across differ-
ent services, hardware and software characteristics, and
even as service behavior evolves.Each of these factors
requires model re-calibration and re-validation, which
are typically labor-intensive. Furthermore, for models to
become tractable, many simplifying assumptions about
system behavior (e.g., memoryless request arrivals) may
have to be made. These assumptions may compromise
the accuracy of the models. JustRunIt does not require
these assumptions and produces accurate results.

3 Experiment-based Management

As mentioned in the previous section, our infrastructure
can be used by automated management systems or di-
rectly by the system administrator. To demonstrate its
use in the former scenario, we have implemented sim-
ple automated management systems for two common
tasks in virtualized hosting centers: server consolida-
tion/expansion (i.e., partitioning resources across the ser-
vices to use as few active servers as possible) and evalu-
ation of hardware upgrades. These tasks are currently
performed by most administrators in a manual, labor-
intensive, and ad-hoc manner.

Both management systems seek to satisfy the services’
SLAs. An SLA often specifies a percentage of requests
to be serviced within some amount of time. Another pos-
sibility is for the SLA to specify an average response time
(over a period of several minutes) for the corresponding
service. For simplicity, our automated systems assume
the latter type of SLA.

The next two subsections describe the management
systems. However, before describing them, we note that
they arenot contributions of this work. Rather, they are
presented simply to demonstrate the automated use of
JustRunIt. More sophisticated systems (or the admin-
istrator) would leverage JustRunIt in similar ways.

3.1 Case Study 1: Resource Management

Overview. The ultimate goal of our resource-
management system is to consolidate the hosted services
onto the smallest possible set of nodes, while satisfying
all SLAs. To achieve this goal, the system constantly
monitors the average response time of each service, com-
paring this average to the corresponding SLA. Because
workload conditions change over time, the resources as-
signed to a service may become insufficient and the ser-
vice may start violating its SLA. Whenever such a vio-
lation occurs, our system initiates experiments with Jus-
tRunIt to determine what is the minimum allocation of
resources that would be required for the service’s SLA
to be satisfied again. Changes in workload behavior of-
ten occur at the granularity of tens of minutes or even

1. While 1 do
2. Monitor QoS of all services
3. If any service needs more resources or
4. can use fewer resources
5. Run experiments with bottleneck tier
6. Find minimum resource needs
7. If used any interpolated results
8. Inform JustRunIt about them
9. Assign resources using bin-packing heuristic

10. If new nodes need to be added
11. Add new nodes and migrate VMs to them
12. Else if nodes can be removed
13. Migrate VMs and remove nodes
14. Complete resource adjustments and migrations

Figure 4: Overview of resource-management system.

hours, suggesting that the time spent performing exper-
iments is likely to be relatively small. Nevertheless, to
avoid having to perform adjustments too frequently, the
system assigns 20% more resources to a service than its
minimum needs. This slack allows for transient increases
in offered load without excessive resource waste. Since
the resources required by the service have to be allocated
to it, the new resource allocation may require VM migra-
tions or even the use of extra nodes.

Conversely, when the SLA of any service is being sat-
isfied by more than a threshold amount (i.e., the average
response time is lower than that specified by the SLA by
more than a threshold percentage), our system consid-
ers the possibility of reducing the amount of resources
dedicated to the service. It does so by initiating exper-
iments with JustRunIt to determine the minimum allo-
cation of resources that would still satisfy the service’s
SLA. Again, we give the service additional slack in its
resource allocation to avoid frequent reallocations. Be-
cause resources can be taken away from this service, the
new combined resource needs of the services may not re-
quire as many PMs. In this case, the system determines
the minimum number of PMs that can be used and im-
plements the required VM migrations.

Details. Figure 4 presents pseudo-code overviewing the
operation of our management system. The experiments
with JustRunIt are performed in line 5. The management
system only runs experiments with one software server
of the bottleneck tier of the service in question. The
management system can determine the bottleneck tier by
inspecting the resource utilization of the servers in each
tier. Experimenting with one software server is typically
enough for two reasons: (1) services typically balance
the load evenly across the servers of each tier; and (2)
the VMs of all software servers of the same tier and ser-
vice are assigned the same amount of resources at their
PMs. (When at least one of these two properties does not
hold, the management system needs to request more ex-
periments of JustRunIt.) However, if enough nodes can
be used for experiments in the sandbox, the system could
run experiments with one software server from each tier
of the service at the same time.



The matrix of resource allocations vs. response times
produced by JustRunIt is then used to find the minimum
resource needs of the service in line 6. Specifically, the
management system checks the results in the JustRunIt
matrix (from smallest to largest resource allocation) to
find the minimum allocation that would still allow the
SLA to be satisfied. In lines 7 and 8, the system informs
JustRunIt about any interpolated results that it may have
used in determining the minimum resource needs. Jus-
tRunIt will inform the management system if the inter-
polated results are different than the actual experimental
results by more than a configurable threshold amount.

In line 9, the system executes a resource assignment
algorithm that will determine the VM to PM assignment
for all VMs of all services. We model resource assign-
ment as a bin-packing problem. In bin-packing, the goal
is to place a number of objects into bins, so that we min-
imize the number of bins. We model the VMs (and their
resource requirements) as the objects and the PMs (and
their available resources) as the bins. If more than one
VM to PM assignment leads to the minimum number of
PMs, we break the tie by selecting the optimal assign-
ment that requires the smallest number of migrations. If
more than one assignment requires the smallest number
of migrations, we pick the one of these assignments ran-
domly. Unfortunately, the bin-packing problem is NP-
complete, so it can take an inordinate amount of time to
solve it optimally, even for hosting centers of moderate
size. Thus, we resort to a heuristic approach, namely
simulated annealing [14], to solve it.

Finally, in lines 10–14, the resource-allocation system
adjusts the number of PMs and the VM to PM assign-
ment as determined by the best solution ever seen by
simulated annealing.

Comparison. A model-based implementation for this
management system would be similar; it would simply
replace lines 5–8 with a call to a performance model
solver. Obviously, the model would have to have been
created, calibrated, and validateda priori.

A feedback-based implementation would replace lines
5–8 by a call to the controller to execute the experiments
that will adjust the offending service. However, note
that feedback control is only applicable when repeatedly
varying the allocation of a resource or changing a hard-
ware setting does not affect the on-line behavior of the
co-located services. For example, we can use feedback
control to vary the CPU allocation of a service with-
out affecting other services. In contrast, increasing the
amount of memory allocated to a service may require
decreasing the allocation of another service. Similarly,
varying the voltage setting for a service affects all ser-
vices running on the same CPU chip, because the cores in
current chips share the same voltage rail. Cross-service
interactions are clearly undesirable, especially when they

1. For each service do
2. For one software server of each tier
3. Run experiments with JustRunIt
4. Find minimum resource needs
5. If used any interpolated results
6. Inform JustRunIt about them
7. Assign resources using bin-packing heuristic
8. Estimate power consumption

Figure 5: Overview of update-evaluation system.

may occur repeatedly as in feedback control. The key
problem is that feedback control experiments with the
on-line system. With JustRunIt, bin-packing and node
addition/removal occur before any resource changes are
made on-line, so interference can be completely avoided
in most cases. When interference is unavoidable, e.g.
the offending service cannot be migrated to a node with
enough available memory and no extra nodes can be
added, changes to the service are made only once.

3.2 Case Study 2: Hardware Upgrades

Overview. For our second case study, we built a manage-
ment system to evaluate hardware upgrades. The system
assumes that at least one instance of the hardware being
considered is available for experimentation in the sand-
box. For example, consider a scenario in which the host-
ing center is considering purchasing machines of a model
that is faster or has more available resources than that
of its current machines. After performing experiments
with a single machine of the candidate model, our system
determines whether the upgrade would allow servers to
be consolidated onto a smaller number of machines and
whether the overall power consumption of the hosting
center would be smaller than it currently is. This infor-
mation is provided to the administrator, who can make
a final decision on whether or not to purchase the new
machines and ultimately perform the upgrade.

Details. Figure 5 presents pseudo-code overviewing our
update-evaluation system. The experiments with Jus-
tRunIt are started in line 3. For this system, the ma-
trix that JustRunIt produces must include information
about the average response time and the average power
consumption of each resource allocation on the upgrade-
candidate machine. In line 4, the system determines the
resource allocation that achieves the same average re-
sponse time as on the current machine (thus guaranteeing
that the SLA would be satisfied by the candidate machine
as well). Again, the administrator configures the system
to properly drive JustRunIt and gets informed about any
interpolated results that are used in line 4.

By adding the extra 20% slack to these minimum re-
quirements and running the bin-packing algorithm de-
scribed above, the system determines how many new
machines would be required to achieve the current per-
formance and how much power the entire center would



consume. Specifically, the center power can be estimated
by adding up the power consumption of each PM in the
resource assignment produced by the simulated anneal-
ing. The consumption of each PM can be estimated by
first determining the “base” power of the candidate ma-
chine, i.e. the power consumption when the machine is
on but no VM is running on it. This base power should
be subtracted from the results in the JustRunIt matrix of
each software server VM. This subtraction produces the
average dynamic power required by the VM. Estimating
the power of each PM then involves adding up the dy-
namic power consumption of the VMs that would run on
the PM plus the base power.

Comparison. Modeling has been used for this manage-
ment task [7]. A modeling-based implementation for our
management system would replace lines 2–6 in Figure 5
with a call to a performance model solver to estimate the
minimum resource requirements for each service. Based
on these results and on the resource assignment com-
puted in line 7, an energy model would estimate the en-
ergy consumption in line 8. Again, both models would
have to have been created, calibrated, and validateda pri-
ori. In contrast, feedback control is not applicable to this
management task.

4 Evaluation

4.1 Methodology

Our hardware comprises 15 HP Proliant C-class blades
interconnected by a Gigabit Ethernet switch. Each server
has 8 GBytes of DRAM, 2 hard disks, and 2 Intel dual-
core Xeon CPUs. Each CPU has two frequency points, 2
GHz and 3 GHz. Two blades with direct-attached disks
are used as network-attached storage servers. They ex-
port Linux LVM logical volumes to the other blades us-
ing ATA over Ethernet. One Gbit Ethernet port of every
blade is used exclusively for network storage traffic. We
measure the energy consumed by a blade by querying its
management processor, which monitors the peak and av-
erage power usage of the entire blade.

Virtualization is provided by XenLinux kernel 2.6.18
with the Xen VMM [3], version 3.3. For improving
Xen’s ability to provide performance isolation, we pin
Dom0 to one of the cores and isolate the service(s) from
it. Note, however, that JustRunIt does not itself im-
pose this organization. As JustRunIt only depends on
the VMM for VM cloning, it can easily be ported to use
VMMs that do not perform I/O in a separate VM.

We populate the blade cluster with one or more in-
dependent instances of an on-line auction service. To
demonstrate the generality of our system, we also exper-
iment with an on-line bookstore. Both services are or-
ganized into three tiers of servers: Web, application, and

database tiers. The first tier is implemented by Apache
Web servers (version 2.0.54), the second tier uses Tomcat
servlet servers (version 4.1.18), and the third tier uses the
MySQL relational database (version 5.0.27). (For perfor-
mance reasons, the database servers are not virtualized
and run directly on Linux and the underlying hardware.)
We use LVS load balancers [30] in front of the Web and
application tiers. The service requests are received by
the Web servers and may flow towards the second and
third tiers. The replies flow through the same path in the
reverse direction.

We exercise each instance of the services using a client
emulator. The auction workload consists of a “bidding
mix” of requests (94% of the database requests are reads)
issued by a number of concurrent clients that repeatedly
open sessions with the service. The bookstore workload
comprises a “shopping mix”, where 20% of the requests
are read-write. Each client issues a request, receives and
parses the reply, “thinks” for a while, and follows a link
contained in the reply. A user-defined Markov model de-
termines which link to follow. The code for the services,
their workloads, and the client emulator are from the Dy-
naServer project [20] and have been used extensively by
other research groups.

4.2 JustRunIt Overhead

Our overhead evaluation seeks to answer two ques-
tions: (1) Does the overhead of JustRunIt (proxies, VM
cloning, workload duplication, and reply matching) de-
grade the performance of the on-line services? and (2)
How faithfully do servers in the sandbox represent on-
line servers given the same resources?

To answer these questions, we use our auction service
as implemented by one Apache VM, one Tomcat VM,
and MySQL. Using a larger instance of the service would
hide some of the overhead of JustRunIt, since the proxies
only instrument one path through the service. Each of
the VMs runs on a different blade. We use one blade in
the sandbox. The two proxies for the Web tier run on
one of the blades, whereas those for the application tier
run on another. The proxies run on their own blades to
promote performance isolation for the auction service. In
all our experiments, the time shift used by JustRunIt is 10
seconds behind the on-line service.

Overhead on the on-line system? To isolate the over-
head of JustRunIt on the on-line service, we experiment
with three scenarios: (1) Plain – no proxies are installed;
(2) ProxiesInstalled – proxies are installed around the
Web and application servers, but they only relay the net-
work traffic; and (3) JustRunIt – proxies are installed
around the Web and application servers and perform all
the JustRunIt functionality.

Figures 6 and 7 depict the average throughput and re-
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Figure 6: Throughput as a function of offered load.
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Figure 7: Response time as a function of offered load.
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Figure 8: On-line and sandboxed performance as a function
of CPU allocation at offered load 500 requests/second.
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Figure 9: On-line and sandboxed performance as a function
of CPU allocation at offered load 1000 requests/second.

sponse time of the on-line service, respectively, as a func-
tion of the offered load. We set the CPU allocation of all
servers to 100% of one core. In this configuration, the
service saturates at 1940 requests/second. Each bar cor-
responds to a 200-second execution.

Figure 6 shows that JustRunIt has no effect on the
throughput of the on-line service, even as it approaches
saturation, despite having the proxies for each tier co-
located on the same blade.

Figure 7 shows that the overhead of JustRunIt is con-
sistently small (< 5ms) across load intensities. We are
currently in the process of optimizing the implementa-
tion to reduce the JustRunIt overheads further. However,
remember that the overheads in Figure 7 are exagger-
ated by the fact that, in these experiments,all application
server requests are exposed to the JustRunIt instrumenta-
tion. If we had used a service with 4 application servers,
for example, only roughly 25% of those requests would
be exposed to the instrumentation (since we only need
proxies for 1 of the application servers), thus lowering
the average overhead by 75%.

Performance in the sandbox? The results above isolate

the overhead of JustRunIt on the on-line system. How-
ever, another important consideration is how faithful the
sandbox execution is to the on-line execution given the
same resources. Obviously, it would be inaccurate to
make management decisions based on sandboxed exper-
iments that are not very similar to the behavior of the
on-line system.

Figures 8 and 9 compare the performance of the on-
line application server (labeled “Live”) to that of the
sandboxed (labeled “SB”) application server at 500 re-
quests/second and 1000 requests/second, respectively.
In both figures, response times (labeled “RT”) and
throughputs (labeled “T”) are measured at the applica-
tion server’s in-proxy. Again, each result represents the
average performance over 200 seconds.

As one would expect, the figures show that increasing
the CPU allocation tends to increase throughputs and re-
duce response times. The difference between the offered
load and the achieved throughput is the 20% of requests
that are served directly by the Web server and, thus, do
not reach the application server’s in-proxy. More inter-
estingly, the figures clearly show that the sandboxed ex-
ecution is a faithful representation of the on-line system,
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Figure 10: Server expansion using JustRunIt.
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Figure 11: Server expansion using accurate modeling.

regardless of the offered load.
The results for the Web tier also show the sandboxed

execution to be accurate. Like the application-tier re-
sults, we ran experiments with four different CPU allo-
cations, under two offered loads. When the offered load
is 500 reqs/s, the average difference between the on-line
and sandboxed results is 4 requests/second for through-
put and 1 ms for response time, across all CPU alloca-
tions. Even under a load of 1000 requests/second, the av-
erage throughput and response time differences are only
6 requests/second and 2 ms, respectively.

Our experiments with the bookstore service exhibit the
same behaviors as in Figures 6 to 9. The throughput is
not affected by JustRunIt and the overhead on the re-
sponse time is small. For example, under an offered load
of 300 requests/second, JustRunIt increases the mean re-
sponse time for the bookstore from 18 ms to 22 ms. For
900 requests/second, the increase is from 54 ms to 58 ms.
Finally, our worst result shows that JustRunIt increases
the mean response time from 90 ms to 100 ms at 1500
requests/second.

4.3 Case Study 1: Resource Management

As mentioned before, we built an automated resource
manager for a virtualized hosting center that leverages
JustRunIt. To demonstrate the behavior of our manager,
we created four instances of our auction service on 9
blades: 2 blades for first-tier servers, 2 blades for second-
tier servers, 2 blades for database servers, and 3 blades
for storage servers and LVS. Each first-tier (second-tier)
blade runs one Web (application) server from each ser-
vice. Each server VM is allocated 50% of one core as
its CPU allocation. We assume that the services’ SLAs
require an average response time lower than 50 ms in
every period of one minute. The manager requested Jus-
tRunIt to run 3 CPU-allocation experiments with any ser-
vice that violated its SLA, for no longer than 3 minutes
overall. A 10th blade is used for the JustRunIt sand-

box, whereas 2 extra blades are used for its Web and
application-server proxies. Finally, 2 more blades are
used to generate load.

Figure 10 shows the response time of each service dur-
ing our experiment; each point represents the average re-
sponse time during the corresponding minute. We ini-
tially offered 1000 requests/second to each service. This
offered load results in an average response time hover-
ing around 40 ms. Two minutes after the start of the
experiment, we increase the load offered to service 0 to
1500 requests/second. This caused its response time to
increase beyond 50 ms during the third minute of the ex-
periment. At that point, the manager started JustRunIt
experiments to determine the CPU allocation that would
be required for the service’s application servers (the sec-
ond tier is the bottleneck tier) to bring response time back
below 50 ms under the new offered load. The set of Jus-
tRunIt experiments lasted 3 minutes, allowing CPU allo-
cations of 60%, 80%, and 100% of a core to be tested.
The values for 70% and 90% shares were interpolated
based on the experimental results.

Based on the response-time results of the experiments,
the manager determined that the application server VMs
of the offending service should be given 72% of a core
(i.e., 60% of a core plus the 20% of 60% = 12% slack).
Because of the extra CPU allocation requirements, the
manager decided that the system should be expanded to
include an additional PM (a 15th blade in our setup). To
populate this machine, the manager migrated 2 VMs to it
(one from each PM hosting application server VMs). Be-
sides the 3 minutes spent with experiments, VM cloning,
simulated annealing, and VM migration took about 1
minute altogether. As a result, the manager was able to
complete the resource reallocation 7 minutes into the ex-
periment. The experiment ended with all services satis-
fying their SLAs.

Comparison against highly accurate modeling. Fig-
ure 11 shows what the system behavior would be if the



resource manager made its decisions based on a highly
accurate response-time model of our 3-tier auction ser-
vice. To mimic such a model, we performed the Jus-
tRunIt experiments with service 0 under the same offered
load of Figure 10 for all CPU allocations off-line. These
off-line results were fed to the manager during the exper-
iment free of any overheads. We assumed that the model-
based manager would require 1 minute of resource-usage
monitoring after the SLA violation is detected, before the
model could be solved. Based on the JustRunIt results,
the manager made the same decisions as in Figure 10.

The figure shows that modeling would allow the sys-
tem to adjust 2 minutes faster. However, developing, cal-
ibrating, and validating such an accurate model is a chal-
lenging and labor-intensive proposition. Furthermore,
adaptations would happen relatively infrequently in prac-
tice, given that (1) it typically takes at least tens of min-
utes for load intensities to increase significantly in real
systems, and (2) the manager builds slack into the re-
source allocation during each adaptation. In summary,
the small delay in decision making and the limited re-
sources that JustRunIt requires are a small price to pay
for the benefits that it affords.

4.4 Case Study 2: Hardware Upgrade

We also experimented with our automated system for
evaluating hardware upgrades in a virtualized hosting
center. To demonstrate the behavior of our system, we
ran two instances of our auction service on the same
number of blades as in our resource manager study
above. However, we now configure the blades that run
the services to run at 2 GHz. The blade in the JustRunIt
sandbox is set to run at 3 GHz to mimic a more pow-
erful machine that we are considering for an upgrade of
the data center. We offer 1000 requests/second to each
service. We also cap each application server VM of both
services at 90% of one core; for simplicity, we do not ex-
periment with the Web tier, but the same approach could
be trivially taken for it as well.

During the experiment, the management system re-
quested JustRunIt to run 4 CPU-allocation experiments
for no longer than 800 seconds overall. (Note, though,
that this type of management task does not have real-
time requirements, so we can afford to run JustRunIt ex-
periments for a much longer time.) Since each server
is initially allocated 90% of one core, JustRunIt is told
to experiment with CPU allocations of 50%, 60%, 70%,
and 80% of one core; there is no need for interpolation.
The management system’s main goal is to determine (us-
ing simulated annealing) how many of the new machines
would be needed to achieve the same response time that
the services currently exhibit. With this information, the
energy implications of the upgrade can be assessed.

Based on the results generated by JustRunIt, the man-
agement system decided that the VMs of both services
could each run at 72% CPU allocations (60% of one core
plus 12% slack) at 3 GHz. For a large data center with
diverse services, a similar reduction in resource require-
ments may allow for servers to be consolidated, which
would most likely conserve energy. Unfortunately, our
experimental system is too small to demonstrate these
effects here.

4.5 Summary

In summary, the results above demonstrate that the Jus-
tRunIt overhead is small, even when all requests are
exposed to our instrumentation. In real deployments,
the observed overhead will be even smaller, since there
will certainly be more than one path through each ser-
vice (at the very least to guarantee availability and fault-
tolerance). Furthermore, the results show that the sand-
boxed execution is faithful to the on-line execution. Fi-
nally, the results demonstrate that JustRunIt can be effec-
tively leveraged to implement sophisticated automated
management systems. Modeling could have been applied
to the two systems, whereas feedback control is applica-
ble to resource management (in the case of the CPU al-
location), but not upgrade evaluation. The hardware re-
sources consumed by JustRunIt amount to one machine
for the two proxies of each tier, plus as few as one sand-
box machine. Most importantly,this overhead is fixed
and independent of the size of the production system.

5 Related Work

Modeling, feedback control, and machine learning
for managing data centers. State-of-the-art manage-
ment systems rely on analytical modeling, feedback con-
trol, and/or machine learning to at least partially auto-
mate certain management tasks. As we have mentioned
before, modeling has complexity and accuracy limita-
tions, whereas feedback control is not applicable to many
types of tasks. Although machine learning is useful for
certain management tasks, such as fault diagnosis, it also
has applicability limitations. The problem is that ma-
chine learning can only learn about system scenarios and
configurations that have been seen in the past and about
which enough data has been collected. For example, it
applies to neither of the tasks we study in this paper.
Nevertheless, machine learning can be used to improve
the interpolation done by JustRunIt, when enough data
exists for it to derive accurate models.

JustRunIt takes a fundamentally different approach to
management; one in which accurate sandboxed experi-
ments replace modeling, feedback control, and machine
learning.



Scaling down data centers. Gupta et al. [10] pro-
posed the DieCast approach for scaling down a service.
DieCast enables some management tasks, such as pre-
dicting service performance as a function of workload,
to be performed on the scaled version. Scaling is accom-
plished by creating one VM for each PM of the service
and running the VMs on an off-line cluster that is an or-
der of magnitude smaller than the on-line cluster. Be-
cause of the significant scaling in size, DieCast also uses
time dilation [11] to make guest OSes think that they are
running on much faster machines. For a 10-fold scale
down, time dilation extends execution time by 10-fold.

DieCast and JustRunIt have fundamentally different
goals and resource requirements. First, JustRunIt targets
a subset of the management tasks that DieCast does; the
subset that can be accomplished with limited additional
hardware resources, software infrastructure, and costs.
In particular, JustRunIt seeks to improve upon model-
ing by leveraging native execution. Because of time di-
lation, DieCast takes excessively long to perform each
experiment. Second, JustRunIt includes infrastructure
for automatically experimenting with services, as well
as interpolating and checking the experimental results.
Third, JustRunIt minimizes the set of hardware resources
that are required by each experiment without affecting its
running time. In contrast, to affect execution time by a
small factor, DieCast requires an additional hardware in-
frastructure that is only this same small factor smaller
than the entire on-line service.

Sandboxing and duplication for managing data cen-
ters. A few efforts have proposed related infrastructures
for managing data centers. Specifically, [15, 17] consid-
ered validating operator actions in an Internet service by
using request duplication to a sandboxed extension of the
service. For each request, if the replies generated by the
on-line environment and by the sandbox ever differ dur-
ing a validation period, a potential operator mistake is
flagged. Tanet al. [25] considered a similar infrastruc-
ture for verifying file servers.

Instead of operator-action validation in a single, non-
virtualized Internet service, our goal is to experimen-
tally evaluate the effect of different resource allocations,
parameter settings, and other potential system changes
(such as hardware upgrades) in virtualized data centers.
Thus, JustRunIt is much more broadly applicable than
previous works. As a result, our infrastructure is quite
different than previous systems. Most significantly, Jus-
tRunIt is the first system that may explore a large number
of scenarios that differ from the on-line system, while ex-
trapolating results from the experiments that are actually
run, and verifying its extrapolations if necessary.

Selecting experiments to run. Previous works have pro-
posed sophisticated approaches for selecting the experi-

ments to run when benchmarking servers [22] or opti-
mizing their configuration parameters [26, 31]. Such ap-
proaches are largely complementary to our work. Specif-
ically, they can be used to improve experiment-based
management in two ways: (1) automated management
systems can use them to define/constrain the parameter
space that JustRunIt should explore; or (2) they can be
used as new heuristics in JustRunIt’s driver to eliminate
unnecessary experiments.

6 Conclusions

This paper introduced a novel infrastructure for
experiment-based management of virtualized data cen-
ters, called JustRunIt. The infrastructure enables an au-
tomated management system or the system administra-
tor to answer “what-if” questions experimentally during
management tasks and, based on the answers, select the
best course of action. The current version of JustRunIt
can be applied to many management tasks, including re-
source management, hardware upgrades, and software
upgrades.

Limitations. There are three types of “what-if” ques-
tions that sophisticated models can answer (by making
simplifying assumptions and costing extensive human la-
bor), whereas JustRunIt currently cannot. First, service-
wide models can answer questions about the effect of
a service tier on other tiers. In the current version of
JustRunIt, these cross-tier interactions are not visible,
since the sandboxed virtual machines do not communi-
cate with each other.

Second, models that represent request mixes at a low
enough level can answer questions about hypothetical
mixes that have not been experienced in practice. Cur-
rently, JustRunIt relies solely on real workload dupli-
cation for its experiments, so it can only answer ques-
tions about request mixes that are offered to the system.
Nevertheless, JustRunItcan currently answer questions
about more or less intense versions of real workloads,
which seems to be a more useful property.

Finally, models can sometimes be used to spot perfor-
mance anomalies, although differences between model
results and on-line behavior are often due to inaccura-
cies of the model. Because JustRunIt uses complete-state
replicas of on-line virtual machines for greater realism in
its experiments, anomalies due to software server or op-
erating system bugs cannot be detected.

Future work. We plan to extend JustRunIt to al-
low cross-tier communication between the sandboxed
servers. This will allow the administrator to configure
sandboxing with or without cross-tier interactions. We
also plan to create infrastructure to allow experimenta-
tion with request mixes other than those observed on-



line. The idea here is to collect a trace of the on-line
workload offered to one server of each tier, as well as the
state of these servers. Later, JustRunIt could install the
states and replay the trace to the sandboxed servers. Dur-
ing replay, the request mix could be changed by eliminat-
ing or replicating some of the traced sessions. Finally, we
plan to build an in-proxy for a database server, starting
with code from the C-JBDC middleware.
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