Towards a Formally Verifiable Multiprocessor I\/Ilcrokernel

Michael von Tessin (NICTA and UNSW)

[ |Isabelle/HOL ]

e schedule = do
Userland Ab t t M d I Threads « allActiveTCBs;
S raC O e thread -~ select threads;
switch to thread thread

od

Refilnement Proof
schedule = do [ Haskell ]
4 ] curThread <- getCurThread
runnable <- i1isRunnable curThread
Concrete MOdeI Time <- threadGet tcbTimeSlice curThread
when (not runnable || time == 0)
chooseThread

Refinement Proof

( Yoid schedule () [ C ]
Implementation l D eCurThread S tobTinesLioe = 0
| chooseThread () ;
Reduce parallelism by having a Formal verification approach
big lock around the whole kernel of the uniprocessor version

Reduce proof complexity

Reduce concurrency |
Induced by concurrency

Reduce sharing with a multikernel approach like in Corey or Barrelfish (3

Userland Userland Userland ‘ Userland Userland | Userland

g1 g £ 1 g g1 @
Memory | Memory | Memory \

One isolated kernel/userland Communication and resource Resource sharing
Image per CPU = no sharing transfer between CPUSs between CPUs
—

Progress: implemented in C and low-level design
semi-formally proved

p—

't‘ rom imagination to |

,‘A—__




