
1

●Jim Waldo
●Distinguished Engineer
●Sun Microsystems Labs

A Report on the Project
Darkstar
Anthropological
Expedition Into the
World of Massively
Scaled Online Games

1

2

A Preliminary Report from the
Darkstar Anthropological Expedition

Into the Unexplored Jungle of
Massive Multi-Player

On-Line Games

3

MMOs Are Different
• Different roles
> Producers
> Artists
> Coders

• Different goals
> Fun
> Cool

• Different organizations
> Publishers
> Production houses

4

What We Look Like

5

What They Look Like

6

7

8

9

The Numbers Are Staggering

10

World of Warcraft
• Approximately 10 million subscribers
> Average subscription : $15/month
> Average retention : two years +
> $150 million per month/$1.80 Billion per year run rate
> For one game (they have others)

• Unknown number of servers
• ~2,700 employees world wide
• Company is changing
> Was a game company
> Now a service company

11

Webkinz
• Approximately 5 million subscribers
> Subscription comes with toy purchase
> Subscription lasts one year
> Average 100k users at any time
> Currently only US and Canada; soon to be world wide
> Aimed at the 8-12 demographic

– And their mothers...
• The company is changing
> Was a toy company
> Becoming a game/social site company

12

Cultural Observations
• Games are part of the entertainment industry
> Producers, daily rushes, story lines
> Fun/engagement most important

• The default computing environment
> A PC or console
> One thread
> One player

• Scaling and reliability have never been vital
• Low latency, not total throughput
• Not a traditional “IT” market

13

Riding Moore's Law
• When processors get faster
> Games play faster
> Things can be more complex

• When GPUs get faster
> Better visuals
> More engaging play

• Games machines are supercomputers

14

On-Line Games Change Everything
• Scale and reliability needed
> One call to customer service = ~3 months subscription
> Slow games are not fun
> Server crashes impact multiple players

• Capacity management is hard
> Hit games need to scale up

– Sometimes faster than human time
> Duds need to scale down

• Chip architectures are changing
> Threads, not clocks

15

Current Scaling Techniques
• Geographic Decomposition
> One server = some geographic area

– Island
– Room

> Need to decide scale during production
> Get it wrong, game play impacted

• Shards
> Copies of the game world
> Allow multiple people to do the same thing
> No communication between shards

– Bad for guilds

16

Reliability Techniques
• Snapshots
> On occasion, dump state to a database

– Dumping state sucks cycles
– Done during transitions (run the video...)
– May not happen frequently

• Otherwise, state kept in memory
> Faster access
> Lost if the server is lost

• Considerable game play can be lost

17

The New Environment
• Multi-core machines
> Clocks aren't getting faster
> Cores are multiplying
> Only works for highly concurrent programs

• Highly distributed
> Need servers to work together
> Need to be able to dynamically scale

18

Project Darkstar Goals
• Support Server Scale
> Games are embarrassingly parallel
> Multiple threads
> Multiple machines

• Simple Programming Model
> Multi-threaded, distributed programming is hard
> Single thread
> Single machine

• In the general case, this is impossible

19

The Special Case
• Event-driven Programs
> Client communication generates a task
> Tasks are independent

• Tasks must
> Be short-lived
> Access data through Darkstar

• Communication is through
> Client sessions (client to server)
> Channels (publish/subscribe client/server-to-client)

20

Game Architectures
• Powerful clients
> Lots of graphics
> Lots of state

• Simple servers
> Abstract model of the world
> Does as little as possible

• Communication protocol
> Small messages
> Best guess then repair
> No peer-to-peer

21

Project Darkstar Architecture

Everyone and Everything Participating on the Network

22

Stack Architecture

Data Service

Channel Service

Client Session Service

Task Service

Other Services

23

Dealing with Concurrency
• All tasks are transactional
> Either everything is done, or nothing is
> Commit or abort determined by data access and

contention
• Data access
> Data store detects conflicts, changes
> If two tasks conflict

– One will abort and be re-scheduled
– One will complete

• Transactional communication
> Actual communication only happens on commit

24

Project Darkstar Data Store
• Not a full (relational) database
> No SQL
> Assumes approximately 50% read/50% write

• Keeps all game state
> Stores everything persisting longer than a single task
> Shared by all copies of the stack

• No explicit locking protocols
> Detects changes automatically
> Programmer can provide hints for optimizations

25

Project Darkstar Communication
• Listeners hear client communication
> Simple client protocol
> Listeners established on connection

• Client-to-client through the server
> Allows server to listen if needed
> Very fast data path

• Mediation virtualizes end points
> Indirection abstracts actual channels

26

Dealing with Distribution
• Darkstar tasks can run anywhere
> Data comes from the data store
> Communications is mediated
> Where a task runs doesn't matter

• Tasks can be allocated on different machines
> Players on different machines can interact
> The programmer doesn't need to chose

• Tasks can be moved
> Meta-services can track loads and move tasks
> New stacks can be added at runtime

27

The End Result
• Simple and familiar programming model
> A single thread
> A single machine

• Multiple threads
> Task scheduling part of the infrastructure
> Concurrency control through the data store, transactions

• Multiple machines
> Darkstar manages data and communication references
> Computation can occur on any machine
> Machines can be added (or subtracted) at any time

28

Current Status
• Multi-node version available
> Open source (GPLv2)
> Commercial license under development

• Working on performance, reliability
> Caching data
> Failure recovery
> Add/delete nodes

29

Current Questions
• Characterizing workload
> Games are secretive
> Makes it hard to know performance

• Data access break-even point
> Memory access is always faster
> Data store allows multiple machines
> When do we get the same/better performance

– Maybe never

30

How Much Can Be Hidden
• Lots
> No explicit locking
> No need to identify critical sections
> Looks like single-threaded code

• But not all
> Data design for concurrency

31

Is It Computer Science?
• Important questions around
> Concurrent programming
> Reliable systems
> Dynamic distributed systems

• Not the answer, but an answer
• And it is fun...

32

A Report on the Project
Darkstar Anthropological
Expedition Into the World of
Massively Scaled Online
Games
●Jim Waldo
●jim.waldo@sun.com

32

