
Decaf: Moving Device Drivers to a Modern Language
Matthew J. Renzelmann and Michael M. Swift

University of Wisconsin–Madison
{mjr, swift}@cs.wisc.edu

Abstract

Writing code to interact with external devices is inher-
ently difficult, and the added demands of writing device
drivers in C for kernel mode compounds the problem.
This environment is complex and brittle, leading to in-
creased development costs and, in many cases, unreli-
able code. Previous solutions to this problem ignore the
cost of migrating drivers to a better programming envi-
ronment and require writing new drivers from scratch or
even adopting a new operating system.

We present Decaf Drivers, a system for incremen-
tally converting existing Linux kernel drivers to Java
programs in user mode. With support from program-
analysis tools, Decaf separates out performance-sensitive
code and generates a customized kernel interface that
allows the remaining code to be moved to Java. With
this interface, a programmer can incrementally convert
driver code in C to a Java decaf driver. The Decaf
Drivers system achieves performance close to native ker-
nel drivers and requires almost no changes to the Linux
kernel. Thus, Decaf Drivers enables driver program-
ming to advance into the era of modern programming
languages without requiring a complete rewrite of oper-
ating systems or drivers.

With five drivers converted to Java, we show that De-
caf Drivers can (1) move the majority of a driver’s code
out of the kernel, (2) reduce the amount of driver code,
(3) detect broken error handling at compile time with ex-
ceptions, (4) gracefully evolve as driver and kernel code
and data structures change, and (5) perform within one
percent of native kernel-only drivers.

1 Introduction
Our research is motivated by three factors. First, writ-
ing quality device driver code is difficult, as evidenced
by the many books and conferences devoted to the sub-
ject. The net result of this difficulty is unreliability and
unavailability [45]. Second, device drivers are a critical
part of operating systems yet are developed by a broad
community. Early versions of Unix had only a handful of
drivers, totaling a few kilobytes of code, that were writ-
ten by a single developer–Dennis Ritchie [39]. In con-
trast, modern versions of Linux include over 3200 driver
versions in the kernel source tree, developed by over
300 people and entailing 3 million lines of code [46].
Similarly, Windows Vista was released with over 30,000

available device drivers [2]. As a result, the difficulty
of writing drivers has a wide impact. Third, despite at-
tempts to change how drivers are developed, they con-
tinue to be written as they have been: in the kernel and
in C. A glance at early Unix source code [39] shows that,
despite decades of engineering, driver code in modern
versions of Linux bears a striking resemblance to drivers
in the original versions of Unix.

Efforts at providing a cross-platform driver inter-
face [25, 38], moving driver code to user mode [14, 21,
25, 26, 33, 49] or into type-safe languages or extensions
to C [5, 9, 25, 42, 51] have had niche successes but have
not seen widespread adoption. While we cannot be sure
of the reason, we speculate that use of unfamiliar pro-
gramming languages and the lack of a migration path
have stifled use of these approaches. Prior efforts at re-
using existing driver code relied on C extensions not in
widespread use, such as CCured [9]. In contrast, systems
using popular languages generally require that drivers
be written from scratch to gain any advantage [25, 51].
However, many drivers are written by copying and past-
ing existing code [15, 28]. Thus, it may still be easier for
a driver developer to modify an existing C driver than to
write a new driver from scratch, even if the environment
is simpler to program.

Decaf Drivers takes a best-effort approach to simplify-
ing driver development by allowing most driver code to
be written at user level in languages other than C. Decaf
Drivers sidesteps many of the above problems by leav-
ing code that is critical to performance or compatibil-
ity in the kernel in C. All other code can move to user
level and to another language; we use Java for our im-
plementation, as it has rich tool support for code gener-
ation, but the architecture does not depend on any Java
features. The Decaf architecture provides common-case
performance comparable to kernel-only drivers, but reli-
ability and programmability improve as large amounts of
driver code can be written in Java at user level.

The goal of Decaf Drivers is to provide a clear migra-
tion path for existing drivers to a modern programming
language. User-level code can be written in C initially
and converted entirely to Java over time. Developers can
also implement new user-level functionality in Java.

We implemented Decaf Drivers in the Linux 2.6.18.1
kernel by extending the Microdrivers infrastructure [19].
Microdrivers provided the mechanisms necessary to con-

vert existing drivers into a user-mode and kernel-mode
component. The resulting driver components were writ-
ten in C, consisted entirely of preprocessed code, and of-
fered no path to evolve the driver over time.

The contributions of our work are threefold. First,
Decaf Drivers provides a mechanism for converting the
user-mode component of microdrivers to Java through
cross-language marshaling of data structures. Second,
Decaf supports incremental conversion of driver code
from C to Java on a function-by-function basis, which
allows a gradual migration away from C. Finally, the re-
sulting driver code can easily be modified as the operat-
ing system and supported devices change, through both
editing of driver code and modification of the interface
between user and kernel driver portions.

We demonstrate this functionality by converting five
drivers to decaf drivers, and rewriting either some or all
of the user-mode C code in each into Java. We find that
converting legacy drivers to Java is straightforward and
quick.

We analyze the E1000 gigabit network driver for con-
crete evidence that Decaf simplifies driver development.
We find that using Java exceptions reduced the amount
of code and fixed 28 cases of missing error handling.
Furthermore, updating the driver to a recent version pre-
dominantly required changes to the Java code, not kernel
C code. Using standard workloads, we show while decaf
drivers are slower to initialize, their steady-state perfor-
mance is within 1% of native kernel drivers.

In the following section we describe the Decaf archi-
tecture. Section 3 provides a discussion of our Decaf
Drivers implementation. We evaluate performance in
Section 4, following with a case study applying Decaf
Drivers to the E1000 driver. We present related work in
Section 6, and then conclude.

2 Design of Decaf Drivers
The primary goal of Decaf Drivers is to simplify device
driver programming. We contend that the key to dra-
matically improving driver reliability is to simplify their
development, and that requires:
• User-level development in a modern language.

• Near-kernel performance.

• Incremental conversion of existing drivers.

• Support for evolution as driver and kernel data
structures and interfaces change.

User-level code removes the restrictions of the ker-
nel environment, and modern languages provide garbage
collection, rich data structures, and exception handling.
Many of the common bugs in drivers relate to improper
memory access, which is solved by type-safe languages;
improper synchronization, which can be improved with

language support for mutual exclusion; improper mem-
ory management, addressed with garbage collection; and
missing or incorrect error handling, which is aided by use
of exceptions for reporting errors.

Moving driver code to advanced languages within the
kernel achieves some of our goals, but raises other chal-
lenges. Support for other languages is not present in op-
erating system kernels, in part because the kernel envi-
ronment places restrictions on memory access [51]. No-
tably, most kernels impose strict rules on when memory
can be allocated and which memory can be touched at
high priority levels [11, 32]. Past efforts to support Java
in the Solaris kernel bears this out [36]. In addition, ker-
nel code must deal gracefully with low memory situa-
tions, which may not be possible in all languages [6].

The Decaf architecture balances these conflicting re-
quirements by partitioning drivers into a small kernel
portion that contains performance-critical code and a
large, user-level portion that can be written in any lan-
guage. In support of the latter two goals, Decaf provides
tools to support migration of existing code out of the ker-
nel and to generate and re-generate marshaling code to
pass data between user mode and the kernel.

2.1 Microdrivers

We base Decaf Drivers on Microdrivers, a user-level
driver architecture that provides both high perfor-
mance and compatibility with existing driver and kernel
code [19]. Microdrivers partition drivers into a kernel-
level k-driver, containing only the minimum code re-
quired for high-performance and to satisfy OS require-
ments, and a user-level u-driver with everything else.
The k-driver contains code with high bandwidth or low-
latency requirements, such as the data-handling code and
driver code that executes at high priority, such as inter-
rupt handlers. The remaining code, which is often the
majority of code in a driver, executes in a user-level pro-
cess. While the kernel is isolated from faults in the user-
level code, systems such as SafeDrive [52] or XFI [16]
can be used to isolate and recover from faults in the ker-
nel portion.

To maintain compatibility with existing code, the
DriverSlicer tool can create microdrivers from existing
driver code. This tool identifies high-priority and low-
latency code in drivers that must remain in the kernel
and creates two output files: one with functions left in
the kernel (the k-driver), and one with everything else
(the u-driver). With assistance from programmer annota-
tions, DriverSlicer generates RPC-like stubs for commu-
nication between the k-driver and u-driver. The kernel
invokes microdrivers normally by either calling into the
k-driver or into a stub that passes control to the u-driver.

The Microdrivers architecture does not support several
features necessary for widespread use. First, after split-

User-level Driver

Driver
Nucleus (C)

Stubs
Kernel/User XPC

Decaf
Driver
(Java)

Driver
Library

(C)

Kernel

Kernel/User XPC
Stubs

Application

Java/C
XPC

Figure 1: The Decaf Drivers architecture. The OS
kernel invokes driver nucleus code or stubs that com-
municate with the decaf driver via an extension pro-
cedure call (XPC).

ting the driver, Microdrivers produces only preprocessed
C output, which is unsuitable for evolving the driver once
split. Second, Microdrivers only supports C in the u-
driver, and provides no facility for moving to any other
language.

2.2 Decaf Drivers Overview

Decaf Drivers extends Microdrivers by addressing the
deficiencies outlined previously: Decaf Drivers supports
(1) writing user-level code in a language other than C, (2)
incremental conversion of a legacy driver to a new driver
architecture, and (3) evolving the driver as interfaces and
data structures change.

Decaf Drivers partitions drivers into two major com-
ponents: the driver nucleus1 that executes in the kernel
for performance and compatibility; and the user-level de-
caf driver written in any language that supports marshal-
ing/unmarshaling of data structures. However, user-level
driver code may need to perform actions that are not ex-
pressible in all languages, such as directly controlling
the hardware with instructions such as outb. This code
resides in the user-level driver library, which executes
normal C code. The driver library also provides a staging
ground when migrating C code out of the kernel, where it
can execute before being converted to another language.

While the architecture supports any language, our im-
plementation is written for Java and we refer to code in
the decaf driver as being written in Java. Using Java
raises the issue of communicating data structures be-
tween languages, in contrast to C++. We believe that
other languages that provide mechanisms for invoking
native C code, such as Python, would also work well with
the Decaf Drivers architecture.

At runtime, all requests to the driver enter through

1We re-christened the k-driver and u-driver from Microdrivers to
more descriptive names reflecting their purpose and implementation,
not just their execution mode.

the kernel. The kernel directly invokes functionality im-
plemented by the driver nucleus. Functionality imple-
mented at user level enters through a stub that transfers
control to user level and dispatches it to the driver library
or the decaf driver. The user-level components may in-
voke each other or call back into the kernel while pro-
cessing a request.

The Decaf architecture consists of two major compo-
nents:

1. Extension Procedure Call (XPC) for communica-
tion between kernel/user level and between C and
Java.

2. DriverSlicer to generate marshaling code for XPC.
We next discuss these two components in detail.

2.3 Extension Procedure Call

Extension procedure call, created as part of the Nooks
driver isolation subsystem [45], provides procedure calls
between protection domains. XPC in Decaf Drivers pro-
vides five services to enable this cooperation: control
transfer to provide procedure call semantics (i.e., block
and wait); object transfer to pass language-level objects,
such as structures, between domains; object sharing to
allow an object to exist in multiple domains; and syn-
chronization to ensure consistency when multiple do-
mains access a shared object. Stubs invoke XPC services
for communication between domains.

The two primary domains participating in driver exe-
cution are the driver nucleus and the decaf driver. How-
ever, driver functionality may also exist in the driver li-
brary, both when migrating code to another language
or for functionality reasons. For example, code shared
across operating systems may be left in C. Thus, the De-
caf architecture also provides XPC between the decaf
driver and the driver library to provide access to complex
data structures requiring conversion between languages.
The decaf driver may directly invoke code in the driver
library for simple library calls.

Cross-Domain Control Transfer. The control-
transfer mechanism performs the actions of the runtime
in an RPC system [4] to pass control from the calling
thread to a thread in the target domain. If the decaf
driver and the driver library execute in a single process,
the control transfer mechanism can be optimized to
re-use the calling thread rather than scheduling a new
thread to handle the request.

Cross-Domain Object Transfer. XPC provides cus-
tomized marshaling of data structures to copy only those
fields actually accessed at the target. Thus, structures de-
fined for the kernel’s internal use but shared with drivers
are passed with only the driver-accessed fields. In addi-
tion, XPC provides cross-language conversion, convert-
ing structures making heavy use of C language features

for performance (e.g., bit fields) to languages without
such control over memory layout.

Object Sharing. Driver components may simultane-
ously process multiple requests that reference the same
object. If two threads are accessing the same object, they
should work on a single copy of this object, as they would
in the kernel, rather than on two separate copies. Similar
to Nooks [45], Decaf Drivers XPC uses an object tracker
that records each shared object, extended to support two
user-level domains. When transferring objects into a do-
main, XPC consults the object tracker to find whether
the object already exists. If so, the existing object can be
updated, and if not, a new object must be allocated.

Synchronization. Synchronized access to data is a
challenging problem for regular device drivers because
they are reentrant. For example, a device may generate
an interrupt while a driver is processing an application
request, and the interrupt handler and the request handler
may access the same data. To prevent corruption, driver
writers must choose from a variety of locking mecha-
nisms based on the priority of the executing code and of
potential sharers [29].

The Decaf Drivers synchronization mechanism pro-
vides regular locking semantics. If code in one domain
locks an object, code in other domains must be prevented
from accessing that object while the lock is held. Fur-
thermore, Decaf ensures that the holder of a lock has the
most recent version of the objects it protects.

Stubs. Similar to RPC stubs, XPC stubs contain calls
specific to a single remote procedure: calls into marshal-
ing code, object tracking code, and control transfer code.
These can be written by hand or generated by the Driver-
Slicer tool. Calls to native functions must be replaced
with calls to stubs when the function is implemented in
another domain.

2.4 DriverSlicer

The XPC mechanism supports the execution of Decaf
Drivers, but does little on its own to simplify the writing
of drivers. This task is achieved by the DriverSlicer tool,
which enables creation of decaf drivers from existing
kernel code written in C. DriverSlicer provides three key
functions: (1) partitioning, to identify code that may run
outside the kernel, (2) stub generation to enable commu-
nication across language and process boundaries, and (3)
generation of the driver nucleus and user-level C code to
start the porting process. Furthermore, DriverSlicer can
regenerate stubs as the set of supported devices, driver
data structures, and kernel interfaces change.

Partitioning. Given an existing driver, DriverSlicer
automatically partitions the driver into the code that must
remain in the kernel for performance or functionality rea-
sons and the code that can move to user level. This fea-

ture is unchanged from the Microdrivers implementation
of DriverSlicer. As input, it takes an existing driver and
type signatures for critical root functions, i.e., functions
in the kernel-driver interface that must execute in the
kernel for performance or functionality reasons. Driver-
Slicer outputs the set of functions reachable from critical
root functions, all of which must remain in the kernel.
The remaining functions can be moved to user level. In
addition, DriverSlicer outputs the set of entry-point func-
tions, where control transfers between kernel mode and
user mode. The user-mode entry points are the driver in-
terface functions moved to user mode. The kernel entry
points are OS kernel functions and critical driver func-
tions called from user mode.

Stub Generation. DriverSlicer creates stubs automat-
ically based on the set of kernel and user entry points
output from the partitioning stage. With the guidance
of programmer annotations [19], DriverSlicer automat-
ically generates marshaling code for each entry-point
function. In addition, DriverSlicer emits code to mar-
shal and unmarshal data structures in both C and Java,
allowing complex data structures to be accessed natively
in both languages.

Driver Generation. DriverSlicer emits C source code
for the driver nucleus and the driver library. The driver
library code can be ignored when functions are rewrit-
ten in another language. The source code produced is a
partitioning of the original driver source code into two
source trees. Files in each tree contain the same include
files and definitions, but each function is in only one of
the versions, according to where it executes.

To support driver evolution, DriverSlicer can be in-
voked repeatedly to generate new marshaling code as
data structures change. The generated driver files need
only be produced once since the marshaling code is seg-
regated from the rest of the driver code.

2.5 Summary

The Decaf architecture achieves our four requirements.
The decaf driver itself may be implemented in any lan-
guage and runs at user level. The driver nucleus provides
performance near that of native kernel drivers. Driver-
Slicer provides incremental conversion to C through au-
tomatic generation of stubs and marshaling code both for
kernel-user communication and C-Java communication.
Finally, DriverSlicer supports driver evolution through
regeneration of stubs and marshaling code as the driver
changes.

3 Implementation
We implemented the Decaf Drivers architecture for the
Linux 2.6.18.1 kernel and re-wrote five device drivers
into decaf drivers. We use a modified version of Driver-
Slicer from Microdrivers [19] to generate code for XPC

stubs and marshaling, and implemented extensions to
generate similar code between the driver library and de-
caf driver.

The driver nucleus is a standard Linux kernel module
and the decaf driver and driver library execute together
as a multithreaded Java application. Our implementation
relies on Jeannie [22] to simplify calling from C into
Java and back. Jeannie is a compiler that allows mix-
ing Java and C code at the expression level, which sim-
plifies communication between the two languages. Lan-
guages with native support for cross-language calls, such
as C] [34], provide the ability to call functions in dif-
ferent languages, but do not allow mixing expressions in
different languages.

Decaf Drivers provides runtime support common to all
decaf drivers. The runtime for user-level code, the decaf
runtime, contains code supporting all decaf drivers. The
kernel runtime is a separate kernel module, called the
nuclear runtime, that is linked to every driver nucleus.
These runtime components support synchronization, ob-
ject sharing, and control transfer.

3.1 Extension Procedure Call

Decaf Drivers uses two versions of XPC: one between
the driver nucleus and the driver library, for crossing the
kernel boundary; and another between the driver library
and the decaf driver, for crossing the C-Java language
boundary. XPC between kernel and user mode is sub-
stantially similar to that in Microdrivers, so we focus our
discussion on communication between C and Java.

The Decaf implementation always performs XPCs to
and from the kernel in C, which allows us to leverage
existing stub and marshaling support from Microdrivers.
An upcall from the kernel always invokes C code first,
which may then invoke Java code. Similarly, downcalls
always invoke C code first before invoking the kernel.
While this adds extra steps when invoking code in the
decaf driver, it adds little runtime overhead as shown by
the experiments in Section 4.

3.1.1 Java–C Control and Data Transfer

Decaf Drivers provides two mechanisms for the decaf
driver to invoke code in the driver library: direct cross-
language function calls and calls via XPC. Direct calls
may be used when arguments are scalar values that can
be trivially converted between languages, such as argu-
ments to low-level I/O routines. XPC must be used when
arguments contain pointers or complex data structures to
provide cross-language translation of data types. In ad-
dition, downcalls from the decaf driver to the driver nu-
cleus require XPC.

In both cases, Decaf Drivers relies on the Jeannie lan-
guage [22] to perform the low-level transfer between C
and Java. Jeannie enables C and Java code to be mixed in

a source file at the granularity of a single expression. The
backtick operator (‘) switches between languages. From
a combined source file, the Jeannie compiler produces a
C file, a Java file, and Java Native Interface code allowing
one to call the other. Jeannie provides a clean syntax for
invoking a Java function from C and vice versa. When
invoking simple functionality in C, the decaf driver can
inline the C code right into a Java function.

When invoking a function through XPC, Decaf
Drivers uses RPC-style marshaling to transfer complex
objects between Java and C. While Jeannie allows code
in one language to read variables declared in the other, it
does not allow modifications of those variables. Instead,
Decaf uses the XDR marshaling standard [13] to mar-
shal data between the driver library and the decaf driver,
which we discuss in Section 3.2.3.

We write Decaf stubs in Jeannie to allow pure Java
code to invoke native C code. The stubs invoke XDR
marshaling code and the object tracker. Figure 2 shows
an example of a stub in Jeannie. As shown in this fig-
ure, the following steps take place when calling from the
decaf driver to the driver nucleus:

1. The decaf driver calls the Jeannie stub.

2. The stub invokes the object tracker to translate any
parameters to their equivalent C pointers.

3. The stub, acting as an XPC client, invokes an XDR
routine to marshal the Java parameters.

4. While marshaling these parameters, the XDR code
uses inheritance to execute the appropriate marshal-
ing routine for the object.

5. The same stub then acts as an XPC server, and un-
marshals the Java objects into C.

6. While unmarshaling return values, the C stubs call
specialized functions for each type.

We write stubs by hand because our code generation
tools can only produce pure Java or C code, but the pro-
cess could be fully automated.

3.1.2 Java-C Object Sharing

Object sharing maintains the relationship between data
structures in different domains with an object tracker.
This service logically stores mappings between C point-
ers in the driver library, and Java objects in the decaf
driver. Marshaling code records the caller’s local ad-
dresses for objects when marshaling data. Unmarshaling
code checks the object tracker before unmarshaling each
object. If found, the code updates the existing object with
its new contents. If not found, the unmarshaling code al-
locates a new object and adds an association to the object
tracker. For kernel/user XPC, the unmarshaling code in
the kernel consults the object tracker with a simple pro-
cedure call, while unmarshaling code in the driver library

Consult object tracker

Marshal arguments

Call C function

Marshal out parameters

Class Ens1371 {
 ...
 public static int snd_card_register(snd_card java_card) {
 CPointer c_card = JavaOT.xlate_j_to_c (java_card);
 int java_ret;
 begin_marshaling ();
 copy_XDR_j2c (java_card);
 end_marshaling ();
 java_ret = `snd_card_register ((void *) `c_card.get_c_ptr());
 begin_marshaling ();
 java_card = (snd_card) copy_XDR_c2j (java_card, c_card);
 end_marshaling ();
 return java_ret;
 }

Figure 2: Sample Jeannie stub code for calling from Java to C. The backtick operator ‘ switches the language
for the following expression, and is needed only to invoke the C function.

must call into the kernel.
The different data representations in C and Java raise

two difficulties. First, Java objects do not have unique
identifiers, such as the address of a structure in C. Thus,
the decaf runtime uses a separate user-level object tracker
written in Java, which uses object references to identify
Java objects. C objects are identified by their address,
cast to an integer.

Second, a single C pointer may be associated with
multiple Java objects. When a C structure contains an-
other structure as its first member, both inner and outer
structures have the same address. In Java, however, these
objects are distinct. This difference becomes a problem
when a decaf driver passes the inner structure as an argu-
ment to a function in the driver library or driver nucleus.
The user-level object tracker disambiguates the uses of
a C pointer by additionally storing a type identifier with
each C pointer.

When an object is initially copied from C to Java,
marshaling code adds entries to the object tracker for
its embedded structures. When an embedded structure
is passed back from Java to C, the marshaling code will
search for a C pointer with the correct type identifier. The
object tracker uses the address of the C XDR marshaling
function for a structure as its identifier.

Once an object’s reference is removed from the ob-
ject tracker, Java’s garbage collection can free it nor-
mally. We have not yet implemented automatic collec-
tion of shared objects, so decaf drivers must currently
free shared objects explicitly. Implementing the object
tracker with weak references [20] and finalizers would
allow unreferenced objects to be removed from the ob-
ject tracker automatically.

3.1.3 Synchronization

Decaf Drivers relies on kernel-mode combolocks from
Microdrivers to synchronize access to shared data across
domains [19]. When acquired only in the kernel, a com-
bolock is a spinlock. When acquired from user mode,
a combolock is a semaphore, and subsequent kernel

threads must wait for the semaphore. Combolocks also
provide support for multiple threads in the decaf driver
and allow these threads to share data with the driver nu-
cleus and driver library.

However, combolocks alone do not completely ad-
dress the problem. The driver nucleus must not invoke
the decaf driver while executing high priority code or
holding a spinlock. We use three techniques to pre-
vent high-priority code from invoking user-level code.
First, we direct the driver to avoid interrupting itself:
the nuclear runtime disables interrupts from the driver’s
device with disable irq while the decaf driver runs.
Since user-mode code runs infrequently, we have not ob-
served any performance or functional impact from defer-
ring code.

Second, we modify the kernel in some places to not
invoke the driver with spinlocks held. For example, we
modified the kernel sound libraries to use mutexes, which
allowed more code to execute in user mode. In its orig-
inal implementation, the sound library would often ac-
quire a spinlock before calling the driver. Driver func-
tions called with a spinlock held would have to remain
in the kernel because invoking the decaf driver would re-
quire invoking the scheduler. In contrast, mutexes allow
blocking operations while they are held, so we were able
to move additional driver functions into the decaf driver.

Third, we deferred some driver functionality to a
worker thread. For example, the E1000 driver uses a
watchdog timer that executes every two seconds. Since
the kernel runs timers at high priority, it cannot call up
to the decaf driver when the timer fires. Instead, we con-
vert timers to enqueue a work item, which executes on
a separate thread and allows blocking operations. Thus,
the watchdog timer can execute in the decaf driver.

3.2 DriverSlicer Implementation

DriverSlicer automates much of the work of creating de-
caf drivers. The tool is a combination of OCaml code
written for CIL [35] to perform static analysis and gener-
ate C code, Python scripts to post-process the generated

C code, and XDR compilers to produce cross-language
marshaling code. DriverSlicer takes as input a legacy
driver with annotations to specify how C pointers and
arrays should be marshaled and emits stubs, marshaling
routines, and separate user and kernel driver source code
files.

3.2.1 Generating Readable Code

A key goal of Decaf Drivers is support for continued
modification to drivers. A major problem with Driver-
Slicer from microdrivers is that it only generated prepro-
cessed driver code, which is difficult to modify. The De-
caf DriverSlicer instead patches the original source, pre-
serving comments and code structure. It produces two
sets of files; one set for the driver nucleus and one set for
the driver library, to be ported to the decaf driver. This
patching process consists of three steps.

First, scripts parse the preprocessed CIL output to ex-
tract the generated code (as compared to the original
driver source). This code includes marshaling stubs and
calls to initialize the object tracker. Other preprocessed
output, such as driver function implementations, are ig-
nored, as this code will be taken from the original driver
source files instead.

Second, DriverSlicer creates two copies (user and ker-
nel) of the original driver source. From these copies, the
tool removes function implemented by the other copy.
Any functions in the driver nucleus source tree that are
now implemented in the driver library and any functions
in the driver library source tree that are implemented in
the driver nucleus or the kernel are either replaced with
stubs or removed entirely. The stubs containing marshal-
ing code are placed in a separate file to preserve the read-
ability of the patched driver.

Finally, DriverSlicer makes several other minor mod-
ifications to the output. It adds #include directives to
provide definitions for the functions used in the marshal-
ing code, and adds a function call in the driver nucleus
init module function to provide additional initializa-
tion.

3.2.2 Generating XDR Interface Specifications

The decaf driver relies on XDR marshaling to access ker-
nel data structures. DriverSlicer generates an XDR spec-
ification for the data types used in user-level code from
the original driver and kernel header files. The exist-
ing annotations needed for generating kernel marshaling
code are sufficient to emit XDR specifications.

Unfortunately, XDR is not C and does not support all
C data structures, specifically strings and arrays. Driver-
Slicer takes additional steps to convert C data types to
compatible XDR types with the same memory layout.
First, DriverSlicer discards most of the original code ex-
cept for typedefs and structure definitions. Driver-

Original Structure:
struct e1000_adapter {
 ...
 struct e1000_tx_ring test_tx_ring;
 struct e1000_rx_ring test_rx_ring;
 uint32_t * __attribute__((exp(PCI_LEN)))
 config_space;
 int msg_enable;
 ...
};

XDR input:
struct array256_uint32_t {
 uint32_t array[256] ;
};

typedef struct array256_uint32_t
*array256_uint32_ptr;

struct e1000_adapter_autoxdr_c {
 ...
 struct e1000_tx_ring test_tx_ring ;
 struct e1000_rx_ring test_rx_ring ;
 array256_unit32_ptr config_space ;
 int msg_enable ;
 ...
};

Figure 3: Portions of a driver data structure above,
and the generated XDR input below. The names have
been shortened for readability. The annotation in the
original version is required for DriverSlicer to gener-
ate marshaling code between kernel and user levels.

Slicer then rewrites these definitions to avoid function-
ality that XDR does not support. For example, a driver
data structure may include a pointer to a fixed length ar-
ray. DriverSlicer cannot output the original C definition
because XDR would interpret it as a pointer to a single
element. Instead, DriverSlicer generates a new structure
definition containing a fixed length array of the appro-
priate type, and then substitutes pointers to the old type
with a pointer to the new structure type.

As shown in Figure 3, DriverSlicer converts pointers
to an array into a pointer to a structure, allowing XDR
to produce marshaling code. This transformation does
not affect the in-memory layout. In this way, the gen-
erated marshaling code will properly marshal the entire
contents of the array. After generating the C output, a
script runs which makes a few syntactic transformations,
such as converting C’s long long type to XDR’s hyper
type. The result is a valid XDR specification.

3.2.3 Generating XDR Marshaling Routines

DriverSlicer incorporates modified versions of the
rpcgen [43] and jrpcgen [1] XDR interface compil-
ers to generate C and Java marshaling code respectively.
These modifications to the original tools support object

tracking and recursive data structures.
As previously mentioned in Section 3.1.2, the tools

emit calls into the object tracker to locate existing ver-
sions of objects passed as parameters. The generated un-
marshaling code consults the object tracker before allo-
cating memory for a structure. If one is found, the exist-
ing structure is used.

The DriverSlicer XDR compilers support recursive
data structures, such as circular linked lists. The mar-
shaling code checks each object against a list of the ob-
jects that have already been marshaled. When the tool
encounters an object again, it inserts a reference to the
existing copy instead of marshaling the structure again.
This feature extends also across all parameters to a func-
tion, so that passing two structures that both reference a
third results in marshaling the third structure just once.

The output of DriverSlicer is a set of functions that
marshal or unmarshal each data structure used by the
functions in the interface. It also emits a Java class for
each C data type used by the driver. These classes are
containers of public fields for every element of the orig-
inal C structures. The generated classes provide a useful
starting point for writing driver code in Java, but do not
take advantage of Java language features. For example,
all member variables are public. We expect developers
to rewrite these classes when doing more development in
Java.

3.2.4 Regenerating Stubs and Marshaling Code

As drivers evolve, the functions implemented in the
driver nucleus or the data types passed between the driver
nucleus and the decaf driver may change. Consequently,
the stubs and marshaling code may need to be updated
to reflect new data structures or changed use of existing
data structures. While this could be performed manu-
ally, DriverSlicer provides automated support for regen-
erating stubs and marshaling code. Simply re-running
DriverSlicer may not produce correct marshaling code
for added fields unless it observes code in the user-level
partition accessing that field. If this is Java code, it is not
visible to CIL, which only processes C code.

When the decaf driver requires access to fields not pre-
viously referenced, whether they are new or not, a pro-
grammer must inform DriverSlicer to produce marshal-
ing code. DriverSlicer supports an annotation to the orig-
inal driver code to indicate that a field may be referenced
by the decaf driver. A programmer adds the annotation
DECAF XVAR (y); where X is an R, W, or RW depend-
ing on whether the Java code will read, write, or read and
write the variable, and y is the variable name. These an-
notations must be placed in entry-point functions through
which new fields are referenced.

Thus, the new annotations ensure that DriverSlicer
generates marshaling code to allow reading and/or writ-

Source Components # Lines
Runtime support

Jeannie helpers 1,976
XPC in Decaf runtime 2,673
XPC in Nuclear runtime 4,661

DriverSlicer
CIL OCaml 12,465
Python scripts 1,276
XDR compilers 372

Total number of lines of code 23,423

Table 1: The number of non-comment lines of code
in the Decaf runtime and DriverSlicer tools. For the
XDR compilers, the number of additional lines of
code is shown.

ing the new variables in the decaf driver. A programmer
can add new functions to the user/kernel interface with
similar annotations. In the future, we plan to automati-
cally analyze the decaf driver source code to detect and
marshal these fields. In addition, we plan to produce a
concise specification of the entry points for regenerat-
ing marshaling code, rather than relying on the original
driver source.

3.3 Code Size

Table 1 shows the size of the Decaf Drivers implemen-
tation. The runtime code, consisting of user-level helper
functions written in Jeannie and XPC code in user and
kernel mode, totals 9,310 lines. This code, shared by all
decaf drivers, is comparable to a moderately sized driver.

DriverSlicer consists of OCaml code for CIL, Python
scripts for processing the output, and XDR compilers.
As the XDR compilers are existing tools, we report the
amount of code we added. In total, DriverSlicer com-
prises 14,113 lines.

4 Experimental Results
The value of Decaf Drivers lies in simplified program-
ming. The cost of using Decaf Drivers comes from
the additional complexity of partitioning driver code and
the performance cost of communicating across domain
boundaries. We have converted four types of drivers
using Decaf Drivers, and report on the experience and
the performance of the resulting drivers here. We give
statistics for the code we have produced, and answer
three questions about Decaf Drivers: how hard is it to
move driver code to Java, how much driver code can be
moved to Java, and what is the performance cost of Decaf
Drivers?

We experimented with the five drivers listed in Table 2.
Starting with existing drivers from the CentOS 4.2 Linux
distribution (compatible with RedHat Enterprise Linux
4.2) with the 2.6.18.1 kernel, and we converted them to
Decaf Drivers using DriverSlicer. All our experiments

except those for the E1000 driver are run on a 3.0GHz
Pentium D with 1GB of RAM. The E1000 experiments
are run on a 2.5GHz Core 2 Quad with 4GB of RAM. We
used separate machines because the test devices were not
all available on either machine individually.

4.1 Conversion to Java

Table 2 shows for each driver, how many lines of code
required annotations and how many functions were in
the driver nucleus, driver library, and decaf driver. After
splitting code with DriverSlicer, we converted to Java all
the functions in user level that we observed being called.
Many of the remaining functions are specific to other de-
vices served by the same driver. The column “Lines of
Code” reports the quantity of code in the original driver.
The final column, “Orig. LoC” gives the amount of C
code converted to Java.

The annotations affect less than 2% of the driver
source on average. These results are lower than for Mi-
crodrivers because of improvements we made to Driver-
Slicer to more thoroughly analyze driver code. In ad-
dition to the annotations in individual drivers, we anno-
tated 25 lines in common kernel headers that were shared
by multiple drivers. These results indicate that annotat-
ing driver code is not a major burden when converting
drivers to Java. We also changed six lines of code in the
8139too and uhci-hcd driver nuclei to defer functions
executed at high priority to a worker thread while the de-
caf driver or driver library execute; the code is otherwise
the same as that produced by DriverSlicer.

While we converted the 8139too and ens1371 to
Java during the process of developing Decaf Drivers,
we converted the other two drivers after its design was
complete. For uhci-hcd, a driver previously converted
to a microdriver, the additional conversion of the user-
mode code to a decaf driver took approximately three
days. The entire conversion of the psmouse driver, in-
cluding both annotation and conversion of its major rou-
tines to Java, took roughly two days. This experience
confirms our goal that porting legacy driver code to Java,
when provided with appropriate infrastructure support, is
straightforward.

In four of the five drivers, we were able to move
more than 75% of the functions into user mode. How-
ever, we were only able to convert 4% of the functions
in uhci-hcd to Java because the driver contained sev-
eral functions on the data path that could potentially call
nearly any code in the driver. We expect that redesign-
ing the driver would allow additional code to move to
user level. In the psmouse driver, we found that most of
the user-level code was device-specific. Consequently,
we implemented in Java only those functions that were
actually called for our mouse device.

The majority of the code that we converted from C to

Java is initialization, shutdown, and power management
code. This is ideal code to move, as it executes rarely yet
contains complicated logic that is error prone [40].

4.2 Performance of Decaf Drivers

The Decaf architecture seeks to minimize the perfor-
mance impact of user-level code by leaving critical path
code in the kernel. In steady-state behavior, the decaf
driver should never or only rarely be accessed. However,
during initialization and shutdown, the decaf driver exe-
cutes frequently. We therefore measure both the latency
to load and initialize the driver and its performance on a
common workload.

We measure driver performance with workloads ap-
propriate to each type of driver. We use netperf [12]
sending and receiving TCP/IP data to evaluate the
8139too and E1000 network drivers with the default
send and receive buffer sizes of 85 KB and 16 KB.
We measure the ens1371 sound driver by playing a
256Kbps MP3 file. The uhci-hcd driver controls low-
bandwidth USB 1.0 devices and requires few CPU re-
sources. We measure its performance by untaring a large
archive onto a portable USB flash drive and record the
CPU utilization. We do not measure the performance
of the mouse driver, as its bandwidth is too low to be
measurable, and we measure its CPU utilization while
continuously moving the mouse for 30 seconds. For all
workloads except netperf, we repeated the experiment
three times. We executed the netperf workload for a
single 600-second iteration because it performs multiple
tests internally.

We measure the initialization time for drivers by mea-
suring the latency to run the insmod module loader.
While some drivers perform additional startup activities
after module initialization completes, we found that this
measurement provides an accurate representation of the
difference between native and Decaf Drivers implemen-
tations.

Table 3 shows the results of our experiments. As
expected, performance and CPU utilization across the
benchmarks was unchanged. With E1000, we also tested
UDP send/receive performance with 1 byte messages.
The throughput is the same as the native driver and CPU
utilization is slightly higher.

To understand this performance, we recorded how of-
ten the decaf driver is invoked during these workloads.
In the ens1371 driver, the decaf driver was called 15
times, all during playback start and end. A watchdog
timer in the decaf driver executes every two seconds in
the E1000 driver. The other workloads did not invoke the
decaf driver at all during testing. Thus, the added cost of
communication with Java has no impact on application
performance.

However, the latency to initialize the driver was sub-

Driver Lines of DriverSlicer Driver nucleus Driver library Decaf driver
Name Type code Annotations Funcs LoC Funcs LoC Funcs LoC Orig. LoC
8139too Network 1,916 17 12 389 16 292 25 541 570
E1000 Network 14,204 64 46 1715 0 0 236 7804 8693
ens1371 Sound 2,165 18 6 140 0 0 59 1049 1068
uhci-hcd USB 1.0 2,339 94 68 1537 12 287 3 188 168
psmouse Mouse 2,448 17 15 501 74 1310 14 192 250

Table 2: The drivers converted to the Decaf architecture, and the size of the resulting driver components.

Driver Workload Relative CPU Utilization Init. Latency User/Kernel
Name Performance native Decaf native Decaf Crossings

8139too netperf-send 1.00 14 % 13 % 0.02 sec. 1.02 sec. 40
netperf-recv 1.00 17 % 15 % – – –

E1000 netperf-send 0.99 2.8 % 3.7 % 0.42 sec. 4.87 sec. 91
netperf-recv 1.00 20 % 21 % – – –

ens1371 mpg123 – 0.0 % 0.1 % 1.12 sec. 6.34 sec. 237
uhci-hcd tar 1.03 0.1 % 0.1 % 1.32 sec. 2.67 sec 49
psmouse move-and-click – 0.1 % 0.1 % 0.04 sec. 0.40 sec. 24

Table 3: The performance of Decaf Drivers on common workloads and driver initialization.

stantially higher, averaging 3 seconds. The increase
stems from cross-domain communication and marshal-
ing driver data structures. Table 3 includes the number
of call/return trips between the driver nucleus and the
decaf driver during initialization. We expect that opti-
mizing our marshaling interface to transfer data directly
between the driver nucleus and the decaf driver, rather
than unmarshaling at user-level in C and re-marshaling
in Java, would significantly reduce the cost of invoking
decaf driver code.

5 Case Study: E1000 Network Driver
To evaluate the software engineering benefits of devel-
oping drivers in Java, we analyze the Intel E1000 gigabit
Ethernet decaf driver. We selected this driver because:
• it is one of the largest network drivers with over

14,200 lines of code.

• it supports 50 different chipsets.

• it is actively developed, with 340 revisions between
the 2.6.18.1 and 2.6.27 kernels.

• it has high performance requirements that empha-
size the overhead of Decaf Drivers.

With this case study, we address three questions:
1. What are the benefits of writing driver code in Java?

2. How hard is it to update driver code split between
the driver nucleus and the decaf driver?

3. How difficult is it to mix C and Java in a driver?
We address these questions by converting the E1000
driver from the Linux 2.6.18.1 kernel to a decaf driver.
Overall, we converted 236 functions to Java in the decaf
driver and left 46 functions in the driver nucleus. There
are no E1000-specific functions in the driver library. Of

the 46 kernel functions, 42 are there for performance or
functionality reasons. For example, many are called from
interrupt handlers or with a spinlock held.

The four remaining functions are left in the driver nu-
cleus because of an explicit data race that our implemen-
tation does not handle. These functions, in the ethtool
interface, wait for an interrupt to fire and change a vari-
able. However, the interrupt handler changes the variable
in the driver nucleus; the copy of the variable in the decaf
driver remains unchanged, and hence the function waits
forever. This could be addressed with an explicit call into
the driver nucleus to wait for the interrupt.

5.1 Benefits from Java

We identified three concrete benefits of moving E1000
code to Java, and one potential benefit we plan to explore.

Error handling. We found the biggest benefit of mov-
ing driver code to Java was improved error handling. The
standard practice to handle errors in Linux device drivers
is through goto statements to a set of labels based on
when the failure occurred. In this idiom, an if statement
checks a return value, and jumps to a label near the end
of the function on error. The labels are placed such that
only the necessary subset of cleanup operations are per-
formed. This system is brittle because the developer can
easily jump to an incorrect label or forget to test an error
condition [44].

Using exceptions to signal errors and nested handlers
to catch errors, however, ensures that no error conditions
are ignored, and that cleanup operations take place in the
proper order. We rewrote 92 functions to use checked
exceptions instead of integer return codes. The compiler
requires the program to handle these exceptions. In this
process, we found 28 cases in which error codes were ig-

Decaf driver code:
public static void e1000_open(net_device netdev)
 throws E1000HWException {
 e1000_adapteradapter = netdev.priv;
 int err;
 try {
 /* allocate transmit descriptors */
 e1000_setup_all_tx_resources(adapter);

 try {
 /* allocate receive descriptors */
 e1000_setup_all_rx_resources(adapter);

 try {
 e1000_request_irq(adapter);
 e1000_power_up_phy(adapter);
 e1000_up(adapter);
 ...
 } catch (E1000HWException e) {
 e1000_free_all_rx_resources(adapter);
 throw e;
 }
 } catch (E1000HWException e) {
 e1000_free_all_tx_resources(adapter);
 throw e;
 }
 } catch (E1000HWException e) {
 e1000_reset(adapter);
 throw e;
 }
 }

Figure 4: Code converted to nested exception han-
dling.

nored or handled incorrectly. Some, but not all, of these
have been fixed in recent Linux kernels.

Figure 4 shows an example from the e1000 open

function. This code catches and re-throws the excep-
tions; using a finally block would either incorrectly
free the resources under all circumstances, or require ad-
ditional code to ensure the resources are freed only in the
face of an error.

Checked exceptions also reduce the amount of code in
the driver. Figure 5 shows an example. By switching to
exceptions instead of integer return values, we cut 675
lines of code, or approximately 8%, from e1000 hw.c

by removing code to check for an error and return. We
anticipate that converting the entire driver to use excep-
tions would eliminate more of these checks.

Object orientation. We found benefits from object
orientation in two portions of the E1000 driver. In
e1000 param.c, functions verify module parameters
using range and set-membership tests. We use three
classes to process parameters during module initializa-
tion. A base class provides basic parameter checking,
and the two derived classes provide additional function-
ality. The appropriate class checks each module param-
eter automatically. The resulting code is shorter than the
original C code and more maintainable, because the pro-
grammer is forced by the type system to provide ranges
and sets when necessary.

In addition, we restructured the hardware accessor
functions as a class. In the original E1000 driver,

Original Code:
if(hw->ffe_config_state == e1000_ffe_config_active) {
 ret_val = e1000_read_phy_reg(hw, 0x2F5B,
 &phy_saved_data);
 if(ret_val) return ret_val;

 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
 if(ret_val) return ret_val;

 msec_delay_irq(20);
 ret_val = e1000_write_phy_reg(hw, 0x0000,
 IGP01E1000_IEEE_FORCE_GIGA);
 if(ret_val) return ret_val;

Decaf driver Code:
if(hw.ffe_config_state.value == e1000_ffe_config_active) {
 e1000_read_phy_reg(0x2F5B, phy_saved_data);
 e1000_write_phy_reg((short) 0x2F5B, (short) 0x0003);
 e1000_write_phy_reg((short) 0x2F5B, (short) 0x0003);
 DriverWrappers.Java_msleep (20);
 e1000_write_phy_reg((short) 0x0000,
 (short) IGP01E1000_IEEE_FORCE_GIGA);

Figure 5: Code from e1000 config dsp after -
link change in e1000 hw.c. The upper box shows
the original code with error handling code. The lower
box shows the same code rewritten to use exceptions.

these functions all required a parameter pointing to an
e1000 hw structure. Just rewriting this code as a class
removed 6.5KB of code that passes this structure as a pa-
rameter to other internal functions. This syntactic change
does not affect code quality, but makes the resulting code
more readable.

Standard libraries. In comparison to the Java collec-
tions library, the Linux kernel and associated C libraries
provide limited generic data-structure support. We found
that the Java collections library provides a useful set of
tools for simplifying driver code. In addition to rewriting
the parameter code to use inheritance, we also used Java
hash tables in the set-membership tests.

Potential Benefit: Garbage collection. While the
E1000 decaf driver currently manages shared objects
manually, garbage collection provides a mechanism to
simplify this code and prevent resource leaks. When
allocating data structures shared between the driver nu-
cleus and decaf driver, the decaf drivers use a custom
constructor that also allocates kernel memory at the same
time and creates an association in the object tracker.

Rather than relying on the decaf driver to explicitly
release this memory, we can write a custom finalizer to
free the associated kernel memory when the Java garbage
collector frees the object. This approach can simplify
exception-handling code and prevent resource leaks on
error paths, a common driver problem [31].

Category Lines of Code Changed
Driver nucleus 381
Decaf driver 4690
User/kernel interface 23

Table 4: Statistics for patches applied to E1000: the
lines changed in the driver nucleus, in the decaf
driver, and to shared data structures requiring new
marshaling code.

5.2 Driver Evolution

We evaluate the ability of Decaf Drivers to support driver
evolution by applying all changes made to the E1000
driver between kernel versions 2.6.18.1 and 2.6.27. Be-
cause we continue to use the 2.6.18.1 kernel, we omit-
ted the small number of driver changes related to ker-
nel interface updates. We applied all 320 patches in two
batches: those before the 2.6.22 kernel and those after.
Overall, we found that modifying the driver was sim-
ple, and that the driver nucleus and decaf driver could
be modified and compiled separately.

The changes are summarized in Table 4. The vast ma-
jority of code changes were at user level. Thus, the bulk
of the development on E1000 since the 2.6.18.1 kernel
would have been performed in Java at user level, rather
than in the kernel in C. Furthermore, only 23 changes af-
fected the kernel-user interface, for example by adding
or removing fields from shared structures.

In these cases, we modified the kernel implementation
of the data structure, and re-split the driver to produce
updated versions of the Java data structures. To ensure
that new structure fields are marshaled between the driver
nucleus and decaf driver, we added one additional anno-
tation for each new field to the original driver. These an-
notations ensure that DriverSlicer generates marshaling
code to allow reading and/or writing the new variables in
the decaf driver.

5.3 Mixing C and Java

A substantial portion of the Decaf architecture is devoted
to enabling a mix of Java and C to execute at user level.
We have found two reasons to support both languages.
First, when migrating code to Java, it is convenient to
move one function at a time and then test the system,
rather than having to convert all functions at once (as re-
quired by most user-level driver frameworks). This code
is temporary and exists only during the porting process.
We initially ran all user-mode E1000 functions in this
mode and then incrementally converted them to Java,
starting with leaf functions and then advancing up the
call graph. Our current implementation has no driver
functionality implemented in the driver library.

Jeannie makes this transition phase simple because of
its ability to mix Java and C code without explicitly us-

ing the Java Native Interface. The ability to execute ei-
ther Java or C versions of a function during development
greatly simplified conversion, as it allowed us to elimi-
nate any new bugs in our Java implementation by com-
paring its behavior to that of the original C code.

Second, and more important, there may be function-
ality necessary for communicating with the kernel or the
device that is not possible to express in Java. These func-
tions are helper routines that do not contain driver logic
but provide an escape from the limits of a managed lan-
guage. Some examples we have observed include access-
ing the sizeof() operator in C, which is necessary for
allocating some kernel data structures, and for perform-
ing programmed I/O with I/O ports or memory-mapped
I/O regions. While some languages, including C], sup-
port unsafe memory access, Java does not. However, we
found that none of these helper routines are specific to
the E1000 driver, and as a result placed them in the decaf
runtime to be shared with other decaf drivers. As be-
fore, Jeannie makes using these helper routines in Java a
straightforward matter.

Jeannie also simplifies the user-level stub functions
significantly. These stubs include a simple mixture of
C and Java code, whereas using JNI directly would sig-
nificantly complicate the stubs.

6 Related Work
Decaf Drivers differs from past work on driver reliability
and type-safe kernel programming in many respects. Un-
like past approaches that are either compatible or trans-
formative, we desire both compatibility with existing
code and the opportunity to completely rewrite drivers.

Driver reliability. Driver reliability systems focus on
tolerating faults in existing drivers with hardware mem-
ory protection [45, 50], language-based isolation [52], or
private virtual machines [17, 18, 27]. However, these
systems all leave driver code in C and in the kernel and
thus do not ease driver programming.

Driver safety. Another approach to improving relia-
bility is to prevent drivers from executing unsafe ac-
tions. Safety can be achieved by executing drivers in
user mode [21, 26], with type safety in the kernel [9],
or by formally verifying driver safety [41]. However,
these approaches either require writing a completely new
driver, or rewriting the entire kernel. With Decaf Drivers,
drivers may be incrementally converted to any language
because C is still available for helper routines.

Simplifying driver code. Many projects promise to
simplify driver programming through new driver inter-
faces [3, 33, 38, 25, 51, 42, 30]. These systems of-
fer advanced languages [51, 42]; domain-specific lan-
guages for hardware access [30] and for common driver
logic [7, 10]; simplified programming interfaces at user-

level [3, 8, 33]; and cross-platform interfaces [38, 25].
Like Decaf Drivers, Linux UIO drivers leave part of
the driver in the kernel, while the bulk executes at user
level [47]. Coccinelle [37] simplifies patching a large set
of drivers at once. The features offered by these systems
are complementary to Decaf Drivers, and the ability to
gradually rewrite driver code in a new language may pro-
vide a route to their use. However, these systems either
require writing new drivers for a new interface, or they
simplify existing drivers but not enough: drivers are left
in C and in the kernel.

Type-safe kernel programming. SPIN [23], the J Ker-
nel [48], and Singularity [24] have kernels written in
type safe languages. More recently, a real-time JVM was
ported to the Solaris kernel [36]. In contrast to these sys-
tems, Decaf Drivers enables the use of modern languages
for drivers without rewriting or substantially adding to
the OS kernel.

7 Conclusion
Device drivers are a major expense and cause of failure
for modern operating systems. With Decaf Drivers, we
address the root of both problems: writing kernel code in
C is hard. The Decaf architecture allows large parts of
existing drivers to be rewritten in a better language, and
supports incrementally converting existing driver code.
Drivers written for Decaf retain the same kernel inter-
face, enabling them to work with unmodified kernels,
and can achieve the same performance as kernel drivers.
Furthermore, tool support automates much of the task of
converting drivers, leaving programmers to address the
driver logic but not the logistics of conversion.

Writing drivers in a type-safe language such as Java
provides many concrete benefits to driver programmers:
improved reliability due to better compiler analysis, sim-
plified programming due to richer runtime libraries, and
better error handling with exceptions. In addition, many
tools for user-level Java programming may be used for
debugging.

Acknowledgments. We would like to thank our shep-
herd, Robert Grimm, for his useful comments and for
his help, along with Martin Hirzel, in resolving Jeannie
bugs. This work was supported in part by NSF grant
CSR 0745517. Swift has a financial interest in Microsoft
Corp.

References
[1] H. Albrecht. Remote Tea.

http://remotetea.sourceforge.net/.

[2] J. Allchin. Windows Vista team blog: Up-
dating a brand-new product, Nov. 2006.
http://windowsvistablog.com/blogs/windowsvista/archive/
2006/11/17/updating-a-brand-new-product.aspx.

[3] F. Armand. Give a process to your drivers! In Proc. of
the EurOpen Autumn 1991, Sept. 1991.

[4] A. D. Birrell and B. J. Nelson. Implementing remote pro-
cedure calls. ACM Transactions on Computer Systems,
2(1):39–59, Feb. 1984.

[5] E. Brewer, J. Condit, B. McCloskey, and F. Zhou. Thirty
years is long enough: getting beyond c. In Proc. of the
Tenth IEEE HOTOS, 2005.

[6] A. Catorcini, B. Grunkemeyer, and B. Grunkemeyer.
CLR inside out: Writing reliabile .NET code. MSDN
Magazine, Dec. 2007. http://msdn2.microsoft.com/en-
us/magazine/cc163298.aspx.

[7] P. Chandrashekaran, C. Conway, J. M. Joy, and S. K. Ra-
jamani. Programming asynchronous layers with CLAR-
ITY. In Proc. of the 15th ACMFSE, Sept. 2007.

[8] P. Chubb. Get more device drivers out of the kernel! In
Ottawa Linux Symp., 2004.

[9] J. Condit, M. Harren, S. McPeak, G. C. Necula, and
W. Weimer. CCured in the real world. In Proc. of the
ACM SIGPLAN ’03 ACM Conference on Programming
Language Design and Implementation, June 2003.

[10] C. L. Conway and S. A. Edwards. NDL: a domain-
specific language for device drivers. In Proc. of the ACM
SIGPLAN/SIGBED Conference on Languages, Compil-
ers, and Tools for Embedded Systems, June 2004.

[11] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux De-
vice Drivers, 3rd Edition. O’Reilly Associates, Feb. 2005.

[12] I. N. Division. Netperf: A network performance bench-
mark. http://www.netperf.org.

[13] M. Eisler. XDR: External data representation standard.
RFC 4506, Internet Engineering Task Force, May 2006.

[14] J. Elson. FUSD: A Linux framework for user-space de-
vices, 2004. User manual for FUSD 1.0.

[15] D. Engler, D. Y. Chen, and A. Chou. Bugs as inconsistent
behavior: A general approach to inferring errors in sys-
tems code. In Proc. of the 18th ACM SOSP, Oct. 2001.

[16] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C.
Necula. XFI: software guards for system address spaces.
In Proc. of the 7th USENIX OSDI, 2006.

[17] Ú. Erlingsson, T. Roeder, and T. Wobber. Virtual environ-
ments for unreliable extensions. Technical Report MSR-
TR-05-82, Microsoft Research, June 2005.

[18] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield,
and M. Williamson. Safe hardware access with the Xen
virtual machine monitor. In Workshop on Operating Sys-
tem and Architectural Support for the On-Demand IT In-
frastructure, 2004.

[19] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M.
Swift, and S. Jha. The design and implementation of mi-
crodrivers. In Proc. of the Thirteenth ACM ASPLOS, Mar.
2008.

[20] B. Goetz. Plugging memory leaks with weak refer-
ences. http://www.ibm.com/developerworks/java/library/j-
jtp11225/index.html, 2005.

http://www.ietf.org/rfc/rfc4506.txt

[21] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.
Tanenbaum. Failure resilience for device drivers. In Proc.
of the 2007 IEEE DSN, June 2007.

[22] M. Hirzel and R. Grimm. Jeannie: Granting Java native
interface developers their wishes. In Proc. of the ACM
OOPSLA ’07, Oct. 2007.

[23] W. Hsieh, M. Fiuczynski, C. Garrett, S. Savage,
D. Becker, and B. Bershad. Language support for ex-
tensible operating systems. In Proc. of the Workshop on
Compiler Support for System Software, Feb. 1996.

[24] G. Hunt, J. Larus, M.Abadii, M. A. andPP. Barham,
M. Fähdrich, C. Hawblitzel, O. Hodson, S. L. andNi.
Murphy, B. Steensgaard, D. Tarditi, T. Wobber, and
B. Zill. An overview of the Singularity project. Techni-
cal Report MSR-TR-2005-135, Microsoft Research, Oct.
2005.

[25] Jungo. Windriver cross platform device driver develop-
ment environment. Technical report, Jungo Corporation,
Feb. 2002. http://www.jungo.com/windriver.html.

[26] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Gotz, C. Gray,
L. Macpherson, D. Potts, Y. Shen, K. Elphinstone, and
G. Heiser. User-level device drivers: Achieved perfor-
mance. Jour. Comp. Sci. and Tech., 20(5), 2005.

[27] J. LeVasseur, V. Uhlig, J. Stoess, and S. Gotz. Unmodified
device driver reuse and improved system dependability
via virtual machines. In Proc. of the 6th USENIX OSDI,
2004.

[28] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A
tool for finding copy-paste and related bugs in operating
system code. In Proc. of the 6th USENIX OSDI, 2004.

[29] R. Love. Kernel locking techniques. Linux Journal, Aug.
2002. http://www.linuxjournal.com/article/5833.

[30] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and
G. Muller. Devil: An IDL for hardware programming.
In Proc. of the 4th USENIX OSDI, Oct. 2000.

[31] Microsoft Corp. PREfast for drivers.
http://www.microsoft.com/whdc/devtools/tools/prefast.mspx.

[32] Microsoft Corporation. Windows Server 2003 DDK.
http://www.microsoft.com/whdc/DevTools/ddk/default.mspx,
2003.

[33] Microsoft Corporation. Architecture
of the user-mode driver framework.
http://www.microsoft.com/whdc/driver/wdf/UMDF-
arch.mspx, May 2006. Version 0.7.

[34] Microsoft Corporation. Interoperating with un-
managed code. http://msdn.microsoft.com/en-
us/library/sd10k43k(VS.71).aspx, 2008.

[35] G. C. Necula, S. Mcpeak, S. P. Rahul, and W. Weimer.
CIL: Intermediate language and tools for analysis and
transformation of C programs. In Intl. Conf. on Compiler
Constr., 2002.

[36] T. Okumura, B. R. Childers, and D. Mosse. Running a
Java VM inside an operating system kernel. In Proc. of
the 4th ACM VEE, Mar. 2008.

[37] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller.
Documenting and automating collateral evolutions in
linux device drivers. In Proc. of the 2008 EuroSys Con-
ference, apr 2008.

[38] Project UDI. Uniform Driver Interface: Introduction to
UDI version 1.0. http://udi.certek.cc/Docs/pdf/UDI tech -
white paper.pdf, Aug. 1999.

[39] D. Richie. The Unix tree: the ’nsys’ kernel, Jan. 1999.
http://minnie.tuhs.org/UnixTree/Nsys/.

[40] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser. Dingo: Tam-
ing device drivers. In Proc. of the 2009 EuroSys Confer-
ence, Apr. 2009.

[41] L. Ryzhyk, I. Kuz, and G. Heiser. Formalising device
driver interfaces. In Proc. of the Workshop on Program-
ming Languages and Systems, Oct. 2007.

[42] M. Spear, T. Roeder, O. Hodson, G. Hunt, and S. Levi.
Solving the starting problem: Device drivers as self-
describing artifacts. In Proc. of the 2006 EuroSys Con-
ference, Apr. 2006.

[43] Sun Microsystems. UNIX programmer’s supple-
mentary documents: rpcgen programming guide.
http://docs.freebsd.org/44doc/psd/22.rpcgen/paper.pdf.

[44] M. Susskraut and C. Fetzer. Automatically finding and
patching bad error handling. In Proceedings of the Sixth
European Dependable Computing Conference, 2006.

[45] M. M. Swift, B. N. Bershad, and H. M. Levy. Improv-
ing the reliability of commodity operating systems. ACM
Transactions on Computer Systems, 23(1), Feb. 2005.

[46] L. Torvalds. Linux kernel source tree.
http://www.kernel.org.

[47] L. Torvalds. UIO: Linux patch for user-mode I/O, July
2007.

[48] T. von Eicken, C.-C. Chang, G. Czajkowski, C. Haw-
blitzel, D. Hu, and D. Spoonhower. J-Kernel: a
capability-based operating system for Java. In Secure In-
ternet Programming: Security Issues for Distributed and
Mobile Objects, volume 1603 of LNCS, pages 369–393.
Springer-Verlag, 1999.

[49] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B.
Schneider. Device driver safety through a reference val-
idation mechanism. In Proc. of the 8th USENIX OSDI,
Dec. 2008.

[50] E. Witchel, J. Rhee, and K. Asanovic. Mondrix: Memory
isolation for Linux using Mondriaan memory protection.
In Proc. of the 20th ACM SOSP, 2005.

[51] H. Yamauchi and M. Wolczko. Writing Solaris device
drivers in Java. Technical Report TR-2006-156, Sun Mi-
crosystems, Apr. 2006.

[52] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals,
M. Harren, G. Necula, and E. Brewer. SafeDrive: Safe
and recoverable extensions using language-based tech-
niques. In Proc. of the 7th USENIX OSDI, 2006.

	Introduction
	Design of Decaf Drivers
	Microdrivers
	Decaf Drivers Overview
	Extension Procedure Call
	DriverSlicer
	Summary

	Implementation
	Extension Procedure Call
	Java--C Control and Data Transfer
	Java-C Object Sharing
	Synchronization

	DriverSlicer Implementation
	Generating Readable Code
	Generating XDR Interface Specifications
	Generating XDR Marshaling Routines
	Regenerating Stubs and Marshaling Code

	Code Size

	Experimental Results
	Conversion to Java
	Performance of Decaf Drivers

	Case Study: E1000 Network Driver
	Benefits from Java
	Driver Evolution
	Mixing C and Java

	Related Work
	Conclusion

