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Abstract
We introduce the Free Factory, a platform for deploy-
ing data-intensive web services using small clusters of
commodity hardware and free software. Independently
administered virtual machines called Freegols give ap-
plication developers the flexibility of a general purpose
web server, along with access to distributed batch pro-
cessing, cache and storage services. Each cluster ex-
ploits idle RAM and disk space for cache, and reserves
disks in each node for high bandwidth storage. The batch
processing service uses a variation of the MapReduce
model. Virtualization allows every CPU in the cluster
to participate in batch jobs. Each 48-node cluster can
achieve 4-8 gigabytes per second of disk I/O. Our intent
is to use multiple clusters to process hundreds of simulta-
neous requests on multi-hundred terabyte data sets. Cur-
rently, our applications achieve 1 gigabyte per second of
I/O with 123 disks by scheduling batch jobs on two clus-
ters, one of which is located in a remote data center.

1 Introduction

We built Free Factories to help the PGx team win the
Archon X PRIZE for Genomics and to meet the needs
of the Personal Genome Project. The prize is awarded
for sequencing one hundred complete human genomes
in less than ten days [29]. Doing this with Polony se-
quencing [17, 25] and related technologies [30, 31], as
the PGx team plans to do, will involve distilling many
petabytes of raw data to produce about 100 gigabytes of
output. This DNA sequencing capacity can be used to
help build a database of personal genome-phenome data
sets; coupled with a data mining and analysis engine, this
will provide opportunities for many new discoveries.

Storing and analyzing data at this scale still requires
exotic computing systems [3, 15, 28] – many scientists,
physicians and members of the general public would like
to participate in the development of these technologies,

Figure 1: A Free Factory contains about five clusters of 12
to 48 nodes. Some clusters are colocated with data acquisi-
tion instruments; their sizes are limited by the available power,
cooling, and space. Other clusters are located in data centers.
The clusters are interconnected by relatively slow networks.

but do not have access to the resources they need to get
started. Furthermore, anyone creating a database of sen-
sitive personal information has to address privacy and
disclosure concerns, and there is no single correct way
to do that. The Personal Genome Project aims to over-
come these obstacles and, ultimately, give individuals the
tools to make genetic discoveries of their own [7, 19, 20].

To help alleviate these barriers, we consider the needs
of a relatively small organization that supports several
independent applications. Some such organizations sup-
port scientists in research activities, like developing new
sequencing technologies; some focus on medical appli-
cations, like predicting which treatments will be effective
for a particular patient. Within each of these communi-
ties, scientists and application developers generally ben-
efit by sharing data and computing resources, although
they may need to segregate some data and resources in
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order to satisfy a particular security model. End users
choose who to trust with their personal data, establish le-
gal agreements with those trustees to control how their
data is used, and access relevant information using web
services.

With the Free Factories platform, we make the first
steps toward this vision. We emphasize efficiency in a
range of installation sizes, from a single 12-node cluster
to several 48-node clusters. We cater to data-intensive
applications that are conducive to parallel computation,
but are limited by the ability of storage systems to sup-
port many concurrent tasks. We avoid proprietary soft-
ware and expensive hardware. Organizations can start
working with substantial data sets on small clusters, and
expand their capacity by adding new clusters. Multiple
small clusters also provide opportunities to enforce dif-
ferent privacy and data integrity guarantees for different
applications and data.

Small installations of low-cost hardware provide pro-
cessing and storage capacity at the scale we need for
these applications, but efficient and fault-tolerant utiliza-
tion of this hardware is non-trivial. We have used a prag-
matic approach of selecting and arranging free software
to make the best of the performance characteristics of
cheap hardware. Our goal is to utilize 90% of our hard-
ware capacity, including disk I/O bandwidth, network
bandwidth, and CPU time. The result is a unified plat-
form that makes efficient use of hardware in an environ-
ment where a variety of users and applications share stor-
age and computation resources. We encourage others to
deploy and develop this platform further. [16]

2 Design and architecture

A Free Factory provides hosting, data storage, and batch
processing services for a number of web applications.
These applications involve data-intensive computation:
they are conducive to asynchronous parallel processing,
but their performance is limited by the available disk I/O
bandwidth. Their demands for CPU time are highly vari-
able, so it is sensible for them to share a pool of CPU
resources by submitting batch jobs. They also tend to
share data sets with one another, so it is sensible to share
a large data storage system. The application developers
have common goals rather than being in competition, so
it is beneficial to let them see the source code and results
of one another’s batch processing jobs. The applications
themselves may be maintained by different development
teams, so each application should run in its own indepen-
dent virtual machine.

We identify the following roles in the Free Factory en-
vironment. “Users” – scientists, physicians, and mem-
bers of the general public – are interested in a web service
and interact with it via a web browser. “Administrators”

maintain the Free Factory infrastructure. A “trustee” sets
policy and obtains funds to pay for staff, hardware, and
hosting. “Developers” are the application developers and
scientists who maintain Freegols. “Freegols” are web
services that utilize cluster computing and storage re-
sources. The term Freegol, or Free Golem, emphasizes
the idea that the web services are developed and main-
tained independently of the cluster infrastructure, and in-
dependently of one another.

The canonical Free Factory (Figure 1) contains about
five clusters with 12 to 48 nodes each. Some clusters
can be co-located with data acquisition engines such as
DNA sequencing instruments. Each cluster acts as a web
hosting platform for several applications, as well as sup-
porting the data storage and batch processing needs of
those applications. A Free Factory of this size can be
maintained by three administrators.

Each cluster is constructed using 1U rack-mount ma-
chines with big disks and inexpensive CPUs. Today, each
of these low-cost machines offers about 240 MB/s of disk
I/O bandwidth as well as 2 Gb/s of network bandwidth.
With data and processing resources striped across an en-
tire 48-node cluster with 192 disks, it is theoretically pos-
sible to achieve 11 GB/s of disk I/O during a batch job.
The two clusters we have built contain 85 and 38 disks
respectively. At 60 MB/s per disk this gives us 5.1 GB/s
and 2.2 GB/s of available disk bandwidth respectively.

We use virtualization to deploy cache, storage, and
batch processing services on every single node in each
cluster: CPU-intensive jobs can make use of every CPU
in the cluster, while data-intensive jobs can make use of
every disk. This layout allows us to achieve high I/O
throughput even while many concurrent processes are
working on the same data set. We have achieved as much
as 1 GB/s of I/O on a cluster with many concurrent pro-
cesses; this compares favorably with a 12-disk RAID-6
system, which we have to limit to a single reader in order
to achieve a sustained throughput of 100 MB/s.

On each machine, a “warehouse instance” runs the
processes that implement cache, storage, and batch pro-
cessing services. Warehouse instances are implemented
as virtual machines on the nodes that are used for host-
ing Freegols, and consume entire physical machines in
other cases. Each cluster manages its own cache, stor-
age, and batch processing services using a number of
controller processes that run in a virtual machine. Free-
gols and batch programs use the warehouse client library
to communicate with these controller processes and the
warehouse instances’ service processes (Figure 2).

2.1 Commodity hardware, free software

When building an affordable, high-availability, data-
intensive web service it is desirable to have control of the
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Figure 2: Dotted lines denote virtual machines. Batch pro-
cessing workers in warehouse instances are dispatched by the
batch controller on behalf of Freegols. RAM cache, disk cache,
and long term storage services are accessed by Freegols and
batch jobs using the same client library.

system’s total cost of ownership. Part of our strategy is to
avoid proprietary technologies in favor of free software.
This way, we can build on existing tools and have confi-
dence that we can replace or modify them when neces-
sary.

When choosing hardware, we are interested in maxi-
mizing the usable disk, RAM, CPU, and network band-
width per unit cost. At present dual gigabit ethernet, one
terabyte SATA disks, and dual-socket quad core mother-
boards seem to best fit our needs. (We prefer larger disks
even at a higher cost per gigabyte because disks have
high failure rates independent of size [2, 12, 23, 24] and
manual intervention is expensive even in a fault-tolerant
system.) Full-bandwidth 48-port switches are also avail-
able at low cost. Therefore, the most affordable way to
configure a large number of disks and CPUs today is to
build a number of 48-node clusters, interconnected by
relatively slow network links or virtual private networks.

Given the limited size of each cluster, scalability re-
quires that applications have access to more than just one
cluster. We expose the network topology to the appli-
cations so that they can make informed decisions about
where and when to perform computation, and where to
store data, depending on the varying availability of these
resources on different clusters. (Our intent is for future
client libraries to help applications make good schedul-
ing decisions; currently it is practical for a developer to
select one of our two clusters when running a job.)

Each cluster is self-contained; hardware and network
failures do not cascade to other clusters. The small clus-
ter size makes it feasible to deploy entire clusters at once,
rather than performing incremental upgrades to a large
cluster. Multiple clusters can be used to increase confi-
dence in the repeatability of computational results, and
to monitor the effects of different combinations of hard-
ware, software, and usage patterns.

To illustrate the cost of a Free Factory we consider
purchasing a 48-node cluster with 192 1 TB disks for
$170,000. Annual operating costs include $27,000 of
power (18 kW at $0.17/kWh), $25,000 for network ac-
cess and floor space (at the rate we pay at Harvard), and
$50,000 for a part-time administrator. Thus, the total cost
to deploy the cluster is $272,000 for the first year, and
$102,000 per year thereafter.

For a point of reference, we consider Amazon Web
Services, a popular computing platform that allows an
organization to pay for computation and storage on an
as-needed basis. This is often less expensive than us-
ing dedicated hardware because the cost of processing
is determined by average demand rather than peak de-
mand. However, for the data-intensive applications we
consider here, the strategy of frequently allocating and
releasing compute nodes is less beneficial because of the
time spent copying data to and from the nodes each time.
In effect, a CPU-on-demand system requires a higher al-
location rate in order to do the same work, compared to
a dedicated hardware approach where data is kept close
to the processors and can be read at full speed whenever
it is needed.

We overlook this distinction for the sake of making
a direct comparison with the Amazon EC2 and S3 ser-
vices [1]. Amazon EC2 offers an “extra large instance”
with two 1 TB disks and four virtual CPUs for $0.80 per
hour. Thus, a 48-node cluster is roughly equivalent to 96
extra large instances. If the cluster achieves 25% CPU
utilization, its value is comparable to 24 extra large in-
stances at $168,000 per year. Meanwhile, S3 provides
long term storage for $0.15/GB. At this rate, it costs an
additional $43,000 per year to store 24 TB of data (half
of the long term storage capacity of the cluster). The
actual amount of data transferred to and from S3 de-
pends on the application; if 15 TB is transferred to Ama-
zon at $0.10/GB, and 2 TB is transferred out of Ama-
zon at $0.17/GB, then the transfer cost is $1,840 (traf-
fic between EC2 and S3 is free). The total cost of the
Amazon service over two years is $424,000, compared
to $374,000 for the first two years of a Free Factory.

2.2 Freegols and virtualization

There are a wide variety of languages, toolkits and
methodologies for deploying scalable web services. One
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factor that contributes to Amazon EC2’s popularity is
that it permits web service developers to choose their
own tools. We found that giving developers this freedom
suited our environment too.

Virtualization encourages a model wherein develop-
ers have “root” privileges on their own virtual servers,
or Freegols. Typically, a Freegol is configured as an
Ubuntu server with common application server software
like Apache and MySQL. The warehouse client library
is easy to install and upgrade using the native package
manager. Our goal is to make it easy for developers to
start using Freegols to deploy services; part of this strat-
egy will be to port the Perl client library to other popular
languages like Python.

RAM, virtual processors, and network bandwidth are
shared among Freegols, cache and storage service pro-
cesses, and batch jobs. If necessary, a developer can en-
sure that a Freegol does not share these resources with
other Freegols by getting an allocation for all of the avail-
able CPU and RAM.

In addition to Freegols, it is often beneficial to set up
virtual machines on the cluster for applications that do
not use the cache, storage, or processing services. Clus-
ter administrators are likely to use virtual machines to
deploy common network services like web proxies, DNS
caches, and backup servers.

2.3 Cache and storage services

The objectives of our storage services are to: (1) min-
imize I/O bottlenecks in order to make the best use of
available CPU cycles; (2) provide a low-latency shared
cache with automatic garbage collection; (3) provide
long term storage with high read and write throughput
and provisions for usage accounting. The storage ser-
vices must yield good performance when used directly
from Freegols, as well as from batch jobs. Inspired by the
Google File System [13], Bigtable [6] and the plethora
of raw materials made possible by free and open source
software, we felt we could build a system that suited our
needs perfectly.

We implement a three-level content addressable stor-
age service. We use Memcached [9] as a low latency
RAM cache. This is well suited to small strings (less
than one megabyte) and it works well even with many
concurrent clients because it does not employ a central
controller. We use MogileFS [9] to implement a cluster-
wide distributed disk cache. This gives good perfor-
mance for block sizes up to 64 MiB. For long term stor-
age we have developed software that minimizes the role
of a central controller while providing opportunities for
usage accounting. All of these storage and cache ser-
vices are accessible to all applications and batch jobs in
the Free Factory.

Aggregate I/O bandwidth is limited by several factors.
Our storage services are designed to minimize the effects
of these factors.

1. Disk seeks reduce aggregate disk read and write
bandwidth. We minimize seeks by storing data in
contiguous 64 MiB segments when possible, and
ensuring that each segment read/write operation is
not interrupted by any other disk activity. This
means that readers tend to wait longer before they
start to receive data, which is why general purpose
operating systems do not use this strategy; however,
in this environment, high throughput is more valu-
able than low latency.

2. A gigabit network interface can only handle two
concurrent readers at full disk transfer rates. To
prevent this from limiting throughput when many
concurrent processes are accessing the same data
set, we stripe every data set across all of the clus-
ter nodes.

3. Central controllers get bogged down when they try
to handle too many concurrent clients. Our storage
service can read and write blocks without involving
the storage controller in real time. Our disk cache is
indexed in RAM, so most reads do not involve the
controller.

4. Writes are slow because robustness requires storing
multiple copies of each block. When an identical
copy of an output block already exists in the stor-
age service, our content-addressing approach allows
the client library to transparently skip unnecessary
write operations.

The cache and storage services use an MD5 addressing
approach: the name of each block of data is the MD5
checksum of the data. This naming scheme provides sev-
eral benefits.

1. The client library, when retrieving a block from
the cache and storage services, computes the MD5
checksum of the data and compares it with the block
name. If the checksum does not match, the client li-
brary can try to fetch the data from a different host,
a different storage service, or a remote cluster. This
verification process is completely transparent to the
application.

2. Multiple jobs often produce the same output. For
example, a Freegol may re-run a job every time the
job’s source code is modified in the source reposi-
tory, and every time an operating system upgrade is
performed, to make sure the job still produces the
same result. If the output is identical to the pre-
vious run, no additional storage space is consumed

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association394



by the new job. We encourage developers to make
use of this property by segregating their main out-
put from their diagnostic messages (which are likely
to contain timestamps and the like, but are usually
small) and by avoiding non-deterministic outputs
(sometimes this involves simple tricks like using the
“Minimal” option in the IO::Compress::Gzip
Perl module).

3. Freegols and concurrent batch jobs can share data
without worrying about overwriting blocks at inop-
portune times.

Our simple tests have demonstrated that reading 64 MiB
files sequentially results in throughput exceeding 90% of
a disk’s maximum sustained transfer rate. Real data used
by Freegols, on the other hand, is likely to include many
smaller files. To help Freegols achieve high throughput
when working with smaller files, we introduce a “mani-
fest” file format. In addition to increasing performance,
the manifest format is a valuable tool for managing large
data sets.

A manifest is an index to a collection of data files,
analogous to a directory tree in a traditional filesystem.
It is stored as a plain text file. Each line of the text file
represents a “stream”; each stream contains a set of data
files. The content of the data files is stored in a man-
ner similar to a UNIX tar archive: the data from all
files in a stream are concatenated, the result is split into
64 MiB blocks, and the blocks are written to cache or
storage. The manifest file specifies the MD5 checksums
and sizes of these data blocks, as well as the names of
the individual files and their positions within the stream.
The manifest file itself can be split into 64 MiB blocks
and stored, and its unique key – the list of MD5 check-
sums of those blocks – can be used to retrieve it. (If this
list of checksums is inconveniently long, the list itself
can be stored in a separate block, whose MD5 checksum
then serves as a more concise key to the large manifest.)

This manifest format has several noteworthy features.
It is concise: a short key is enough to specify a large
collection of data. It is portable: if two jobs running on
different clusters produce identical output, the resulting
manifest keys are also identical. The integrity of the data
blocks, and the manifest itself, are easily verified. It is
efficient to read an entire stream worth of data from disk,
even if the stream represents many small files. However,
random access – reading and writing small files in var-
ious streams out of order – is not efficient. We expect
applications to be cognisant of this restriction, and read
and write entire streams whenever possible.

Once a manifest is written to the cache or storage ser-
vice, it can be retrieved, or used as the input to a batch
job, by any Freegol that knows its key. Also, each clus-
ter has a central database of manifest names. To attach a

name to a manifest, a Freegol sends a request to the clus-
ter’s storage controller specifying the manifest key, the
desired name, and – to avoid race conditions – the man-
ifest key that was previously associated with the name.
Naming a manifest has several consequences.

1. Any Freegol can look up the name to retrieve the
manifest key.

2. The data set is considered to be valuable to the
signer. If the blocks referenced by the manifest are
in long term storage, those blocks should not be
deleted.

3. The old manifest, if it is not associated with any
other names, is no longer considered valuable; the
data blocks mentioned in it may be deleted if they
are not mentioned in any other named manifests.

Optionally, a Freegol may also specify a list of PGP keys
indicating entities that have permission to overwrite this
manifest name.

One drawback to content-addressable storage is that
in-place updates are inefficient. For example, if a 32 MiB
stream is written, and a new version of the stream is
written afterward that has 16 MiB of additional data ap-
pended to the original 32 MiB, then both the 32 MiB
version and the 48 MiB version may be written to disk.
We find this acceptable for the following reasons. The
manifest format allows the 48 MiB stream to be stored
by referencing the original 32 MiB block followed by
the new 16 MiB block, if the existence of the 32 MiB
block is known when the second version is written. In
any case, we are willing to sacrifice some storage space
in order to avoid race conditions.

This illustrates one of the useful aspects of the mani-
fest format. A manifest key specifies the data itself, not
just a set of filenames. If a modified version of a large
data set appears, the previous key can still be used to ac-
cess the old data, and a program requesting the original
version will never unexpectedly receive the newer data.
This simplifies application design, and provides a signifi-
cant practical benefit for scientific applications and other
environments where repeatability is of major concern.

Periodic garbage collection is inexpensive. The stor-
age controller can quickly read all of the manifests that
appear in the manifest name database, and produce a list
of blocks that are still in use. The 64 MiB block size
ensures that the resulting list is small compared to the
amount of stored data. Garbage collection is accom-
plished by comparing this list against the list of blocks
stored on disk. We have not yet implemented auto-
matic garbage collection but we have found that a list of
588,000 distinct block names, representing 11 TB of data
referenced by 1151 distinct manifests, can be generated
in 70 seconds.
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2.4 Batch processing services

The objectives of our batch processing services are to:
(1) use as many as possible of the available CPU cycles
on all machines; (2) make it easy to repeat jobs many
times on various clusters to check for bugs and incon-
sistencies; (3) handle occasional failures gracefully; (4)
keep statistics about performance and failure rates.

Batch processing is coordinated by a batch controller
on each cluster. The batch controller accepts requests
from Freegols to schedule new jobs. The batch con-
troller starts new jobs when the requested number of
warehouse instances become available. Freegols can ex-
pect the batch controller to occasionally pause and re-
sume a job, or reduce its resource allocation, depending
on subsequent job submissions. (Our current implemen-
tation uses a simple greedy scheduling algorithm, and
the batch controller only pauses and resumes jobs when
specifically requested by a Freegol.)

Freegols can retrieve a list of current, pending, and
previous jobs from the batch controller. This list includes
specifications and statistics for each job, including in-
puts, outputs, start and finish times, and (for active jobs)
what portion of the job has been completed so far. Free-
gols can poll the batch controller to determine the status
of their own jobs, get hints about how busy the cluster
is, and look up details of jobs that other Freegols have
submitted.

The execution of a batch job is supervised by a job
manager process running on the same virtual machine as
the batch controller. The job manager supports a compu-
tation strategy similar to MapReduce [11]. Each job con-
sists of a number of steps, each of which is performed on
a single warehouse instance. Each job step stores some
output in the cache; the job manager assembles the out-
put into a manifest at the end of the job. Additionally,
each job step has the ability to enqueue more job steps.

The program that performs the work of a single job
step is called a “mr-function” (from “MapReduce func-
tion”). Mr-functions are kept in a revision control sys-
tem. Administrators and developers can update existing
mr-functions and create new ones, subject to access con-
trols on the revision control repository. Once it is com-
mitted to the repository, a mr-function can be used in a
job submission by any Freegol.

The most convenient way to construct a batch job is to
use a single manifest as input, and schedule one job step
for each stream in the manifest. Each job step reads one
full stream from the input manifest from start to finish,
and writes one full stream in the output manifest. The
client library comes with tools and examples to make it
easy to write mr-functions that use this strategy.

Figure 3: On each cluster, a few physical machines run the
Xen hypervisor (mixed dark/light gray blocks). These ma-
chines are partitioned into warehouse instances, Freegols, and
other virtual machines. Other physical machines are dedicated
to warehouse instances (dark gray only).

3 Implementation

3.1 Commodity hardware, free software

We are currently operating two clusters using a variety
of commodity off-the-shelf hardware, free software such
as GNU/Linux [14] and our own custom software that is
released under the GNU GPL [16]. Our two clusters are
located a few kilometers apart and connected by Harvard
University’s fiber optic network. “Uncle” is our exper-
imental research cluster; “templeton” is our production
cluster. Our clusters are depicted in Figure 3. Uncle
is largely made up of 32-bit dual-CPU Intel Xeon ma-
chines, many of which are four years old. Templeton’s
hardware is more recent: each machine has two dual-
core AMD Opteron 64-bit processors.

Each cluster consists of 47 machines. All newer ma-
chines have four disk slots and the older machines are
diskless. Each newer machine has two gigabit ether-
net ports, which are connected to two 48-port gigabit
switches. Two to four “headnodes” have a third ethernet
port connected to the upstream switch, and optionally a
fourth port connected to an out of band management net-
work. The headnodes act as gateways to the internet and
as VPN endpoints.

Our VPN is a simple OpenVPN [22] point-to-point
setup, terminated on a headnode at each end. The VPN
data rate reaches about 200 Mb/s. Throughput is lim-
ited by the processing speed of one endpoint that has
one dual-core Opteron 265 CPU at 1.8 GHz. The other
endpoint has 2 single-core Opteron 250 processors at
2.4 GHz; CPU load is considerably lower there.

Uncle currently runs the latest release of Ubuntu [5],
a popular flavor of the Debian [27] GNU/Linux system
that many lab members run on their desktops, while
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Templeton runs the latest “long term support” release
of Ubuntu. We chose Ubuntu over Debian because of
Ubuntu’s predictable six month release schedule, but we
expect to build a Debian cluster in the future. We like
the Debian and Ubuntu philosophy and have found that
packaging our software using Debian/Ubuntu tools to be
a good way to automate the installation of the client li-
brary and its dependencies. We believe that inclusion in
major community projects, such as Debian, is an excel-
lent way to both reach a wider audience and to further
improve our installation automation. Ultimately, we aim
to be distribution agnostic.

The latest machines that we purchased came pre-
installed with coreboot [8], a free software BIOS that has
a number of advantages over proprietary alternatives. All
source code is open and available under the GPL. Serial
console support is reliable. Boot time is much faster:
coreboot takes only a few seconds to bring the machine
into a state where it can start booting the operating sys-
tem. Also, we can exactly configure the platform to our
needs, which allows us to make the platform both more
reliable and more secure.

We use Opengear [21] CM4148 console servers on
each cluster for out-of-band access to the serial con-
sole of each physical machine. The Opengear console
servers are embedded Linux machines for which the en-
tire source code is available for download. The company
provides instructions for modifying the firmware, and for
building the firmware from source. We also use net-
worked power distribution units to allow remote power
cycling of any device in the cluster via our out-of-band
management network.

Aside from the Linux kernel, our software relies on
many other open source packages. Notably, Slurm and
Munge [18] provide authenticated inter-process commu-
nication between the warehouse instances and the batch
controller. We rely on Slurm to track which warehouse
instances are available for running jobs, and to allow the
batch controller to execute batch job steps on the ware-
house instances. It does this well, with low latency. It
is also a convenient tool for administrative tasks like
installing packages and updating configuration files on
many instances at a time.

Memcached and MogileFS [9] provide the RAM and
disk cache services respectively. MogileFS provides dis-
tributed storage with low-latency replication. Used in
conjunction with Memcached, it performs well as long
as there are not too many concurrent writes.

Perl modules from CPAN are used by the client library,
controllers, and service programs for HTTP request han-
dling, data compression, and MD5 hashing. The batch
controller uses a MySQL database as a job queue and an
archive of past jobs. Subversion provides revision con-
trol for the programs that run in the batch processing sys-

tem, as well as the client library and the service software
itself.

3.2 Freegols and virtualization

Some physical machines are configured as warehouse in-
stances, dedicated to providing processing, cache, and
storage services. Others are partitioned into virtual ma-
chines using the Xen hypervisor – always with one vir-
tual machine configured as a warehouse instance, along
with one or more Freegols and other virtual machines
controlled by the cluster administrators.

To keep configurations simple, we set aside 4 GiB of
RAM on each warehouse instance for use in batch jobs,
and allocate the remainder to Memcached processes.

On virtualized machines and dedicated warehouse in-
stances alike, we use RAID-1 to protect all of the local
filesystems. We have found that dedicating two entire
disks to RAID-1 results in an excess of RAID-protected
space. It is wasteful to allocate that space to the storage
services, which can already accommodate disk and node
failures without RAID-1. Linux allows us to partition
the first two disks, assign one partition on each to a soft-
ware RAID-1 array managed by the Linux Volume Man-
ager, and allocate the remaining space to the MogileFS
cache. This is more efficient than whole-disk mirrors,
but it still forces us to commit to a partitioning scheme
early on. Different permutations of Linux RAID and vol-
ume management tools could give us greater flexibility,
but we have chosen to avoid the extra complexity that
would result. In the future we hope iSCSI will provide
more flexible options without creating too much work for
administrators.

Developers, and some of their users, have access to
shell accounts on their Freegols. Our security model is
largely perimeter-based at this point, because our users
are relatively trustworthy. Specifically, a cluster has
one virtual machine with an unprivileged account that
is shared by all users. To connect to the SSH port on a
Freegol, a user must log in to this shared account using an
SSH private key, and specify the name of the Freegol in a
remote command string. The authorized_keys file
in the shared account instructs the SSH server to ignore
the client-supplied command and instead run a script that
establishes a tunnel to the requested Freegol (the SSH
server makes the supplied Freegol name available in an
environment variable). Before establishing the tunnel,
the script checks a list of permitted combinations of SSH
public keys and Freegols. This login procedure is easy
to express in a ProxyCommand directive in the user’s
SSH client configuration file.

Virtual machines are used for deploying DNS caches
and servers, an SMTP server for routing incoming mail,
and a local Ubuntu mirror site. One virtual machine runs
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Figure 4: On a physical machine that is running several vir-
tual machines, a software RAID-1 volume is exported to the
Linux logical volume manager, which provides space for local
filesystems. The remaining portions of the first two disks are
used by the disk cache service. The third and fourth disks are
dedicated to the cluster’s long term storage service.

a dedicated reverse HTTP proxy. All HTTP and HTTPS
traffic to the cluster is forwarded by the headnode to this
proxy, which forwards each request to the appropriate
Freegol and returns responses to the clients.

Since Harvard routinely receives high volume web
traffic, we tested whether our setup can also support a
high volume web service. We configured the virtual
machine running our reverse proxy server with moder-
ate resources: four shared Opteron 265 cores and 1 GiB
RAM. We then launched 2,000,000 requests at the proxy
server (with keepalive disabled to simulate a worst-case
scenario), with 500 simultaneous requests each coming
from two physical machines on our LAN. All requests
were handled without errors and completed in 657 and
660 seconds on client 1 and 2 respectively. The mean
time to complete a request was 0.3 seconds. Both clients
completed 90% of requests within 0.2 seconds, and 99%
of requests in 4.5 seconds. The slowest request from
client 1 was completed in 93 seconds while the slow-
est request from client 2 was completed in 107 seconds.
During this test, a few of us continued to use other Free-
gols from multiple points on the Internet and found no
perceptible difference in response times. We conclude
from this that a Freegol on our cluster can withstand pop-
ularity spikes without adversely affecting other Freegols.

The cache, storage, and processing services involve
several databases and controller processes, which we run
on a single virtual machine. It would also be possi-
ble to distribute these processes across several virtual
machines; we have not thoroughly explored the perfor-

mance implications of this choice.
Developers frequently benefit from having separate

“development” and “production” Freegols for a given ap-
plication. The virtualization approach makes it easy for
us to deploy these quickly at minimal cost.

3.3 Cache and storage services
The cache and storage services consist of three software
layers (RAM cache, disk cache, and long term storage),
a manifest name server, and a client library that is used
by Freegols and batch jobs.

The client library contains most of the intelligence. It
helps applications split and combine data into 64 MiB
blocks; it chooses RAM or disk cache for different block
sizes according to tunable settings; it constructs hashes
when storing data; it avoids writing blocks to cache if
they are already present; it stores each block on multiple
warehouse instances when writing; and it constructs and
parses manifests.

The client library is built on the assumption that all of
the underlying storage services are unreliable. It verifies
data integrity during retrieval operations. It attempts to
retrieve blocks from alternate sources when data is cor-
rupted or missing.

The aim of the storage services is to maintain the high-
est possible aggregate throughput when reading and writ-
ing blocks.

Our RAM cache uses Memcached. The Memcached
client library and servers implement a distributed shared-
nothing hash table. Requests for a name are mapped to
weighted buckets by the Memached client library, and
then fulfilled by the Memached server. We use the de-
fault library, which permits rehashing of blocks in the
event that a server becomes temporarily unavailable, but
requires that the entire cache be flushed if bucket sizes or
the number of nodes change. In our system, such cache
flushes should not be common because we deploy clus-
ters with a fixed number of nodes by design. Memcached
has a built-in limit of 1 MB for each data block, and
our client library uses this as the default maximum size
for cached items; however, if the application specifies a
larger limit, the client library transparently splits larger
blocks in 1 MB chunks when storing, and reassembles
them when retrieving them.

The disk cache service is implemented using
MogileFS. MogileFS uses a MySQL database to store
the locations where each file is stored. This sin-
gle database quickly becomes a performance bottleneck
when it is accessed for every cache read and write opera-
tion on the entire cluster. Our client library alleviates this
problem by using Memcached to cache the file locations:
as a result, most read operations do not involve querying
the MySQL database.
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For long term storage, we implement a simple service
called Keep. Each warehouse instance with long term
storage space runs a network server that accepts HTTP
“GET” and “PUT” requests. The client library is respon-
sible for replication, fault tolerance, and load balancing
as described below.

A “PUT” request is a signed request to copy data from
cache to long term storage. The Keep server fetches the
data itself from the local cache or from a remote cluster,
according to the hints that come with the request. This
approach is very efficient in the case where applications
first store a lot of data in the disk cache, and later choose
to keep some of that output in long term storage. This
case has turned out to be so common that we have not
yet implemented an operation that writes directly to long
term storage.

When a “PUT” request results in a disk write, an
accounting entry is also recorded, with the requestor’s
IP address and cryptographic signature. Currently, the
server does not verify the signature because this has not
been necessary in our environment, but it does demand
that each request arrive in the form of a PGP signed mes-
sage. It also records a timestamp and the full text of
the request; and it requires that the message include a
timestamp within 5 minutes of the server’s system clock.
We do not expect the overhead of checking signatures to
cause an inordinate performance burden because of our
large block size.

The client library uses MD5 checksums of data blocks
to distribute them evenly among the available Keep
servers. First, we specify that a given cluster has a fixed
number of servers (there should be one on each cluster
node). For a given block of data, we define eight pre-
ferred storage positions, derived from eight substrings
of the block’s 128-bit MD5 checksum: portions of the
checksum are used to compute a list of eight different
Keep servers, and these Keep servers are tried one by
one until enough copies have been written.

When a block has been written to Keep, the client
library notes which of the eight preferred Keep nodes
were used, and encodes this information as a hexadec-
imal number, where the least significant bit corresponds
to the first preferred storage position. The block loca-
tion is given as the letter “K” (from “Keep”) followed
by the hexadecimal number, the symbol “@”, and the
name of the cluster. For example, if a block is stored on
the templeton cluster using the second and third servers
in the probe order, the list of locations is encoded as
“K06@templeton”. This string, along with the size
of the block (an unusually short 3 byte block in this case)
are appended to the MD5 checksum using the delimiter
“+”:

acbd18db4cc2f85cedef654fccc4a4d8+3+K06@templeton

This resulting block name, stored in a manifest, provides
enough information for a Freegol or a batch job to re-
trieve the block, regardless of which cluster it is stored
on.

This notation provides an opportunity to support other
storage systems – for example, “S” might designate
blocks stored using Amazon’s S3 service – and to cite
multiple clusters and storage systems, when a block is
stored in multiple locations.

A “GET” request is much like a request for a static
HTML page: the MD5 hash provided in the client’s re-
quest is the name of the disk file where the data is stored
on the server. A Keep server may have up to four disks
available for long term storage; in that case, it may have
to perform four directory lookups in order to locate a file.

The storage controller maintains a database of mani-
fest names and keys in a MySQL database. Any Freegol
can connect to the storage controller’s “warehoused” net-
work server program and retrieve the key currently asso-
ciated with a given name, or the entire list of names and
keys. A Freegol can also submit a signed request to up-
date the database by changing the key for a given name,
or adding a new name. Currently, the “warehoused” pro-
gram does not verify signatures of these requests because
this has not been necessary in our environment, but it
does demand that each update request arrive in the form
of a PGP signed message, and that the Freegol correctly
specify the key currently associated with the name.

The client library includes functions for reading and
writing blocks to the cache and storage services. The li-
brary also provides convenient functions for constructing
manifests while storing data, reading streams and indi-
vidual files from an existing manifest, looking up man-
ifest keys by name, and updating the name database.
Command line tools are provided for submitting jobs,
looking up details of current and completed jobs, read-
ing and writing data sets, and copying data sets from one
cluster to another. These programs also serve as exam-
ples of how to use the client library.

The warehouse client library makes it convenient for
Freegols and batch jobs to read and write data on re-
mote clusters as well as the default local cluster. We
provide this flexibility – rather than requiring data to be
explicitly copied from cluster to cluster using a separate
mechanism – for several reasons. It allows applications
to achieve various levels of data redundancy, either syn-
chronously or asynchronously, according to their needs.
It supports the convenience of running jobs on remote
clusters without arranging for all of the required data to
be copied ahead of time. Generally, it follows the trend
of doing a reasonable thing by default while offering the
flexibility to accommodate the diverse needs of a variety
of applications.
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3.4 Batch processing services

The “warehoused” program accepts signed job submis-
sions from Freegols, and answers queries about pre-
viously submitted jobs. The “mapinit” program starts
queued jobs when instances become available, using
Slurm’s salloc command to reserve warehouse in-
stances. At the start of each job, the “mrjobmanager”
program first retrieves the specified version of the appro-
priate “mr-function” from a Subversion repository, then
invokes it on one of the allocated warehouse instances.
The mr-function examines the input object (normally a
manifest) and instructs mrjobmanager to queue a num-
ber of job steps.

During the course of a job, mrjobmanager allocates in-
dividual job steps to warehouse instances, monitors their
output and exit codes to detect failures, and re-queues
them when they fail. Each job step is expected to store
some output blocks and send the blocks’ names to mr-
jobmanager by printing them to its standard error file de-
scriptor. When all job steps have completed, mrjobman-
ager reads these blocks and assembles them into a final
output stream. This final output stream is expected to
be a manifest, although this is not enforced. Finally, the
database table is updated to reflect the output key (ie., a
list of output blocks) and the time when the job finished.

While a job is running, mrjobmanager keeps the job
table updated with the number of job steps in progress,
finished, and remaining. These figures can be retrieved
by any Freegol from the batch controller, and displayed
to users as a progress indicator.

Order of execution and output assembly is controlled
by job step numbers and level numbers. Step numbers
begin at zero and are assigned sequentially by mrjobman-
ager; in the final stage of mrjobmanager the step numbers
determine the order in which the job steps’ output frag-
ments are assembled into the final output stream. Level
numbers can be used by mr-functions to control the order
in which job steps are scheduled: a job step with level L
will never begin until all job steps with level less than L
have completed. Each job step can also be given a short
input string; this can be used by the mr-function to keep
track of which portion of the job each step is expected to
compute, in case the job step number itself is not conve-
nient for that purpose.

Typically, a mr-function completes step 0 by reading
its input manifest and submitting one new job step for
each stream in the manifest. Each of these job steps will
read the input stream data, write output data in the form
of a stream, store the stream description (one line of the
manifest) as a short block in the cache, and report the
hash of this short block to the job manager. When all job
steps have finished, mrjobmanager looks up all of the in-
dividual job step hashes and assembles them, ordered by

job step number, into one final output manifest. This fi-
nal assembly step is inexpensive because it only involves
lists of hashes and filenames; the job manager does not
read or write any of the output data itself.

4 Applications and results

4.1 Freegols
We have implemented a few sample applications that
demonstrate the warehouse client library and allow us to
characterize performance.

The Genomerator application is a storage/publication
service. It currently allows users to browse and download
images from a 300 gigabyte PMAGE data set [17]. In in-
teractive mode, it converts images from TIFF to JPEG
format and applies an ImageMagick “normalize” opera-
tion to increase contrast. This does not involve any batch
processing, and the data set could have easily fit on a sin-
gle disk; however, implementing the service as a Freegol
gave us features like mirrored disks and scalability using
existing hardware and staff resources.

The Regol application continuously re-schedules pre-
viously completed batch jobs when the cluster is idle,
using the same inputs and parameters but substituting the
current revision of the relevant mr-function. This helps
us notice bugs as they are introduced into the source
code repository. It is also a good source of information
about performance characteristics of mr-functions, hard-
ware configurations, and resource usage patterns. Regol
is deployed on our “templeton” production cluster and is
able to view and submit jobs on both clusters.

The Administrator web interface provides a generic
job submission and monitoring interface. Users can se-
lect a mr-function and revision number, choose an in-
put manifest from the list provided by the storage con-
troller, and specify tunable parameters specific to the mr-
function. Each of our clusters has its own Administrator
web interface.

4.2 Mr-functions
The mr-functions we have implemented are generally
concerned with problems in bioinformatics, specifically
low cost DNA sequencing. Here we present some sim-
pler applications that give a rudimentary illustration of
the platform. Timing results from two of these can be
found in Figure 5.

“mr-pivot-images” reads a manifest with F images
(one per frame position on a slide, typically about 2000)
in each of C streams (one per imaging cycle, typically
about 75) and outputs a manifest with C images in each
of F streams. The structure of the input data is deter-
mined by the image acquisition process; the output struc-
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Figure 5: Timing figures from the templeton cluster show
the effect of concurrency on per-process I/O speed. Mr-pivot-
images shows diminishing returns as more instances are allo-
cated: the data is read from the same set of disks regardless
of allocation, and job speed is limited by the disk cache ser-
vice’s ability to handle many concurrent readers. In contrast,
mr-align-call’s performance is nearly linear with larger node
allocations.

ture is suitable for image alignment and analysis. This is
a relatively inefficient operation because each of F job
steps reads pieces from each of C streams. It performs
3.3 terabytes of I/O on our 300 gigabyte input data set.
We will certainly want to optimize this if we intend to use
it frequently; meanwhile it provides a convenient way to
measure a cluster’s performance under heavy I/O load.

“mr-aligncall” reads each stack of images produced by
“mr-pivot-images”, analyzes and compares the images
according to tunable parameters, and outputs short seg-
ments of DNA sequence as strings of A, C, G, and T
characters.

“mr-zhash” uncompresses its input (if compressed),
computes hashes for individual files, and outputs text
files similar to the output of the Linux “md5sum” com-
mand line tool. It is useful for determining whether two
compressed data sets are equal when decompressed.

“mr-copy” writes a copy of a data set read from a re-
mote cluster (to make subsequent computation faster) or
from the local cluster (to verify that all data is readable
and passes checksum verification).

As the “mr-pivot-images” example suggests, we have
found that the speed of an I/O-limited function is highly
dependent on how closely the mr-function’s operation
corresponds to the way the data is arranged in the in-
put manifest. Ideally, each step in a batch job reads all
of its input data from a single stream, in the exact order
in which it is processed. In the case of “mr-aligncall”,
this is easy to achieve because 2000 stacks of 75 2 MB
images are processed by 2000 independent job steps. In
contrast, for subsequent stages of our DNA sequencing
applications, we spend much of our effort finding effi-
cient ways to perform operations that are conceptually
similar to “mr-pivot-images”. In this sense, the manifest
format is an expression of the performance characteris-
tics of the storage service: if we design our workflows to
cater to the structure of manifests, then we get the best
performance from our system.

4.3 Storage tools

We use two command line tools to move data back and
forth between the storage service (or cache) and a Free-
gol’s local filesystem. “whput” copies a UNIX filesys-
tem tree to the cache, stores the resulting manifest in the
cache, and optionally attaches a name to the manifest
via the storage controller. “whget” fetches a manifest
from storage, downloads the blocks, computes the MD5
checksums of the individual files, and optionally writes
the files to the local filesystem. These tools – and the
warehouse client library in general – can be used from
any host with access to TCP/IP ports on the warehouse
instances, such as an administrator’s workstation.

“whget.cgi” provides a web interface to the con-
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Figure 6: “Regol” helps us notice problems by re-submitting
selected jobs when the cluster is idle. This graph shows two
different jobs being repeated. Solid shapes indicate successful
jobs. Hollow shapes indicate failures. Dashed lines indicate
commits to the Subversion repository. If a string of failures
begins at a vertical line and ends at another vertical line, it is
most likely that the failures were caused by an errant commit.

tents of a manifest. It allows users to view filenames
and sizes, click individual files to download them, and
download the manifest file itself. Along with Apache’s
mod_rewrite module, this makes it easy for a devel-
oper to selectively publish individual data sets.

4.4 Performance and reliability
In Figure 6 the repeatability of two jobs, “mr-raw” and
“mr-jp2”, is illustrated. These jobs are running simulta-
neously; they perform approximately one terabyte of in-
put and output in each pair of runs. The “jp2” job uses the
lossless JPEG2000 format to compress the image data
and is CPU intensive. The “raw” job is primarily limited
by I/O. By inspection it is clear that the cluster achieves
more than 400 MB/s of I/O: 1 terabyte in total, divided
by 2500 seconds for the slower job.

To futher explore the aggregate I/O and computational
capacity of both clusters, we ran a selection of “mr-
zhash” cryptographic hash functions concurrently with
the “mr-pivot” function described above. The input to
mr-zhash is compressed data; in each job, the amount of
data processed is over 100 times the amount read from
cache. This mixture of computation-intensive and I/O-
intensive work was repeated over a 16 hour period, using
42 instances on each cluster. Over the 16 hour period,
“mr-zhash” processed 102 TB of uncompressed data
(1.5 GB/s on 12 templeton instances, 380 MB/s on 12 un-
cle instances) while “mr-pivot-images” performed 74 TB
of I/O (1 GB/s on 30 templeton instances, 290 MB/s on
30 uncle instances).

In the above test, we ran “mr-zhash” in sets of twelve
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Figure 7: Mean time to read, uncompress, and run various
checksum algorithms on 5.5 GB of compressed images, using
an allocation of one warehouse instance per job on a busy clus-
ter. Black bars represent jobs with the default client library con-
figuration; hollow bars show the effect of disabling the RAM
cache. Execution time is less predictable on uncle: some nodes
are much slower than others, and the allocation of nodes to jobs
is not random, so we see artifacts in the first graph. Temple-
ton’s hardware is faster and more uniform; this is reflected in
the second graph.

concurrent jobs – for each of six hash functions, one job
with the RAM cache enabled, and one without. The re-
sults are shown in Figure 7.

Many of our design features are responses to lessons
we have learned while using our two prototype clusters.
For example, because we allocated space for cache on
all of our disks before deploying the storage service, the
storage service still shares disks with the cache. As a
result, the storage service cannot serialize disk accesses.
Our disk cache itself was deployed by adding a few disks
at a time. This resulted in a poor distribution of data.
The manifest used in the “mr-pivot-images” example has
50% of its blocks stored on only 22 disks. As we dis-
cussed above, performance suffers when a small num-
ber of disks are accessed by a larger number of concur-
rent processes. It is also noteworthy that even with four
concurrent readers on one node, we currently achieve
only 75 MB/s of I/O. We have verified with the UNIX
find program that blocks read in 64 MiB chunks can be
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read from the file system at 60 MB/s. We have verified
with the iperf program that our network can sustain
100 MB/s. Although we have only reached 75% of this
limit, rather than the 90% we set out to achieve, we look
forward to deploying a new cluster with a properly bal-
anced disk cache and segregated disks for storage. Even
if the storage service never surpasses 75 MB/s per node,
we are confident that we can achieve 4-8 GB/s of aggre-
gate I/O.

4.5 Utilization

Between November 2007 and March 2008 we completed
460 million seconds of computation (18% utilization) on
templeton and 600 million seconds (24% utilization) on
uncle. During this time we accumulated 30 TB of data in
cache on templeton (consuming 60 TB, 98% of the disk
space allocated to the cache service) and 10 TB of data
on uncle (consuming 20 TB, 73% of the space allocated).
The two clusters consist of new and old hardware costing
$150,000 in total. Annual costs include $25,000 for floor
space, power, cooling, and network service, and about
$50,000 for staff costs.

If we had paid for this CPU time on a per-second ba-
sis at the rate charged by Amazon’s EC2 for comparable
instances – $0.80 per hour for an extra large instance per
node, $0.20 per hour for two small instances for each of
the 36 older uncle nodes – this would cost $96,000 per
year. Storing an average of 20 TB of data for the du-
ration would cost an additional $36,000 per year, at the
Amazon S3 rate of $0.15 per GB per month.

We can also consider the cost of the time spent copying
data between S3 and EC2. Amazon does not specify the
usable bandwidth between S3 and EC2, but if we assume
that it is a very low 2 Gb/s, it costs $41 to keep 47 EC2
nodes active while copying 1 TB of data from S3 to EC2.
If our 25% utilization rate comes from working on 1 TB
of data for one day every four days, the annual transfer
cost is less than $4000 per cluster. This cost is even lower
if the available bandwidth is more than 2 Gb/s, which is
likely. Therefore, in most cases we expect this transfer
cost to be negligible compared to the cost of computation
time and storage space.

At these rates, our two clusters will take three years
to break even with an Amazon EC2 and S3 implemen-
tation. The discrepancy between these figures and those
given in section 2.1 is a reflection of the lower number of
CPU cores per node in our older hardware, as well as our
low hosting costs. Even with this older hardware, a uti-
lization level of 25% is enough to bring the break-even
point down to two years.

5 Future Directions

For our projects – and we believe this is true for others
too – it is difficult to budget for computation and stor-
age needs. How much we want depends on how much
it costs. A platform for universal personalized medicine
should permit individuals to form small communities that
suit their own needs, while retaining much of the econ-
omy of scale available to much larger communities. We
believe that this can be achieved by building a highly de-
centralized global network of Free Factories that allocate
underutilized resources through market mechanisms.

Others have explored the possibility of capturing mar-
ket signals from users and we believe this is an attractive
way to allocate resources for our applications in the long
term [4, 10, 26]. Since we have control of our architec-
ture from the hardware up, we hope that implementation
and experimentation with such mechanisms will be pro-
vide an opportunity for fruitful future research.

Finally, in the spirit of free and open source software,
we hope others will deploy Free Factories of their own
for applications we have never imagined.
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