
ShadowNet: A Platform for Rapid and Safe Network Evolution
Xu Chen Z. Morley Mao Jacobus Van der Merwe
University of Michigan AT&T Labs - Research

Abstract

The ability to rapidly deploy new network services,
service features and operational tools, without impact-
ing existing services, is a significant challenge for all
service providers. In this paper we address this prob-
lem by the introduction of a platform called ShadowNet.
ShadowNet exploits the strong separation provided by
modern computing and network equipment between log-
ical functionality and physical infrastructure. It allows
logical topologies of computing servers, network equip-
ment and links to be dynamically created, and then in-
stantiated to and managed on the physical infrastruc-
ture. ShadowNet is a sharable, programmable and com-
posable infrastructure, consisting of carrier-grade equip-
ment. Furthermore, it is a fully operational network
that is connected to, but functionally separate from the
provider production network. By exploiting the strong
separation support, ShadowNet allows multiple technol-
ogy and service trials to be executed in parallel in a real-
istic operational setting, without impacting the produc-
tion network. In this paper, we describe the ShadowNet
architecture and the control framework designed for its
operation and illustrate the utility of the platform. We
present our prototype implementation and demonstrate
the effectiveness of the platform through extensive eval-
uation.

1 Introduction
Effecting network change is fundamentally difficult.
This is primarily due to the fact that modern networks
are inherently shared and multi-service in nature, and
any change to the network has the potential to negatively
impact existing users and services. Historically, pro-
duction quality network equipment has also been propri-
etary and closed in nature, thus further raising the bar to
the introduction of any new network functionality. The
negative impact of this state of affairs has been widely
recognized as impeding innovation and evolution [23].
Indeed at a macro-level, the status quo has led to calls
for a clean slate redesign of the Internet which in turn has
produced efforts such as GENI [3] and FEDERICA [2].
In the work presented in this paper we recognize that

at a more modest micro-level, the same fundamental
problem, i.e., the fact that network change is inher-
ently difficult, is a major operational concern for service
providers. Specifically, the introduction of new services

or service features typically involves long deployment
cycles: configuration changes to network equipment are
meticulously lab-tested before staged deployments are
performed in an attempt to reduce the potential of any
negative impact on existing services. The same applies
to any new tools to be deployed in support of network
management and operations. This is especially true as
network management tools are evolving to be more so-
phisticated and capable of controlling network functions
in an automated closed-loop fashion [25, 9, 7]. The op-
eration of such tools depends on the actual state of the
network, presenting further difficulties for testing in a
lab environment due to the challenge of artificially recre-
ating realistic network conditions in a lab setting.
In this paper we address these concerns through a plat-

form called ShadowNet. ShadowNet is designed to be an
operational trial/test network consisting of ShadowNet
nodes distributed throughout the backbone of a tier-1
provider in the continental US. Each ShadowNet node
is composed of a collection of carrier-grade equipment,
namely routers, switches and servers. Each node is con-
nected to the Internet as well as to other ShadowNet
nodes via a (virtual) backbone.
ShadowNet provides a sharable, programmable and

composable infrastructure to enable the rapid trial or de-
ployment of new network services or service features,
or evaluation of new network management tools in a re-
alistic operational network environment. Specifically,
via the Internet connectivity of each ShadowNet node,
traffic from arbitrary end-points can reach ShadowNet.
ShadowNet connects to and interacts with the provider
backbonemuch like a customer network would. As such
the “regular” provider backbone, just like it would pro-
tect itself from any other customers, is isolated from the
testing and experimentation that take place within Shad-
owNet. In the first instance, ShadowNet provides the
means for testing services and procedures for subsequent
deployment in a (separate) production network. How-
ever, in time we anticipate ShadowNet-like functionality
to be provided by the production network itself to di-
rectly enable rapid but safe service deployment.
ShadowNet has much in common with other test net-

works [10, 27, 22]: (i) ShadowNet utilizes virtualization
and/or partitioning capabilities of equipment to enable
sharing of the platform between different concurrently
running trials/experiments; (ii) equipment in ShadowNet

nodes are programmable to enable experimentation and
the introduction of new functionality; (iii) ShadowNet
allows the dynamic composition of test/trial topologies.
What makes ShadowNet unique, however, is that this

functionality is provided in an operational network on
carrier-grade equipment. This is critically important
for our objective to provide a rapid service deploy-
ment/evaluation platform, as technology or service tri-
als performed in ShadowNet should mimic technology
used in the provider network as closely as possible.
This is made possible by recent vendor capabilities that
allow the partitioning of physical routers into subsets
of resources that essentially provide logically separate
(smaller) versions of the physical router [16].
In this paper, we describe the ShadowNet architec-

ture and specifically the ShadowNet control framework.
A distinctive aspect of the control framework is that it
provides a clean separation between the physical-level
equipment in the testbed and the user-level slice speci-
fications that can be constructed “within” this physical
platform. A slice, which encapsulates a service trial, is
essentially a container of the service design including
device connectivity and placement specification. Once
instantiated, a slice also contains the allocated physical
resources to the service trial. Despite this clean separa-
tion, the partitioning capabilities of the underlying hard-
ware allows virtualized equipment to be largely indistin-
guishable from their physical counterparts, except that
they contain fewer resources. The ShadowNet control
framework provides a set of interfaces allowing users to
programmatically interact with the platform to manage
and manipulate their slices.
We make the following contributions in this work:
• Present a sharable, programmable, and composable
network architecture which employs strong separa-
tion between user-level topologies/slices and their
physical realization (§2).

• Present a network control framework that allows
users to manipulate their slices and/or the physical
resource contained therein with a simple interface
(§3).

• Describe physical-level realizations of user-level
slice specifications using carrier-grade equipment
and network services/capabilities (§4).

• Present a prototype implementation (§5) and evalu-
ation of our architecture (§6).

2 ShadowNet overview
In this paper, we present ShadowNet which serves as a
platform for rapid and safe network change. The pri-
mary goal of ShadowNet is to allow the rapid composi-
tion of distributed computing and networking resources,
contained in a slice, realized in carrier-grade facilities
which can be utilized to introduce and/or test new ser-

vices or network management tools. The ShadowNet
control framework allows the network-wide resources
that make up each slice to be managed either collectively
or individually.
In the first instance, ShadowNet will limit new ser-

vices to the set of resources allocated for that purpose,
i.e., contained in a slice. This would be a sufficient so-
lution for testing and trying out new services in a real-
istic environment before introducing such services into
a production network. Indeed our current deployment
plans espouse this approach with ShadowNet as a sep-
arate overlay facility [24] connected to a tier-1 produc-
tion network. Longer term, however, we expect the base
functionality provided by ShadowNet to evolve into the
production network and to allow resources and function-
ality from different slices to be gracefully merged under
the control of the ShadowNet control framework.
In the remainder of this section we first elaborate on

the challenges network service providers face in effect-
ing network changes. We describe the ShadowNet archi-
tecture and show how it can be used to realize a sophis-
ticated service. Several experimental network platforms
are compared against it, and we show that ShadowNet
is unique in terms of its ability to provide realistic net-
work testing. Finally we describe the architecture of the
primary system component, namely the ShadowNet con-
troller.

2.1 Dealing with network change
There are primarily three drivers for changes in modern
service provider networks:

Growth demands: Fueled by an increase in broadband
subscribers and media rich content, traffic volumes on
the Internet continue to show double digit growth rates
year after year. The implication of this is that service
providers are required to increase link and/or equipment
capacities on a regular basis, even if the network func-
tionality essentially stays the same.
New services and technologies: Satisfying customer
needs through new service offerings is essential to the
survival of any network provider. “Service” here spans
the range from application-level services like VoIP and
IPTV, connectivity services like VPNs and IPv4/IPv6
transport, traffic management services like DDoS miti-
gation or content distribution networks (CDNs), or more
mundane (but equally important and complicated) ser-
vice features like the ability to signal routing preferences
to the provider or load balancing features.
New operational tools and procedures: Increasing use
of IP networks for business critical applications is lead-
ing to growing demands on operational procedures. For
example, end-user applications are often very intolerant
of even the smallest network disruption, leading to the

deployment of methods to decrease routing convergence
in the event of network failures. Similarly, availabil-
ity expectations, in turn driven by higher level business
needs, make regularly plannedmaintenance events prob-
lematic, leading to the development of sophisticated op-
erational methods to limit their impact.

As we have alluded to already, the main concern of
any network change is that it might have an impact on
existing network services, because networks are inher-
ently shared with known and potentially unknown de-
pendencies between components. An example would be
the multi-protocol extensions to BGP to enable MPLS-
VPNs or indeed any new protocol family. The change
associated with rolling out a new extended BGP stack
clearly has the potential to impact existing IPv4 BGP
interactions, as bugs in new BGP software could nega-
tively impact the BGP stack as a whole.
Note also that network services and service fea-

tures are normally “cumulative” in the sense that once
deployed and used, network services are very rarely
“switched off”. This means that over time the dependen-
cies and the potential for negative impact only increases
rather than diminishes.
A related complication associated with any network

change, especially for new services and service features,
is the requirement for corresponding changes to a vari-
ety of operational support systems including: (i) con-
figuration management systems (new services need to
be configured typically across many network elements),
(ii) network management systems (network elements
and protocols need to be monitored and maintained),
(iii) service monitoring systems (for example to ensure
that network-wide service level agreements, e.g., loss,
delay or video quality, are met), (iv) provisioning sys-
tems (e.g., to ensure the timely build-out of popular ser-
vices). ShadowNet does not address these concerns per
se. However, as described above, new operational solu-
tions are increasingly more sophisticated and automated,
and ShadowNet provides the means for safely testing out
such functionality in a realistic environment.
Our ultimate goal with the ShadowNet work is to de-

velop mechanisms and network management primitives
that would allow new services and operational tools to be
safely deployed directly in production networks. How-
ever, as we describe next, in the work presented here we
take the more modest first step of allowing such actions
to be performed in an operational network that is sepa-
rate from the production network, which is an important
transitional step.

2.2 ShadowNet architecture
Different viewpoints of the ShadowNet network archi-
tecture are shown in Figures 1(a) and (b). Figure 1(a)
shows the topology from the viewpoint of the tier-1

�������	
�

�������
����

�������
����

�������
����
�������

����

�	��������������������

���������
��������
������������

���	
������

����
������������

�������
����

�������
����

�������
����

���������������

�������
����

Figure 1: ShadowNet network viewpoints

�������������	�
��

�
�	����
�	���	����

�	��
�

��	��
�
���
������

���� �
�	������	����	���	�

�	���	�

���������
�	����
�
���	��

����
����
�����

��������

�	����������

������

������

������

������

�	����

�	����

�	����

�	����

�����

Figure 2: ShadowNet functional architecture

provider. ShadowNet nodes connect to the provider net-
work, but are essentially separate from it. Each Shad-
owNet node has connectivity to other ShadowNet nodes
as well as connectivity to the Internet. As shown in Fig-
ure 1(b), connectivity to other ShadowNet nodes effec-
tively creates an overlay network [24] to form a virtual
backbone among the nodes. Via the provided Internet
connectivity, the ShadowNet address space is advertised
(e.g., using BGP) first to the provider network and then
to the rest of the Internet. Thus ShadowNet effectively
becomes a small provider network itself, i.e., a shadow
of the provider network.
The ShadowNet functional architecture is shown in

Figure 2. Each ShadowNet node contains different types
of computing and networking devices, such as servers,
routers, and switches. Combined with the network con-
nectivity received from the ISP, they complete the phys-
ical resource for ShadowNet. ShadowNet manages the
physical resources and enables its users to share them.
The devices provide virtualization/partitioning capabili-
ties so that multiple logical devices can share the same
underlying physical resource. For example, modern
routers allow router resources to be partitioned so that
several logical routers can be configured to run simulta-
neously and separately on a single physical router [16].

(Note that modern routers are also programmable in both
control and data planes [18].) Logical interfaces can
be multiplexed from one physical interface via config-
uration and then assigned to different logical routers.
We also take advantage of virtual machine technology
to manage server resources [5]. This technology en-
ables multiple operating systems to run simultaneously
on the same physical machine and is already heavily
used in cloud computing and data-center environments.
To facilitate sharing connectivity, the physical devices in
each ShadowNet node are connected via a configurable
switching layer, which shares the local connectivity, for
example using VLANs. The carrier-supporting-carrier
capabilities enabled by MPLS virtual private networks
(VPNs) [11, 15] offer strong isolation and are therefore
an ideal choice to create the ShadowNet backbone.

As depicted in Figure 2, central to ShadowNet func-
tionality is the ShadowNet Controller. The controller
facilitates the specification and instantiation of a ser-
vice trial in the form of a slice owned by a user. It
provides a programmatic application programming in-
terface (API) to ShadowNet users, allowing them to cre-
ate the topological setup of the intended service trial or
deployment. Alternatively users can access ShadowNet
through a Web-based portal, which in turn will interact
with the ShadowNet Controller via the user-level API.
The ShadowNet Controller keeps track of the physical
devices that make up each ShadowNet node by con-
stantly monitoring them, and further manages and ma-
nipulates those physical devices to realize the user-level
APIs, while maintaining a clean separation between the
abstracted slice specifications and the way they are re-
alized on the physical equipment. The user-level APIs
also enable users to dynamically interact with and man-
age the physical instantiation of their slices. Specifically,
users can directly access and configure each instantiated
logical device.

ShadowNet allows a user to deactivate individual de-
vices in a slice or the slice as a whole, by releasing the
allocated physical resources. ShadowNet decouples the
persistent state from the instantiated physical devices, so
that the state change associated with a device in the spec-
ification is maintained even if the physical instantiation
is released. Subsequently, that device in the specification
can be re-instantiated (assuming that sufficient resources
are available), the saved state restored and thus the user
perceived slice remains intact. For example, the config-
uration change made by the user to a logical router can
be maintained and applied to a new instantiated logical
router, even if the physical placement of that logical de-
vice is different.

������������

���

��	
��

���

����

���
�
��
���

������������

���

��	
��

���

����

���

���
���

��������
������
� ��������

������
�

��������
������
�

Figure 3: Usage scenario: load-aware anycast CDN.

2.3 Using ShadowNet
In this section we briefly describe an example usage sce-
nario that illustrates the type of sophisticated network
services that can be tested using the ShadowNet infras-
tructure. We discuss the requirements for testing these
services and explain why existing platforms fall short in
these scenarios.
Assume that ShadowNet is to be used to run a cus-

tomer trial of a load-aware anycast content distribution
network (CDN) [9]. Figure 3 depicts how all the com-
ponents of such a CDN can be realized on the Shad-
owNet platform. Specifically, a network, complete with
provider edge (PE) and core (C) routers, can be dynami-
cally instantiated to represent a small backbone network.
Further, servers in a subset of the ShadowNet nodes can
be allocated and configured to serve as content caches.
A load-aware anycast CDN utilizes route control to in-
form BGP selection based on the cache load, i.e., using
BGP, traffic can be steered away from overloaded cache
servers. In ShadowNet, this BGP speaking route control
entity can be instantiated on either a server or a router de-
pending on the implementation. Appropriate configura-
tion/implementation of BGP, flow-sampling, and server
load monitoring complete the infrastructure picture. Fi-
nally, actual end-user requests can be directed to this in-
frastructure, e.g., by resolving a content URL to the any-
cast address(es) associated with and advertised by the
CDN contained in the ShadowNet infrastructure.
Using this example we can identify several capabili-

ties required of the ShadowNet infrastructure to enable
such realistic service evaluation (see Table 1): (i) to gain
confidence in the equipment used in the trial it should
be the same as, or similar to, equipment used in the pro-
duction network (production-grade devices); (ii) to thor-
oughly test load feedback mechanisms and traffic steer-
ing algorithms, it requires participation of significant
numbers of customers (realistic workloads); (iii) this in
turn requires sufficient network capacity (high capacity
backbone); (iv) realistic network and CDN functionality

SN EL PL VN
Production grade devices Y N N N
Realistic workloads Y N Y Y
High capacity backbone Y N N Y
Geographical coverage Y N Y Y
Dynamic reconfiguration Y N N N

Table 1: Capability comparison between ShadowNet
(SN), EmuLab (EL), PlanetLab (PL) and VINI (VN)

require realistic network latencies and geographic distri-
bution (geographic coverage); (v) finally, the CDN con-
trol framework could dynamically adjust the resources
allocated to it based on the offered load (dynamic recon-
figuration).
While ShadowNet is designed to satisfy these require-

ments, other testing platforms, with different design
goals and typical usage scenarios, fall short in provid-
ing such support, as we describe next.

Emulab achieves flexible network topology through
emulation within a central testbed environment. There
is a significant gap between emulation environments and
real production networks. For example, software routers
typically do not provide the same throughput as pro-
duction routers with hardware support. As EmuLab is
a closed environment, it is incapable of combining real
Internet workload into experiments. Compared to Em-
uLab, the ShadowNet infrastructure is distributed, thus
the resource placement in ShadowNet more closely re-
sembles future deployment phases. In EmuLab, an ex-
periment in a slice is allocated a fixed set of resources
during its life cycle — a change of specification would
require a “reboot” of the slice. ShadowNet, on the other
hand, can change the specification dynamically. In the
CDN example, machines for content caches and net-
work links can be dynamically spawned or removed in
response to increased or decreased client requests.

PlanetLab has been extremely successful in academic
research, especially in distributed monitoring and P2P
research. It achieves its goal of amazing geographical
coverage, spanning nodes to all over the globe, obtain-
ing great end-host visibility. The PlanetLab nodes, how-
ever, are mostly connected to educational networks with-
out abundant upstream or downstream bandwidth. Plan-
etLab therefore lacks the capacity to realize a capable
backbone between PlanetLab nodes. ShadowNet, on the
other hand, is built upon a production ISP network, hav-
ing its own virtual backbone with bandwidth and latency
guarantees. This pushes the tested service closer to the
core of the ISP network, where the actual production ser-
vice would be deployed.

VINI is closely tied with PlanetLab, but utilizes In-
ternet2 to provide a realistic backbone. Like EmuLab

Figure 4: The ShadowNet controller

and PlanetLab, VINI runs software routers (XORP and
Click), the forwarding capacity of which lags behind
production devices. This is mostly because its focus is to
use commodity hardware to evaluate new Internet archi-
tectures, which is different from the service deployment
focus of ShadowNet. VINI and PlanetLab are based on
the same control framework. Similar to EmuLab, it lacks
the capability of changing slice configurations dynam-
ically, i.e., not closing the loop for more adaptive re-
source management, a functionality readily available in
ShadowNet.

2.4 The ShadowNet Controller
The ShadowNet controller consists of a user-level man-
ager, a physical-level manager, a configuration effector
and a device monitor, as shown in Figure 4. We describe
each component below. The current ShadowNet design
utilizes a centralized controller that interacts with and
controls all ShadowNet nodes.

2.4.1 User-level manager
The user-level manager is designed to take the input of
user-level API calls. Each API call corresponds to an
action that the users of ShadowNet are allowed to per-
form. A user can create a topological specification of a
service trial (§3.1), instantiate the specification to physi-
cal resources (§3.2), interact with the allocated physical
resources (§3.3), and deactivate the slice when the test
finishes (§3.4). The topology specification of a slice is
stored by the user-level manager in persistent storage,
so that it can be retrieved, revived and modified over
time. The user-level manager also helps maintain and
manage the saved persistent state from physical instan-
tiations (§3.3). By retrieving saved states and applying
them to physical instantiations, advanced features, like
device duplication, can be enabled (§3.5).
The user-level manager is essentially a network ser-

vice used to manipulate configurations of user experi-
ments. We allow the user-level manager to be accessed
from within the experiment, facilitating network control

in a closed-loop fashion. In the example shown in Fig-
ure 3, the route control component in the experiment can
dynamically add content caches when user demand is
high by calling the user-level API to add more comput-
ing and networking resource via the user-level manager.

2.4.2 Physical-level manager
The physical-level manager fulfills requests from the
user-level manager in the form of physical-level API
calls by manipulating the physical resources in Shad-
owNet. To do this, it maintains three types of informa-
tion: 1) “static” information, such as the devices in each
ShadowNet node and their capabilities; 2) “dynamic”
information, e.g., the online status of all devices and
whether any interface modules are not functioning; 3)
“allocation” information, which is the up-to-date usage
of the physical resources. Static information is changed
when new devices are added or old devices are removed.
Dynamic information is constantly updated by the de-
vice monitor. The three main functions of the physical-
level manager is to configure physical devices to spawn
virtualized device slivers (§4.1) for the instantiation of
user-level devices (§4.1.1) and user-level connectivities
(§4.1.2), to manage their states (§4.4) and to delete ex-
isting instantiated slivers. A sliver is a share of the phys-
ical resource, e.g., a virtual machine or a sliced physical
link. The physical-level manager handles requests, such
as creating a VM, by figuring out the physical device to
configure and how to configure it. The actual manage-
ment actions are performed via the configuration effec-
tor module, which we describe next.

2.4.3 Configuration effector
The configuration effector specializes in realizing con-
figuration changes to physical devices. Configlets are
parametrized configuration or script templates, saved in
the persistent storage and retrieved on demand. To real-
ize the physical-level API calls, the physical-level man-
ager decides the appropriate configlet to use and gener-
ates parameters based on the request and the physical re-
source information. The configuration effector executes
the configuration change on target physical devices.

2.4.4 Device monitor
A device monitor actively or passively determines the
status of physical devices or components and propagates
this “dynamic” information to the physical-level man-
ager. Effectively, the device monitor detects any phys-
ical device failures in real time. As the physical-level
manager receives the update, it can perform appropri-
ate actions to mitigate the failure. The goal is to mini-
mize any inconsistency of physical instantiation and user
specifications. We detail the techniques in §4.5. Device
or component recovery can be detected as well, and as

Figure 5: The slice life cycle

S1

NY

Internet

R3

M5 M6

L5 L6

TX

Internet

R2

M3 M4

L3 L4

CA

Internet

R1

M1 M2

L1 L2

L7

L10

L8 L9

L11 L12 L13 L14 L15

$SL = AddUsrSlice();
$S1 = AddUsrSwitch($SL);
$R1 = AddUsrRouter($SL,"CA");
$M1 = AddUsrMachine($SL,"CA","Debian");
$M2 = AddUsrMachine($SL,"CA","Windows");
$L1 = AddUsrLink($M1,$R1); # similar for M2
$L10 = AddUsrLink($M1,$S1); # similar for M2
$L7 = AddToInternet($R1, "141.212.111.0/24");
similar for "TX" and "NY"

Figure 6: Example of user-level API calls

such the recovered resource can again be considered us-
able by the physical-level manager.

3 Network service in a slice
A user of ShadowNet creates a service topology in the
form of a slice, which is manipulated through the user-
level API calls supported by the ShadowNet controller.
The three layers embedded in a slice and the interactions
among them are depicted in Figure 5 and detailed below.
In this section, we outline the main user-exposed func-
tionalities that the APIs implement.

3.1 Creating user-level specification
To create a new service trial, an authorized user of Shad-
owNet can create a slice. As a basic support, and usu-
ally the first step to create the service, the user speci-
fies the topological setup through the user-level API (a
in Figure 5). As an example, Figure 6 depicts the in-
tended topology of a hypothetical slice and the API call
sequence that creates it.
The slice created acts like a placeholder for a collec-

tion of user-level objects, including devices and connec-
tivities. We support three generic types of user-level de-
vices (UsrDevice): router (UsrRouter), machine (Usr-
Machine), and switch (UsrSwitch). Two UsrDevices can
be connected to each other via a user-level link (Usr-
Link). User-level interfaces (UsrInt) can be added to

a UsrDevice explicitly by the slice owner; however, in
most cases, they are created implicitly when a UsrLink
is added to connect two UsrDevices.
Functionally speaking, a UsrMachine (e.g., M1 in

Figure 6) represents a generic computing resource,
where the user can run service applications. A Us-
rRouter (e.g., R1) can run routing protocols, forward
and filter packets, etc. Further, UsrRouters are pro-
grammable, allowing for custom router functionality. A
UsrLink (e.g., L1) ensures that when the UsrDevice on
one end sends a packet, the UsrDevice on the other
end will receive it. A UsrSwitch (e.g., S1) provides a
single broadcast domain to the UsrDevices connecting
to it. ShadowNet provides the capability and flexibil-
ity of putting geographically dispersed devices on the
same broadcast domain. For example, M1 to M6, al-
though specified in different locations, are all connected
to UsrSwitch S1. Besides internal connectivity among
UsrDevices, ShadowNet can drive live Internet traffic
to a service trial by allocating a public IP prefix for a
UsrInt on a UsrDevice. For example, L7 is used to
connect R1 to the Internet, allocating an IP prefix of
141.212.111.0/24.
Besides creating devices and links, a user of Shad-

owNet can also associate properties with different ob-
jects, e.g., the OS image of a UsrMachine and the IP
addresses of the two interfaces on each side of a Usr-
Link. As a distributed infrastructure, ShadowNet allows
users to specify location preference for each device as
well, e.g., California forM1,M2 andR1. This location
information is used by the physical layer manager when
instantiation is performed.

3.2 Instantiation
A user can instantiate some or all objects in her slice
onto physical resources (b in Figure 5). From this point
on, the slice not only contains abstracted specification,
but also has associated physical resources that the in-
stantiated objects in the specification are mapped to.
ShadowNet provides two types of instantiation strate-

gies. First, a user can design a full specification for the
slice and instantiate all the objects in the specification
together. This is similar to what Emulab and VINI pro-
vide. As a second option, user-level objects in the speci-
fication can be instantiated upon request at any time. For
example, they can be instantiated on-the-fly as they are
added to the service specification.This is useful for users
who would like to build a slice interactively and/or mod-
ify it over time, e.g., extend the slice resources based on
increased demand.
Unlike other platforms, such as PlanetLab and Emu-

Lab, which intend to run as many “slices” as possible,
ShadowNet limits the number of shares (slivers) a phys-
ical resource provides. This simplifies the resource al-

location problem to a straightforward availability check.
We leave more advanced resource allocation methods as
future work.

3.3 Device access & persistent slice state
ShadowNet allows a user to access the physical instanti-
ation of the UsrDevices and UsrLinks in her slice, e.g.,
logging into a router or tapping into a link (c in Figure 5).
This support is necessary for many reasons. First, the
user needs to install software on UsrMachines or Usr-
Routers and/or configure UsrRouters for forwarding and
filtering packets. Second, purely from an operational
point of view, operators usually desire direct access to
the devices (e.g., a terminal window on a server, or com-
mand line access to a router).
For UsrMachines and UsrRouters, we allow users to

log into the device and make any changes they want
(§4.3). For UsrLinks and UsrSwitches, we provide
packet dump feeds upon request (§4.3). This support
is crucial for service testing, debugging and optimiza-
tion, since it gives the capability and flexibility of sniff-
ing packets at any place within the service deployment
without installing additional software on end-points.
Enabling device access also grants users the ability to

change the persistent state of the physical instantiations,
such as files installed on disks and configuration changes
on routers. In ShadowNet, we decouple the persistent
states from the physical instantiation. When the physical
instantiation is modified, the changed state also become
part of the slice (d in Figure 5).

3.4 Deactivation
The instantiated user-level objects in the specification
of a slice can be deactivated, releasing the physical in-
stantiations of the objects from the slice by giving them
back to the ShadowNet infrastructure. For example, a
user can choose to deactivate an under-utilized slice as
a whole, so that other users can test their slices when
the physical resources are scarce. While releasing the
physical resource, we make sure the persistent state is
extracted and stored as part of the slice (f in Figure 5).
As a result, when the user decides to revive a whole slice
or an object in the slice, new physical resources will be
acquired and the stored state associated with the object
applied to it (e in Figure 5). Operationally speaking, this
enables a user to deactivate a slice and reactivate it later,
most likely on a different set of resources but still func-
tioning like before.

3.5 Management support
Abstracting the persistent state from the physical instan-
tiation enables other useful primitives in the context of
service deployment. If we instantiate a new UsrDevice
and apply the state of an existing UsrDevice to it, we ef-

Figure 7: Network connectivity options.

fectively duplicate the existing UsrDevice. For example,
a user may instantiate a new UsrMachine with only the
basic OS setup, log into the machine to install necessary
application code and configure the OS. With the support
provided by ShadowNet, she can then spawn several new
UsrMachines and apply the state of the first machine.
This eases the task of creating a cluster of devices serv-
ing similar purposes. From the ShadowNet control as-
pect, this separation allows sophisticated techniques to
hide physical device failures. For example, a physical
router experiences a power failure, while it hosts many
logical routers as the instantiation of UsrRouters. In this
case, we only need to create new instantiations on other
available devices of the same type, and then apply the
states to them. During the whole process, the slice spec-
ification, which is what the user perceives, is intact. Nat-
urally, the slice will experience some downtime as a re-
sult of the failure.

4 Physical layer operations
While conceptually similar to several existing sys-
tems [10, 27], engineering ShadowNet is challenging
due to the strong isolation concept it rests on, the
production-grade qualities it provides and the distributed
nature of its realization. We describe the key methods
used to realize ShadowNet.

4.1 Instantiating slice specifications
The slice specification instantiation is performed by the
ShadowNet controller in a fully automated fashion. The
methods to instantiate on two types of resource are de-
scribed as follows.

4.1.1 User-level routers and machines
ShadowNet currently utilizes VirtualBox [5] from Sun
Microsystems, and Logical Routers [16] from Juniper
Networks to realize UsrMachines and UsrRouters re-
spectively. Each VM and logical router created is con-
sidered as a device sliver. To instantiate a UsrRouter
or a UsrMachine, a ShadowNet node is chosen based
on the location property specified. Then all matching
physical devices on that node are enumerated for avail-

ability checking, e.g., whether a Juniper router is capa-
ble of spawning a new logical router. When there are
multiple choices, we distribute the usage across devices
in a round-robin fashion. Location preference may be
unspecified because the user does not care about where
the UsrDevice is instantiated, e.g., when testing a router
configuration option. In this case, we greedily choose
the ShadowNet node where that type of device is the
least utilized. When no available resource can be allo-
cated, an error is returned.

4.1.2 User-level connectivity
The production network associated with ShadowNet
provides both Internet connection and virtual backbone
connectivity to each ShadowNet node. We configure a
logical router, which we call the head router of the Shad-
owNet node, to terminate these two connections. With
the ShadowNet backbone connectivity provided by the
ISP, all head routers form a full-mesh, serving as the
core routers of ShadowNet. For Internet connectivity,
the head router interacts with ISP’s border router, e.g.,
announcing BGP routes.
Connecting device slivers on the same ShadowNet

node can be handled by the switching layer of that node.
The head routers are used when device slivers across
nodes need to be connected. In ShadowNet, we make
use of the carrier-supporting-carrier (CsC) capabilities
provided by MPLS enabled networks. CsC utilizes the
VPN service provided by the ISP, and stacks on top of
it another layer of VPN services, running in parallel but
isolated from each other. For example, layer-2 VPNs (so
called pseudo-wire) and VPLS VPNs can be stacked on
top of a layer-3 VPN service [15].
This approach has three key benefits. First, each

layer-2 VPN or VPLS instance encapsulates the network
traffic within the instance, thus provides strong isolation
across links. Second, these are off-the-shelf production-
grade services, which are much more efficient than man-
ually configured tunnels. Third, it is more realistic for
the users, because there is no additional configuration
needed in the logical routers they use. The layer-2
VPN and VPLS options that we heavily use in Shad-
owNet provides layer-2 connectivity, i.e., with router
programmability, any layer-3 protocol besides IP can run
on top of it.
Figure 7 contains various examples of enabling con-

nectivity, which we explain in detail next.
UsrLink: To instantiate a UsrLink, the instantiations of
the two UsrDevices on the two ends of the UsrLink are
first identified. We handle three cases, see Figure 7a).
(We consider the UsrLinks connected to a UsrSwitch
part of that UsrSwitch, which we describe later):

1) Two slivers are on the same physical device: for
example, V M1 and V M2 are on the same server; LR2

and Head1 are on the same router. In this case, we use
local bridging to realize the UsrLink.
2) Two slivers are on the same ShadowNet node, but
not the same device: for example, V M1 and LR1,
LR1 and LR2. We use a dedicated VLAN on that node
for each UsrLink of this type, e.g.,, LR1 will be config-
ured with two interfaces, joining two different VLAN
segments, one for the link to V M1, the other one to
LR2.
3) Two slivers are on different nodes: for example,
LR2 and LR3. In this case, we first connect each sliver
to its local head router, using the two methods above.
Then the head router creates a layer-2 VPN to bridge the
added interfaces, effectively creating a cross-node tunnel
connecting the two slivers.

In each scenario above, the types of the physical inter-
faces that should be used to enable the link are decided,
the selected physical interfaces are configured, and the
resource usage information of the interfaces is updated.
MPLS-VPN technologies achieve much higher lev-

els of realism over software tunnels, because almost no
configuration is required at the end-points that are be-
ing connected. For example, to enable the direct link
between LR2 and LR3, the layer-2 VPN configuration
only happens on Head1 and Head2. As a result, if the
user logs into the logical router LR2 after its creation,
she would only sees a “physical” interface setup in the
configuration, even without IP configured, yet that inter-
face leads to LR3 according to the layer-2 topology.
User-view switches: Unlike for UsrMachines and Usr-
Routers, ShadowNet does not allocate user-controllable
device slivers for the instantiation of UsrSwitches, but
rather provide an Ethernet broadcasting medium. (See
Figure 7b).)
To instantiate a UsrSwitch connecting to a set of Us-

rDevices instantiated on the same ShadowNet node, we
allocate a dedicated VLAN-ID on that node and config-
ure those device slivers to join the VLAN (i.e., LR5 and
LR6). If the device slivers mapped to the UsrDevices
distribute across different ShadowNet nodes, we first
recursively bridge the slivers on the same node using
VLANs, and then configure one VPLS-VPN instance on
each head router (i.e., Head3 and Head4) to bridge all
those VLANs. This puts all those device slivers (i.e.,
V M3, LR5, LR6) onto the same broadcast domain.
Similar to layer-2 VPN, this achieves a high degree of
realism, for example on LR5 and LR6, the instantiated
logical router only shows one “physical” interface in its
configuration.
Internet access: We assume that ShadowNet nodes can
use a set of prefixes to communicate with any end-points
on the Internet. The prefixes can either be announced
through BGP sessions configured on the head routers to

the ISP’s border routers, or statically configured on the
border routers.
To instantiate a UsrDevice’s Internet connectivity, we

first connect the UsrDevice’s instantiation to the head
router on the same node. Then we configure the head
router so that the allocated prefix is correctly forwarded
to the UsrDevice over the established link and the route
for the prefix is announced via BGP to the ISP. For ex-
ample, a user specifies two UsrRouters connecting to the
Internet, allocating them with prefix 136.12.0.0/24
and 136.12.1.0/24. The head router should in turn
announce an aggregated prefix 136.12.0.0/23 to
the ISP border router.

4.2 Achieving isolation and fair sharing
As a shared infrastructure for many users, ShadowNet
attempts to minimize the interference among the physi-
cal instantiation of different slices. Each virtual machine
is allocated with its own memory address space, disk im-
age, and network interfaces. However, some resources,
like CPU, are shared among virtual machines, so that
one virtual machine could potentially drain most of the
CPU cycles. Fortunately, virtual machine technology is
developing better control over CPU usage of individual
virtual machines [5].
A logical router on a Juniper router has its own config-

uration file and maintains its own routing table and for-
warding table. However, control plane resources, such
as CPU and memory are shared among logical routers.
We evaluate this impact in §6.3.
The isolation of packets among different UsrLinks is

guaranteed by the physical device and routing protocol
properties. We leverage router support for packet filter-
ing and shaping, to prevent IP spoofing and bandwidth
abusing. The corresponding configuration is made on
head routers, where end-users cannot access. For each
UsrLink, we impose a default rate-limit (e.g., 10Mbps),
which can be upgraded by sending a request via the user-
level API. We achieve rate limiting via hardware traffic
policers [19] and Linux kernel support [4].

4.3 Enabling device access
Console or remote-desktop access: For each VM run-
ning on VirtualBox, a port is specified on the hosting
server to enable Remote Desktop protocol for graphical
access restricted to that VM. If the user prefers command
line access, a serial port console in the VM images is en-
abled and mapped to a UNIX domain socket on the host-
ing machine’s file system [5]. On a physical router, each
logical router can be configured to be accessible through
SSH using a given username and password pair, while
confining the access to be within the logical router only.
Though the device slivers of a slice can be connected

to the Internet, the management interface of the actual

physical devices in ShadowNet should not be. For ex-
ample, the IP address of a physical server should be con-
tained within ShadowNet rather than accessible globally.
We thus enable users to access the device slivers through
one level of indirection via the ShadowNet controller.
Sniffing links: To provide packet traces from a partic-
ular UsrLink or UsrSwitch, we dynamically configure a
SPAN port on the switching layer of a ShadowNet node
so that a dedicated server or a pre-configured VM can
sniff the VLAN segment that the UsrLink or UsrSwitch
is using. The packet trace can be redirected through the
controller to the user in a streaming fashion or saved as
a file for future downloading. There are cases where no
VLAN is used, e.g., for two logical routers on the same
physical router connected via logical tunnel interfaces.
In this case, we deactivate the tunnel interfaces and re-
instantiate the UsrLink using VLAN setup to support
packet capture. This action, however, happens at the
physical-level and thus is transparent to the user-level,
as the slice specification remains intact.

4.4 Managing state
To extract the state of an instantiated UsrMachine, which
essentially is a VM, we keep the hard drive image of
the virtual machine. The configuration file of a logical
router is considered as the persistent state of the corre-
sponding UsrRouter. Reviving stored state for a Usr-
Machine can be done by attaching the saved disk im-
age to a newly instantiated VM. On the other hand, Us-
rRouter state, i.e., router configuration files, need ad-
ditional processing. For example, a user-level inter-
face may be instantiated as interface fe-0/1/0.2 and
thus appear in the configuration of the instantiated log-
ical router. When the slice is deactivated and instan-
tiated again, the UsrInt may be mapped to a different
interface, say ge-0/2/0.1. To deal with this com-
plication, we normalize the retrieved configuration and
replace physical-dependent information with user-level
object handles, and save it as the state.

4.5 Mitigating and creating failures
Unexpected physical device failures can occur, and as an
option ShadowNet tries to mitigate failures as quickly
as possible to reduce user perceived down time. One
benefit of separating the states from the physical instan-
tiation is that we can replace a new physical instantia-
tion with the saved state applied without affecting the
user perception. Once a device or a physical compo-
nent is determined to be offline, ShadowNet controller
identifies all instantiated user-level devices associated to
it. New instantiations are created on healthy physical
devices and saved states are applied if possible. Note
that certain users are specifically interested in observing
service behavior during failure scenarios. We allow the

users to specify whether they want physical failures to
pass through, which is disabling our failure mitigation
functionality. On the other hand, failure can be injected
by the ShadowNet user-level API, for example tearing
down the physical instantiation of a link or a device in
the specification to mimic a physical link-down event.
For physical routers, the device monitor performs pe-

riodic retrieval of the current configuration files, preserv-
ing the states of UsrRouters more proactively. When a
whole physical router fails, the controller creates new
logical routers with connectivity satisfying the topology
on other healthy routers and applies the saved configu-
ration, such as BGP setup. If an interface module fails,
the other healthy interfaces on the same router are used
instead. Note that the head router is managed in the
same way as other logical routers, so that ShadowNet
can also recover from router failures where head routers
are down.
A physical machine failure is likely more catas-

trophic, because it is challenging to recover files from
a failed machine and it is not feasible to duplicate large
files like VM images to the controller. One potential so-
lution is to deploy a distributed file system similar to the
Google file system [13] among the physical machines
within one ShadowNet node. We leave this type of func-
tionality for future work.

5 Prototype Implementation
In this section, we briefly describe our prototype im-
plementation of the ShadowNet infrastructure, including
the hardware setup and management controller.

5.1 Hardware setup
To evaluate our architecture we built two ShadowNet
nodes and deployed them locally. (At the time of writ-
ing, a four node ShadowNet instance is being deployed
as an operational network with nodes in Texas, Illinois,
New Jersey and California. Each node has two giga-
bit links to the production network, one used as regular
peering link and the other used as the dedicated back-
bone.)
Each prototype node has two Juniper M7i routers run-

ning JUNOS version 9.0, one Cisco C2960 switch, as
well as four HP DL520 servers. The M7i routers are
equipped with one or two Gigabit Ethernet PICs (Physi-
cal Interface Cards), FastEthernet PIC, and tunneling ca-
pability. Each server has two gigabit Ethernet interfaces,
and we install VirtualBox in the Linux Debian operating
system to host virtual machines. The switch is capable
of configuring VLANs and enabling SPAN ports.
In the local deployment, two Cisco 7206 routers act as

an ISP backbone. MPLS is enabled on the Cisco routers
to provide layer-3 VPN service as the ShadowNet back-
bone. BGP sessions are established between the head

router of each node and its adjacent Cisco router, en-
abling external traffic to flow into ShadowNet. We con-
nect the network management interface fxp0 of Ju-
niper routers and one of the two Ethernet interfaces
on machines to a dedicated and separate management
switch. These interfaces are configured with private
IP addresses, and used for physical device management
only, mimicking the out-of-band access which is com-
mon in ISP network management.

5.2 Controller
The ShadowNet controller runs on a dedicated machine,
sitting on the management switch. The controller is
currently implemented in Perl. A Perl module, with
all the user-level APIs, can be imported in Perl scripts
to create, instantiate and access service specifications,
similar to the code shown in Figure 6. A mysql
database is running on the same machine as the con-
troller, serving largely, though not entirely, as the per-
sistent storage connecting to the controller. It saves
the physical device information, user specifications, and
normalized configuration files, etc. We use a differ-
ent set of tables to maintain physical-level information,
e.g.,, phy_device_table, and user-level informa-
tion, e.g.,, usr_link_table. The Perl module re-
trieves information from the tables and updates the ta-
bles when fulfilling API calls.
The configuration effector of the ShadowNet con-

troller is implemented within the Perl module as well.
We make use of the NetConf XML API exposed by Ju-
niper routers to configure and control them. Configlets
in the form of parametrized XML files are stored on
the controller. The controller retrieves the configura-
tion of the physical router in XML format periodically
and when UsrRouters are deactivated. We wrote a spe-
cialized XML parser to extract individual logical router
configurations and normalize relative fields, such as in-
terface related configurations. The normalized config-
urations are serialized in text format and stored in the
mysql database associating to the specific UsrRouter.
Shell and Perl scripts, which wrap the VirtualBox

management interface, are executed on the hosting
servers to automatically create VMs, snapshot running
VMs, stop or destroy VMs. The configuration effector
logs into each hosting server and executes those scripts
with the correct parameters. On the servers, we run
low-priority cron jobs to maintain a fair amount of de-
fault VM images of different OS types. In this case,
the request of creating a new VM can be fulfilled fairly
quickly, amortizing the overhead across time. We use the
following steps to direct the traffic of an interface used
by a VM to a particular VLAN. First, we run tunctl
on the hosting server to create a tap interface, which is
configured in the VMM to be the “physical” interface of

the VM. Second, we make use of 802.1Q kernel mod-
ule to create VLAN interfaces on the hosting server, like
eth1.4, which participates in VLAN4. Finally we use
brctl to bridge the created tap interface and VLAN
interface.
Instead of effecting one configuration change per ac-

tion, the changes to the physical devices are batched and
executed once per device, thus reducing authentication
and committing overheads. All devices are manipulated
in parallel. We evaluate the effectiveness of these two
heuristics in §6.1.
The device monitor module is running as a daemon

on the controller machine. SNMP trap messages are en-
abled on the routers and sent over the management chan-
nel to the controller machine. Ping messages are sent
periodically to all devices. The two sources of infor-
mation are processed in the background by the monitor-
ing daemon. When failures are detected, the monitoring
module calls the physical-level APIs in the Perl module,
which in response populates configlets and executes on
the routers to handle failures. An error message is also
automatically sent to the administrators.

6 Prototype Evaluation
In this section, we evaluate various aspects of Shad-
owNet based on two example slices instantiated on our
prototype. The user specifications are illustrated on the
left side of Figure 8; the physical realization of that spec-
ification is on the right. In Slice1, two locations are
specified, namely LA and NY. On the LA side, one Us-
rMachine (M1) and one UsrRouter (R1) are specified.
R1 is connected to M1 through a UsrLink. R1 is con-
nected to the Internet through L2 and to R2 directly via
L5. The setup is similar on NY side. We use mini-
mum IP and OSPF configuration to enable the correct
forwarding between M1 and M2. Slice2 has essentially
the same setup, except that the two UsrRouters do not
have Internet access.
The right side of Figure 8 shows the instantiation of

Slice1 and Slice2. VM1 and LR1 are the instantiation
of M1 and R1 respectively. UsrLink L1 is instantiated
as a dedicated channel formed by virtualized interfaces
from physical interfaces, eth1 and ge-0/1/0, con-
figured to participate in the same VLAN. To create the
UsrLink L5, ShadowNet first uses logical tunnel inter-
faces to connect LR1 and LR2 with their head routers,
which in turn bridge the logical interfaces using layer-2
VPN.

6.1 Slice creation time
Table 2 shows the creation time for Slice1, broken
down into instantiation of machine and router, along
with database access (DB in the table.) Using a naive
approach, the ShadowNet controller needs to spend 82

L1

L2 L3

L4

LA NY

M1 R1 M2R2

L5

L6 L8

M3 M4R3 R4

Slice1

Slice2

Internet

L7

Vlan3

Vlan1

LTs

ge-0/1/0

LR1

Head
Internet

VPN

JuniperRouter1

Vlan4

Vlan2

LTs

ge-0/1/0

Internet

VPN

JuniperRouter2

Internet

VPN

Internet

VPN

VM3

VM1

Eth1.3

Eth1.1

Server1

Eth1
VM4

VM2

Eth1.4

Eth1.2

Server2

Eth1

SwitchISPSwitch

LR3 LR4

LR2

Head

LTs stands for Logical Tunnels

For L2VPN that connects LR1 to LR2For L2VPN that connects LR3 to LR4

For Internet access to LR1/LR2

Slice specif ication Actual instant iat ion

Figure 8: User slices for evaluation

Router Machine DB Total
Default (ms) 81834 11955 452 94241
Optimized (ms) 6912 5758 452 7364

Table 2: Slice creation time comparison

bandwidth packet Observed Delta
(Kbps) size bandwidth (%)

56 64 55.9 .18
1500 55.8 .36

384 64 383.8 .05
1500 386.0 .52

1544 64 1537.2 .44
1500 1534.8 .60

5000 1500 4992.2 .16
NoLimit 1500 94791.2 NA

Table 3: Cross-node link stress test

seconds on the physical routers alone by making 13
changes, resulting a 94-second execution time in total.
For machine configuration, two scripts are executed for
creating the virtual machines, and two for configuring
the link connectivity. With the two simple optimization
heuristics described in §5.2, the total execution time is
reduced to 7.4 seconds. Note that the router and ma-
chine configurations are also parallelized, so that we
have total = DB + max(Routeri, Machinej). Par-
allelization ensures that the total time to create a slice
does not increase linearly with the size of the slice. We
estimate creation time for most slices to be within 10
seconds.

6.2 Link stress test
We perform various stress tests to examine ShadowNet’s
capability and fidelity. We make L5 the bottleneck link,
setting different link constraints using Juniper router’s
traffic policer, and then test the observed bandwidth M1
and M2 can achieve on the link by sending packets as
fast as possible. Packets are dropped from the head of
the queue. The results are shown in Table 3, demon-
strating that ShadowNet can closely mimic different link

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000

P
ro

ce
ss

in
g

tim
e

(s
ec

on
d)

Routes to receive

w/o impact
w/ impact

(a) Impact of shared control
planes

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30 35 40 45

B
an

dw
id

th
 (k

bp
s)

Time (second)

Packet rate

(b) Hardware failure recovery

Figure 9: Control plane isolation and recovery test.
capacities.
When no constraint is placed on L5, the throughput

achieved is around 94.8Mbps, shown as “NoLimit” in
the table. This is close to maximum, because the routers
we used as ISP cores are equipped with FastEthernet in-
terfaces, which have 100Mbps capacity and the VM is
specified with 100Mbps virtual interface. Physical gi-
gabit switches are usually not the bottleneck, as we ver-
ified that two physical machines on the same physical
machines connected via VLAN switch can achieve ap-
proximately 1Gbps bandwidth.
As we are evaluating on a local testbed, the jitter and

loss rate is almost zero, while the delay is relatively con-
stant. We do not expect this to hold in our wide-area
deployment.

6.3 Slice isolation
We describe our results in evaluating the isolation assur-
ance from the perspectives of both the control and data
plane.

6.3.1 Control plane
To understand the impact of a stressed control plane on
other logical routers, we run software routers, bgpd of
zebra, on both M1 and M3. The two software routers
are configured to peer with the BGP processes on LR1
and LR3. We load the software routers with BGP rout-
ing tables of different sizes, transferred to LR1 and LR3.
The BGP event log on the physical router is analyzed by
measuring the duration from the first BGP update mes-
sage to the time when all received routes are processed.
In Figure 9(a), the bottom line shows the processing

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 200 400 600 800 1000 1200 1400

R
ec

ei
vi

ng
 ra

te
 o

n
M

2
(k

bp
s)

Sending rate on M1 (kbps)

L1
 900

 920

 940

 960

 980

 1000

 0 200 400 600 800 1000 1200 1400

R
ec

ei
vi

ng
 ra

te
 o

n
M

2
(k

bp
s)

Sending rate on M3 (kbps)

L1

(a) Variable packet rate (b) Max packet rate
(L6’s rate is maxed) (L6’s rate is variable)

Figure 10: Data plane isolation test.

time of the BGP process on LR1 to process all the routes
if LR3 is BGP-inactive. The top line shows the process-
ing time for LR1 when LR3 is also actively processing
the BGP message stream. Both processing times in-
crease linearly with the number of routes received. The
two lines are almost parallel, meaning that the delay is
proportional to the original processing time. The differ-
ence of receiving 10k routes is about 13 seconds, 73 sec-
onds for 50k routes. We have verified that the CPU usage
is 100% even if only LR1 is BGP-active. We have also
used two physical machines to peer with LR1 and LR3
and confirmed that the bottleneck is due to the Juniper
router control processor. If these limitations prove to
be problematic in practice, solutions exist which allow a
hardware separation of logical router control planes [17].

6.3.2 Data plane
L1 and L6 share the same physical interfaces, eth1
on Server1 and ge-0/1/0 on JuniperRouter1. We
restrict the bandwidth usage of both L1 and L6 to be
1Mbps by applying traffic policer on the ingress inter-
faces on LR1 and LR3. From the perspective of a given
UsrLink, say L1, we evaluate two aspects: regardless
of the amount of traffic sent on L6, (1) L1 can always
achieve the maximum bandwidth allocated (e.g., 1Mbps
given a 100Mbps interface); (2) L1 can always obtain
its fair share of the link. To facilitate this test, we apply
traffic policer on the ingress interfaces (ge-0/1/0) on
LR1 and LR3, restricting the bandwidth of L1 and L6 to
1Mbps. Simultaneous traffic is sent from M1 via L1 to
M2, and from M3 via L6 to M4.
Figure 10(a) shows the observed receiving rate on M2

(y-axis) as the sending rate of M1 (x-axis) increases,
while M3 is sending as fast as possible. The receiving
rate matches closely with the sending rate, before reach-
ing the imposed 1Mbps limit, This demonstrates that L1
capacity is not affected, even if L6 is maxed out. Fig-
ure 10(b) shows the max rate ofL1 can achieve is always
around 980kbps no matter how fastM2 is sending.

6.4 Device failure mitigation
We evaluate the recovery time in response to a hardware
failure in ShadowNet. While Slice1 is running,M1 con-
tinuously sends packets to M2 via L1. We then phys-

ically yanked the Ethernet cable on the Ethernet mod-
ule ge-0/1/0, triggering SNMP LinkDown trap mes-
sage and the subsequent reconfiguration activity. A sep-
arate interface (not shown in the figure) is found to be us-
able, then automatically configured to resurrect the down
links. Figure 9(b) shows the packet rate that M2 ob-
serves. The downtime is about 7.7 seconds, mostly spent
on effecting router configuration change. Failure detec-
tion is fast due to continuous SNMP messages, and sim-
ilarly controller processing takes less than 100ms. This
exemplifies the benefit of strong isolation in ShadowNet,
as the physical instantiation is dynamically replaced us-
ing the previous IP and OSPF configuration, leaving the
user perceived slice intact after a short interruption. To
further reduce the recovery time, the ShadowNet con-
troller can spread a UsrLink’s instantiation onto multiple
physical interfaces, each of which provides a portion of
the bandwidth independently.

7 Related work
ShadowNet has much in common with other test/trial
networks [10, 27, 22]. However, to our knowledge,
ShadowNet is the first platform to exploit recent ad-
vances in the capabilities of networking equipment to
provide a sharable, composable and programmable in-
frastructure using carrier-grade equipment running on
a production ISP network. This enables a distinct em-
phasis shift from experimentation/prototyping (enabled
by other test networks), to service trial/deployment (en-
abled by ShadowNet). The fact that ShadowNet uti-
lizes production quality equipment frees us from having
to deal with low-level virtualization/partitioning mech-
anisms, which typically form a significant part of other
sharable environments.
A similar service deployment incentive to that es-

poused by ShadowNet was advocated in [21]. Their ser-
vice definition is, however, narrower than ShadowNet’s
scope which also includes network layer services. Ama-
zon’s EC2 provides a platform for rapid and flexible
edge service deployment with a low cost [1]. This plat-
form only rents computing machines with network ac-
cess, lacking the ability to control the networking as-
pects of service testing, or indeed network infrastructure
of any kind. PLayer [14] is designed to provide a flexible
and composable switching layer in data-center environ-
ment. It achieves dynamic topology change with low
cost; however, it is not based on commodity hardware.
Alimi et al. proposed the idea of shadow configura-

tion [8], a new set of configuration files that first run in
parallel with existing configuration and then either com-
mitted or discarded. The shadow configuration can be
evaluated using real traffic load. The downside is that
the separation between the production network and the
shadowed configurationmay not be strongly guaranteed.

This technique requires significant software and hard-
ware modification on proprietary network devices.
We heavily rely on hardware-based and software-

based virtualization support [6] in the realization of
ShadowNet, for example virtual machines [5] and Ju-
niper’s logical router [16]. The isolation between the
logical functionality and the physical resource can be
deployed to achieve advanced techniques, like router
migration in VROOM [26] and virtual machine migra-
tion [20, 12], which can be used by ShadowNet.

8 Conclusion
In this paper, we propose an architecture called Shad-
owNet, designed to accelerate network change in the
form of new networks services and sophisticated net-
work operation mechanisms. Its key property is that the
infrastructure is connected to, but functionally separated
from a production network, thus enabling more realistic
service testing. The fact that production-grade devices
are used in ShadowNet greatly improves the fidelity and
realism achieved. In the design and implementation
of ShadowNet, we created strong separation between
the user-level representations from the physical-level
instantiation, enabling dynamic composition of user-
specified topologies, intelligent resource management
and transparent failure mitigation. Though ShadowNet
currently provides primitives mainly for service testing
purposes, as a next step, we seek to broaden the applica-
bility of ShadowNet, in particular, to merge the control
framework into the production network for allowing
service deployment.

Acknowledgment: We wish to thank our shepherd
Jaeyeon Jung as well as the anonymous reviewers for
their valuable feedback on this paper.

References
[1] Amazon Elastic Compute Cloud. http://aws.amazon.

com/ec2/.
[2] FEDERICA: Federated E-infrastructure Dedicated to European

Researchers Innovating in Computing network Architectures.
http://www.fp7-federica.eu/.

[3] GENI: Global Environment for Network Innovations. http:
//www.geni.net/.

[4] Traffic Control HOWTO. http://linux-ip.net/
articles/Traffic-Control-HOWTO/.

[5] VirtualBox. http://www.virtualbox.org.
[6] K. Adams and O. Agesen. A comparison of software and hard-

ware techniques for x86 virtualization. In Proceedings of the
12th international conference on Architectural support for pro-
gramming languages and operating systems, 2006.

[7] M. Agrawal, S. Bailey, A. Greenberg, J. Pastor, P. Sebos, S. Se-
shan, K. van der Merwe, and J. Yates. Routerfarm: Towards a
dynamic, manageable network edge. SIGCOMM Workshop on
Internet Network Management (INM), September 2006.

[8] R. Alimi, Y. Wang, and Y. R. Yang. Shadow configuration as
a network management primitive. In Proceedings of ACM SIG-
COMM, Seattle, WA, August 2008.

[9] H. Alzoubi, S. Lee, M. Rabinovich, O. Spatscheck, and J. Van
der Merwe. Anycast CDNs Revisited. 17th International World
Wide Web Conference, April 2008.

[10] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford.
In VINI veritas: realistic and controlled network experimenta-
tion. SIGCOMM Comput. Commun. Rev., 36(4):3–14, 2006.

[11] Cisco Systems. MPLS VPN Carrier Supporting Car-
rier. http://www.cisco.com/en/US/docs/ios/12_
0st/12_0st14/feature/guide/csc.html.

[12] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines. In
NSDI’05: Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation, 2005.

[13] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file sys-
tem. SIGOPS Oper. Syst. Rev., 37(5):29–43, 2003.

[14] D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-aware switch-
ing layer for data centers. SIGCOMM Comput. Commun. Rev.,
38(4), 2008.

[15] Juniper Networks. Configuring Interprovider and Carrier-of-
Carriers VPNs. http://www.juniper.net/.

[16] Juniper Networks. Juniper Logical Routers. http:
//www.juniper.net/techpubs/software/junos/
junos85/feature-guide-85/id-11139212.html.

[17] Juniper Networks. Juniper Networks JCS 1200 Control Sys-
tem Chassis. http://www.juniper.net/products/
tseries/100218.pdf.

[18] Juniper Networks. Juniper Partner Solution Development Plat-
form. http://www.juniper.net/partners/osdp.
html.

[19] Juniper Networks. JUNOS 9.2 Policy Framework Configura-
tion Guide. http://www.juniper.net/techpubs/
software/junos/junos92/swconfig-policy/
frameset.html.

[20] M. Nelson, B.-H. Lim, and G. Hutchins. Fast transparent mi-
gration for virtual machines. In ATEC ’05: Proceedings of the
annual conference on USENIX Annual Technical Conference,
pages 25–25, Berkeley, CA, USA, 2005. USENIX Association.

[21] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A Blueprint
for Introducing Disruptive Technology Into the Internet. In Proc.
of ACM HotNets, 2002.

[22] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir. Expe-
riences building planetlab. In OSDI ’06: Proceedings of the
7th symposium on Operating systems design and implementa-
tion. USENIX Association, 2006.

[23] L. Peterson, S. Shenker, and J. Turner. Overcoming the Internet
Impasse through Virtualization. Proc. of ACM HotNets, 2004.

[24] J. Turner and N. McKeown. Can overlay hosting services
make ip ossification irrelevant? PRESTO: Workshop on Pro-
grammable Routers for the Extensible Services of TOmorrow,
May 2007.

[25] J. E. Van der Merwe et al. Dynamic Connectivity Management
with an Intelligent Route Service Control Point. Proceedings of
ACM SIGCOMM INM, October 2006.

[26] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rex-
ford. Virtual routers on the move: live router migration as a
network-management primitive. SIGCOMM Comput. Commun.
Rev., 38(4), 2008.

[27] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An Inte-
grated Experimental Environment for Distributed Systems and
Networks. In Proc. of the Fifth Symposium on Operating Sys-
tems Design and Implementation, 2002.

