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Refilnement Proof
schedule = do [ Haskell ]
4 ] curThread <- getCurThread
runnable <- i1isRunnable curThread
Concrete MOdeI Time <- threadGet tcbTimeSlice curThread
when (not runnable || time == 0)
chooseThread

Refinement Proof

( Yoid schedule () [ C ]
Implementation l D eCurThread S tobTinesLioe = 0
| chooseThread () ;
Reduce parallelism by having a Formal verification approach
big lock around the whole kernel of the uniprocessor version

Reduce proof complexity

Reduce concurrency |
Induced by concurrency

Reduce sharing with a multikernel approach like in Corey or Barrelfish (3
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One isolated kernel/userland Communication and resource Resource sharing
Image per CPU = no sharing transfer between CPUSs between CPUs
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Progress: implemented in C and low-level design
semi-formally proved
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