
Perspectives: Improving SSH-style Host Authentication with
Multi-Path Probing

Dan Wendlandt David G. Andersen Adrian Perrig
Carnegie Mellon University

Abstract
The popularity of “Trust-on-first-use” (Tofu) authentica-
tion, used by SSH and HTTPS with self-signed certificates,
demonstrates significant demand for host authentication
that is low-cost and simple to deploy. While Tofu-based
applications are a clear improvement over completely inse-
cure protocols, they can leave users vulnerable to even
simple network attacks. Our system, PERSPECTIVES,
thwarts many of these attacks by using a collection of “no-
tary” hosts that observes a server’s public key via multiple
network vantage points (detecting localized attacks) and
keeps a record of the server’s key over time (recognizing
short-lived attacks). Clients can download these records
on-demand and compare them against an unauthenticated
key, detecting many common attacks. PERSPECTIVES ex-
plores a promising part of the host authentication design
space: Trust-on-first-use applications gain significant at-
tack robustness without sacrificing their ease-of-use. We
also analyze the security provided by PERSPECTIVES and
describe our experience building and deploying a publicly
available implementation.

1 Introduction
Despite decades of research into techniques for establish-
ing secure communication channels for networked applica-
tions, many of today’s popular protocols remain vulnerable
to Man-in-the-Middle (MitM) attacks. Some applications
provide no security whatsoever (e.g., HTTP), and others
rely on self-signed keys or Diffie-Hellman-like key ex-
change that can protect against eavesdroppers, but not
against active adversaries who can interpose on communi-
cation between the two parties.

While MitM attacks are not new, widespread use of
shared wireless networks coupled with recent discoveries
of automated MitM attacks in the wild indicate that the
threat is increasingly relevant. For example, the Arpiframe
worm uses ARP poisoning to interpose on the HTTP traffic
of other hosts on the same LAN [26], while worms exploit-
ing simple vulnerabilities in home routers exposed end-
hosts to “drive-by pharming” attacks that use DNS to redi-
rect clients fake versions of security-sensitive websites [9].

Furthermore, a study by Reis et al. used client-side mea-
surements to confirm that real-time snooping and modifi-
cation of web traffic is a reality in today’s networks [20].

In this paper, we examine a novel approach to authen-
ticating a server’s public key. Traditional approaches to
server key authentication, such as a public-key infrastruc-
ture (PKI) [7, 5], rely on trusted entities (e.g., Verisign)
that grant certificates based on the validation of real-world
identities. When done securely, such verification requires
significant (often manual) effort. While some network
hosts, primarily commercial websites, can afford to pay
the high verification cost for these certificates, clients have
no simple and effective means to authenticate connectivity
to most other hosts on the Internet.

Because the high cost of creating and managing a host
PKI presented a substantial barrier to the replacement
of completely insecure protocols such as telnet, the SSH
model of host authentication emerged as a pragmatic so-
lution. Authentication in the SSH model relies on the
user’s discretion to decide if an unauthenticated key is
valid. Keys deemed valid by the client are cached locally
and used to authenticate subsequent communication with
the same server. While some users may verify all new
or changed server public keys in a secure manner (e.g.,
by memorizing a key fingerprint or verifying the key via
an alternate trusted channel), users often simply assume
the absence of an adversary on the initial connection and
accept the initial key without verification. We refer to this
common approach as Trust-on-first-use (Tofu) authenti-
cation (it is also known as “leap-of-faith” authentication).

The Tofu approach has two primary weaknesses:
1. By accepting any key on the initial connection, users

render themselves vulnerable to attack by any adver-
sary either on the path between the user and the server
or on a shared wireless LAN.

2. On subsequent connections, the user must still man-
ually determine the validity of any key that conflicts
with a cached key. A user who assumes such key
changes are valid without verification receives no pro-
tection against MitM attacks.

These weaknesses in the Trust-on-first-use approach are
particularly severe in the case of websites using self-signed
SSL certificates, because web clients tend to visit a large

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 321

number of sites, increasing the number of vulnerable initial
connections. Moreover, web users often lack the means
and/or expertise to manually verify keys.

PERSPECTIVES improves on basic Tofu authentication
by having a collection of semi-trusted hosts called network
notaries periodically probe a large number of network
services (e.g., SSH and HTTPS servers) to build a record
of the public keys used by those services over time. When
a client receives an unauthenticated public key from a
service, it contacts the notaries to download the history
of keys used by that service. This additional data from
diverse network vantage points over a span of time gives
clients the “perspective” to make a strictly better security
decision: clients can often detect attacks during an initial
connection or a key cache conflict, the two scenarios when
the standard Tofu authentication is most vulnerable.

Because notaries generate their data using automated
network probes, applications using PERSPECTIVES enjoy
the same simplified deployment model as SSH: no certifi-
cate authority is needed to verify the identity of server
owners and grant them certificates. Instead, the validity
of a service’s key is determined by its existence on the
network over time. While the notary infrastructure adds
some complexity to a Tofu-based application, it exists in-
dependent of both clients and servers. Servers can remain
unmodified while updated clients benefit from notary data.

While this paper focuses on protocols that use unauthen-
ticated keys (i.e., the SSH model), PERSPECTIVES can
also help even when PKI-signed certificates are used. As
we discuss in Section 8, because users often ignore browser
security warnings [21, 10], a MitM attacker can fool a user
by injecting a bogus self-signed certificate in the place of
a PKI-signed certificate. PERSPECTIVES clients can eas-
ily detect this attack by comparing the received certificate
with those seen by the notaries.

This paper makes four primary contributions:

1. It presents the design of a modular network notary
infrastructure that tolerates internal failures and com-
promises (Sections 3 and 5).

2. It describes a framework for (possibly automated)
client policies that aggregate notary replies and deter-
mine if a key is trustworthy (Section 4).

3. It analyzes PERSPECTIVES’s ability to resist a vari-
ety of network attacks within a realistic threat model,
demonstrating that it can protect Tofu-based applica-
tions from many MitM attacks (Section 6).

4. It describes the implementation and benchmarking
of a publicly available release of PERSPECTIVES, in-
cluding a robust notary server and modified OpenSSH
and Mozilla Firefox clients capable of implementing
basic key trust policies (Section 7).

Service
Network

Notary returns records of

key history to the client
4

accepts/rejects key
relevant key data and
Client interprets

5

If offered key is untrusted,
client contacts notary

3

1 2

Service responds
with public key

Notary

Client connects to service

Client

Figure 1: Overview of a client using PERSPECTIVES. In
practice, several notaries would be contacted in parallel be-
fore making a key trust decision.

2 Overview of PERSPECTIVES

We name our system PERSPECTIVES because it helps
clients make sound security decisions by leveraging views
from multiple network vantage points. PERSPECTIVES’
task is to help clients determine whether they should ac-
cept an untrusted public key received while connecting
to a particular network service. Example services include
SSH access to an end-host or HTTPS access to a website
that uses a self-signed SSL certificate.

PERSPECTIVES uses a set of publicly available servers,
called network notaries, that monitor and record the his-
tory of public keys used by a network service. A notary
cryptographically signs (i.e., notarizes) statements saying
that at time t it observed service S using public key K. The
basic operation of PERSPECTIVES is shown in Figure 1.
When a client connects to a network service, it receives
an offered key in reply. If the offered key is unauthenti-
cated (i.e., it does not match an existing key in the client
cache) the client must either accept the offered key, taking
a security risk, or reject the key, losing the ability to com-
municate with the service. To obtain more information to
make this decision, the client contacts a set of notaries and
requests all observed key data for that service. The client
then uses application-specific key-trust policies (Section
4) to interpret this data and accept or reject the key. These
policies check for consistency between the offered key
and the keys seen by each notary, often allowing clients to
distinguish between a legitimate key and an attack.

2.1 Threat Model & Attack Resistance
Attackers mount MitM attacks by providing clients with
a false public key in order to observe or modify network
communications. In our attack model, an adversary can
compromise any path in the network as well as components

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association322

of the notary infrastructure itself. Only the client and
server themselves must be completely trusted, a standard
requirement for host authentication schemes.

While our model allows any network or notary com-
ponent to be compromised, we borrow from Abraham
Lincoln and assume that an attacker “can fool all of the
[components] some of the time, and some of the [compo-
nents] all of the time, but it cannot fool all of the [com-
ponents] all of the time.” That is, we assume that attacks
are either: (1) localized to a particular network scope or
(2) of limited duration, since a larger attack is more easily
detected and remedied.

In this paper, we use the term redundancy to describe
the protections that PERSPECTIVES provides. Key obser-
vations gathered from multiple network vantage points
provide spatial redundancy, since unless an attacker can
compromise all network paths to a destination, notary data
will let a client to detect that an attack is likely underway.
Temporal redundancy, provided by the key history data
returned by each notary, can offer additional protection
because even if an attacker compromises all paths to the
server, clients can still detect that a recent key change oc-
curred and regard the new key with suspicion. Finally, data
redundancy (described in Section 5) helps clients detect
malicious notaries that supply inconsistent information,
thereby limiting the effectiveness of attacks on the notary
infrastructure itself.

The precise attack resistance provided PERSPECTIVES
depends entirely on how a client’s key-trust policy sets the
parameters defining spatial, temporal, and data redundancy
in order to balance the risk of accepting an unauthenticated
key with the possibility of incorrectly rejecting a valid key.
Sections 4 and 6 explore this trade-off in detail.

2.2 PERSPECTIVES vs. a Standard PKI

At a high level, PERSPECTIVES might be described as
a “lightweight PKI”. While both PERSPECTIVES and a
standard PKI require that clients securely retrieve one or
more public keys to bootstrap trust, there are two key
differences between PERSPECTIVES and the traditional
PKI currently used to grant SSL certificates:

1. Mechanism for binding hostnames to public keys:
Traditional PKIs use an offline mechanism to deter-
mine that the real-world entity requesting a certifi-
cate in fact owns the associated hostname. PERSPEC-
TIVES uses automated network probing to bind keys
to a hostname.

2. Degree of client control over trust decisions: With
a traditional PKI, the certificate authority makes a
universal judgment regarding key validity. With PER-
SPECTIVES, each client independently interprets no-
tary data and makes a decision based on its own secu-
rity requirements.

Because probing by network notaries does not protect
against all possible network attacks, we expect that highly
sensitive services like bank or large e-commerce websites
will continue to use heavyweight PKI mechanisms (pos-
sibly augmented with notary data, see Section 8). How-
ever, we believe that PERSPECTIVES provides a simple
and cost-effective way to improve the attack resistance of
services that currently either use Trust-on-first-use or are
completely unauthenticated.

3 The Notary Architecture

We now explore how the notary infrastructure provides spa-
tial and temporal redundancy to help clients evaluate an un-
trusted public key. We defer some implementation details
until Section 7. Notary servers are a coordinated group of
hosts distributed across the Internet. Notary clients are in-
tegrated into applications (e.g., an SSH client) and contact
notary servers to download observed key data with which
to make a key-trust decision.

3.1 Notary Administration

We envision a network notary group to be a fixed group of
at least five (but possibly many more) servers located in di-
verse network locations. The group may be run by a single
entity, but we design it in a decentralized fashion to also
support a cooperative deployment in which universities,
ISPs, hosting providers, or other well-known organizations
each contribute one or two nodes.1 Cooperative Internet
testbeds like PlanetLab [18] and RON [2] are another at-
tractive deployment option. For simplicity we describe a
single notary group, but in practice multiple notary groups
controlled by different entities could operate in parallel.

Each notary group is organized by a notary author-
ity that determines which machines are legitimate no-
tary servers. The notary authority has a public/private
key pair and publishes its public key (KAuthority) using an
out-of-band mechanism (e.g., as with Tor, the key could
be distributed with any software that accesses the notary
group). To add a notary server X to the system, X’s owner
generates a public/private key pair and furnishes the pub-
lic key KX and its IP address AX to the notary authority.
Each day the notary authority publishes a list of notary
server IP address (Ai) and public key (Ki) pairs to each of
the notary servers in the systems, along with a signature
S = {Date,(A1,KA1),(A2,KA2), . . . ,(An,KAn)}K−1

Authority
. A

client can contact any notary server, download the list, and

1Several existing projects have successfully used a similar decen-
tralized deployment model, including the large collection of publicly
available traceroute and looking-glass servers [25], the Tor anonymizing
network [8], and the NTP Pool’s large set of publicly available network
time sources[16].

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 323

Key 1
t−start, t−end

Key 2
t−start, t−end
t−start, t−end

Signature

Service−Type, Service−ID:

A Single Service

Entry in Database

Network
Service

Server
Notary

& Database
Access Code

Query Processing

Other

HTTPS

SSH Observe Public Key
of Network Service

Notary
Client

Policy Code

SSH Client

Query &

and Replies
Notary Queries

Notary Database

Probing Modules

Basic SSH Connection

Figure 2: Schematic of a notary server and SSH client.

validate this signature using KAuthority to receive a fresh list
of notary IP addresses and public keys.

3.2 Notary Server Key Monitoring

Notary servers monitor the public key(s) used by a net-
work service over time. A notary server provides clients
with an application-independent query interface, but uses
application-aware probing modules to monitor different
types of services (e.g., SSH or HTTPS). A probing module
observes keys by connecting to the service and mimicking
an ordinary client until it receives the service’s public key,
at which point it disconnects.

Each notary server uses a local database to store a ser-
vice entry for each monitored service. A service entry
contains all observed key data the notary has recorded
while monitoring that service over time (see Figure 2).
An entry is uniquely identified by the combination of a
service-type, which identifies the protocol used to retrieve
the key (e.g., HTTPS)2 and a service-id, which provides
the information necessary to contact the service (e.g., host-
name and port). The observation history of each key is
stored as one or more key timespans. A key timespan is
a start and end timestamp pair (tstart , tend) that indicates
a period of time during which the notary observed only
that key for the service. When the notary makes a new
observation it updates the corresponding service entry in
the following manner: if the observed key is the same key
observed during the previous observation, the notary sim-
ply updates the tend value of the most recent key timespan
to the current time. Otherwise, the notary creates a new

2 A single logical protocol may have multiple service-types (e.g., an
SSH2 server can have both RSA and DSA keys).

Notary Protocol:
C → N : S = (service-id, service-type)
N : (O,{O}K−1

N
) = f ind_service_entry(S)

N →C : O,{O}K−1
N

Figure 3: The basic notary protocol between a single client
(C) and the notary server (N).

key timespan with both tstart and tend set to the current time
and adds this timespan and the new key (if necessary) to
the service entry. If a probe fails to receive a key from the
service, the notary creates or updates a timespan with a
“null key” containing no key data.

The notary also stores a cryptographic signature for each
service entry in the database. Using its private key, the
notary calculates a signature over all data in the service
entry: the (service-id, service-type), as well as each key
and its associated key timespans. This signature is updated
following each modification of the service entry. Section
7 measures the overhead of this simple signature scheme
and mentions potential optimizations.

3.3 Querying Notary Servers

The client application contacts the notary whenever it re-
ceives a key from a service that does not match an existing
entry in its cache. This may occur because the client has
never contacted the service or because the offered key does
not match the already cached key for the service.

When contacting an individual notary (Figure 3), the
client specifies a (service-type, service-id) pair. The notary
finds the corresponding entry in its database and replies
with observed key data consisting of keys and their asso-
ciated timespan(s), along with a signature over that data
using the notary’s private key.

The process by which a client queries for and receives
notary data is described in Figure 4. Recall that a notary
client learns about all notary servers and their public keys
using a list distributed by the notary authority. The client’s
key-trust policy (Section 4) determines n, the number of
notaries that the client should contact. The client then
randomly chooses n entries from the list of notaries and
queries these servers in parallel using UDP.3 The querying
process is complete once enough notaries have replied for
the client policy to make a trust decision, or when the client
determines that all remaining notaries are unreachable
(clients implement a simple retransmission strategy). The
client validates the signature for each response using that
notary’s public key, discarding any invalid responses.

3 Using the implementation parameters described in Section 7, a
1460 byte MTU-sized UDP datagram can hold a notary reply with 44
key/timespan pairs. If necessary, multiple UDP packets are used for large
replies to avoid IP fragmentation.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association324

Check-Unauthenticated-Key(s, Ko f f ered)
O = {}//all observations for services
All-Notaries= load_notary_addresses()
Chosen-Notaries= choose_random(n,All-Notaries)
foreach x in Chosen-Notaries in parallel

(Ox,{Ox}K−1
x

) = contact_notary(x,s)
Kx = load_notary_key(x)
i f (veri f y_signature(Ox,{Ox}K−1

x
,Kx))

O = O∪Ox
i f (! check_trust_policy(Ko f f ered ,O))

abort_connection()

Figure 4: How a client checks an unauthenticated key
Ko f f ered for service s. Details of check_trust_policy() are dis-
cussed in Section 4.

4 Notary Client Key-Trust Policies

Once a client has received observed key data from notary
servers, it uses a key-trust policy to accept or reject an
offered key based on this data. Code implementing the
client policy decision examines the offered key and all
validated observed key data, and may also consider inputs
such as previously cached keys, user security preferences,
or even active user input. Upon completion, the client
application either accepts the key and continues running
the protocol or rejects the key and disconnects.

4.1 The Security vs. Availability Trade-off

The SSH model (which includes both Trust-on-first-use
and PERSPECTIVES) presents clients making a key-trust
decision with a basic security vs. availability trade-off :
faced with an untrusted key, the client can take a security
risk and accept the key, or be safe and reject the key, at the
cost of making the service (at least temporarily) unavail-
able. For example, when faced with an unauthenticated
key, standard Trust-on-first-use makes two different secu-
rity vs. availability trade-offs: First, if no key is cached for
the service, Tofu chooses availability at the cost of security
by always accepting the offered key. Second, in the case
of a key conflict, a Tofu application cannot automatically
accept the key, so it must favor security over availability
or prompt the user for help.

Lacking useful information about the key’s validity,
Tofu applications are stuck making this inflexible trade-off.
In contrast, because PERSPECTIVES provides additional
data indicating whether a key is likely to be the result of
an attack, it allows application key-trust policies to make
significantly more intelligent security vs. availability trade-
offs.

In this section we explore several variations on client
key-trust policies. We do not claim that these policies are
optimal (in fact, significantly more nuanced and complex
policies exist), but rather offer them as evidence that even

simple policies can support a wide range of security vs.
availability trade-offs.

4.2 Quorum: A Key-Trust Primitive

Recall that PERSPECTIVES provides security by allowing
clients to leverage spatial redundancy (key observations
from multiple vantage points) and temporal redundancy
(key observations over time). Therefore, the role of a
client policy is to test the spatial and temporal consistency
of the offered key with respect to notary data. To provide
a framework for reasoning about spatial and temporal
consistency, we introduce threshold parameters that
quantitatively represent these properties.

Definition: For a set of n notary servers, a service S, and
a threshold q (0 ≤ q ≤ n) we say that a key K has quorum
at time t iff at least q of the n notaries report that K is the
key for S at time t.

Intuitively, for values of q that are large relative to n,
a key that has quorum indicates consensus among the
observations made by the all notaries at a single point in
time. We use another threshold parameter to extend the
concept of quorum into the temporal realm.

Definition: For a set of n notary servers, a service S, and
a quorum threshold of q, a key K has a quorum duration
of d at time t iff for all t ′ such that (t −d) ≤ t ′ ≤ t the key
K had quorum with threshold q at time t ′.

Quorum duration indicates how long, without interrup-
tion, a set of notaries has consistently seen a particular
key.4 Applications can make security vs. availability trade-
offs by choosing to accept an untrusted key only if it ex-
ceeds a particular quorum duration threshold. Higher q
and d thresholds provide more security, but risk reducing
availability by incorrectly rejecting valid keys. For ex-
ample, setting q equal to the total number of notaries n
provides the strongest protection against accepting a false
key, but also means that a single unavailable or compro-
mised notary could cause the client to reject a valid key.
Similarly, a higher quorum duration threshold d protects
against a strong attacker that compromises many paths
for a significant amount of time, but would also require
clients to reject connections to services that are new or
have recently changed keys.

Next, we consider three examples of how the concepts
of quorum and quorum duration might be used by a
PERSPECTIVES client policy.

4 We intentionally do not require that the quorum be comprised of a
stable set of notaries over the entire duration.

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 325

Example Policy: Expert User
Same number of warnings, more useful data.
We first consider a client application policy for a “expert
user” who understands the risk of a MitM attack and
is familiar with the SSH authentication model. In this
case, the client always warns the user but also includes
concise summaries of the notary data that help the user
make a better security vs. availability decision. Similar to
existing Tofu client, policy behavior depends on whether
the offered key conflicts with an existing cache entry.

Case 1: No Server Key Cached
In this case, the user is not necessarily suspicious of the
new key, but she will use observed key data to confirm
that the key is consistent across many notaries and that
the duration of the key history is commensurate with her
expectation of key age. If quorum duration is satisfied, the
policy module may supply a message like:

Key seen consistently for the past Z days.

If the key fails to achieve quorum or does not have
sufficient quorum duration based on policy parameters,
the user might see one of the following warnings:

SUSPECTED ATTACK: Offered key is NOT consistent.

Only X of Y notaries currently see it.

WARNING: Server key has only been seen

consistently for the past Z days.

Case 2: Offered Key Differs from Cached Key
In this case, the user must distinguish between a legitimate
server key change and a falsely injected key. As in Case 1,
the user will be interested in the prevalence and duration
of the offered key, since a substantial quorum duration
indicates a higher likelihood that the conflicting key is the
result of a legitimate server key change:

Offered key conflicts with cached key, but has

been consistently seen for Z days.

Additionally, because the policy has access to the cached
key that is currently trusted for the server, the policy
might also highlight portions of the key history that cast
suspicion on the new key. For example, a warning might
indicate that some notaries are still currently observing
the cached key, suggesting that the server has not actually
changed its key:

LIKELY ATTACK: Offered key conflicts with

cached key and cached key is still observed

by X of Y notaries!

Interpreting such statements requires little additional work

on the part of the user but provides her with vastly more
information than warnings in current Tofu applications like
SSH. In the rare case that such a summary is insufficient,
expert users may view all observed key data, similar to
how web browsers optionally display SSL certificates.

Example Policy: Non-Expert User 1
Same number of warnings, varied severity.
Because non-expert users are unlikely to want or be able
to make good security decisions based on the notary data
itself, another policy approach is use a quorum duration
test to determine how severe of a warning to give the
user. For example, a simple approach would be to give
users a standard warning as long as three-quarters of the
notary servers have seen the key for at least a day (i.e., q =
0.75 ·n and d > 1 day), but give them a more severe and
intrusive “security failure” warning if notary data detects a
key inconsistency indicating a probable attack. .

For HTTPS the need for such a policy to distinguish
likely attacks from valid self-signed replies is increasingly
evident, as new versions of two major browsers (Internet
Explorer 7 and Firefox 3) have introduced new user
interfaces that treating self-signed certificates as failures
by default. Rather than simply displaying a warning
dialog, the new interfaces do not render the page at all and
instead display an error page similar to a failed connection.

Example Policy: Non-Power User 2
Fewer warnings, based on high-level preferences.
Much usability research suggests that web users often
make bad security decisions by ignoring warnings [21, 10].
Instead of using quorum duration to determine the severity
of a warning, a client could choose to issue no warning at
all if an offered key has sufficient quorum duration. The
precise values for q and d may be determined by high-level
user preferences for “high security” or ”medium security”
already common in browsers today.

While the merits of this approach is ultimately a usabil-
ity question, this tactic may help reduce “banner blind-
ness” associated with browser security warnings. As an
additional benefit, this approach could increase overall
adoption of HTTPS by eliminating the frequent security
dialogs that likely make some website owners hesitant to
use self-signed certificates at all.

5 Detecting Malicious Notaries
The final aspect of the notary design is data redundancy,
a cross-validation mechanism that limits the power of a
compromised or otherwise malicious notary server.

To implement data redundancy each notary acts as a
shadow server for several other notaries. As described
below, a shadow server stores an immutable record of each
observation made by another notary. Whenever a client

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association326

receives a query reply from a notary, the client also checks
with one or more of that notary’s shadow servers to make
sure that the notary reply is consistent with the history
stored by the shadow server.

5.1 Benefits of Data Redundancy
An adversary in control of a notary and its corresponding
private key can provide clients with false observed key
data. Data redundancy prevents a notary from changing
data already recorded in its observation history, much as
schemes such as forward-secure signatures [3] do. As a
result, an attacker that compromises a notary cannot, for
example, create a new malicious key and falsely claim
that this key has been stably seen over a long period of
time. This cross-validation ensures that the only way an
adversary can make a malicious key appear “stable” is by
sustaining a network attack for a commensurate amount of
time, even with notary compromises. Additionally, data re-
dundancy guarantees that a notary, even after compromise,
cannot give conflicting answers to two clients querying
about the same service. This property (which cannot be
achieved using forward-secure signatures) could help hosts
scan for and detect notaries that act maliciously.

5.2 Cross-Validation Protocol
Each entry in the list published by the notary authority also
lists MAX-REDUNDANCY other notaries that each act
as a shadow server for the notary specified in the entry. A
notary server is responsible for keeping all of its shadow
servers up-to-date. When a notary server contacts a service
S, it updates its local database and then sends the new
service entry (including signature) to each of its shadows.5

Shadow servers update their shadow copies in a way that
prevents malicious notaries from eliminating previously
shadowed data. To do so, the shadow server requires that
each key timespan in the old shadow copy either also exists
in the new shadow copy or is “contained” within a larger
timespan in the new copy (i.e., both timespans have iden-
tical tstart values, but the new copy’s tend value is greater
than that of the old copy). Additionally, no timespans in
the new copy can overlap. If the old and new data are
consistent, the old data is discarded. If an inconsistency
exists, the shadow server stores both sets of observed key
data and signatures. After updating, the shadow server
uses its own private key to generate a signature over both
the shadowed data and the signature of the other notary.
This signature is stored with the shadowed data and allows
clients to authenticate that a reply to a shadow request
came from the correct shadow server.

Client policy specifies r (r ≤ MAX-REDUNDANCY),
the number of shadow servers that must corroborate a

5Client consistency checks are specifically designed so that a mali-
cious notary does not benefit by failing to keep its shadows up to date.

Cross-Validation Protocol:
C → SH : N,s
SH : DBn = get_replica_databse(N)
SH : ON , {ON}K−1

N
, {ON ,{ON}K−1

N
}K−1

SH

= f ind_service_entry(DBN ,s)
SH →C : ON , {ON}K−1

N
, {ON ,{ON}K−1

N
}K−1

SH

Figure 5: A client (C) contacting shadow server (SH) for a
shadow copy of notary N’s observed key data for service s.
Note that the integrity of N’s service entry is protected in
transit by a signature using the shadow server’s key.

notary’s observation for it to be deemed valid. For each
notary N the client contacts, it randomly selects rq (rq ≥ r)
of N’s shadow servers to query. When contacting a shadow
server (Figure 5), the client specifies the IP address of N
as well as the service-id from the original query to N. The
shadow server replies with a service entry (observed key
data and signature) created by N, along with the shadow
server’s signature over that data. If fewer than r of N’s
shadows provide valid responses signed by Kn, the client
disregards all data from N. After verifying the signatures,
any inconsistencies among the original and shadowed data
will cause the client to reject data from N. Additionally,
because of non-repudiation, clients can provide any in-
consistent data and signatures to the notary authority as
evidence of a notary’s malicious behavior.

6 PERSPECTIVES Security Analysis

To demonstrate the benefits of network notaries, in this
section we enumerate realistic attack scenarios and
compare the security provided by PERSPECTIVES to that
offered by basic Trust-on-first-use. We analyze both an
adversary’s ability to launch a MitM attack, as well as its
ability to deny availability (DoS) by causing a client to
reject a valid key.

MitM Attacker Resources:

Our analysis considers three possible system compo-
nents which an adversary may control. Enumerating
each combination of these possible compromises lets us
analyze all scenarios relevant to the attack resistance of
PERSPECTIVES:

Lclient: An adversary controlling the client’s local
link can modify or drop all client-to-service
and client-to-notary communication.

Lserver: A compromise of the server’s local link lets
an attacker inject arbitrary keys when either
clients or notaries contact the server.

k ·nm: A compromise of k distinct notary servers.

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 327

Tofu PERSPECTIVES
Compromise DoS MitM DoS MitM
Lclient 8 8 8 safe
Lserver 8 8 8 temporal safe
k ·nm safe safe k > (n - q) : 8

k ≤ (n - q) : safe
safe

Lserver +Lclient 8 8 8 temporal safe
Lclient +k ·nm 8 8 8 k ≥ (q + q · r) : 8

k ≥ q : temporal safe
k < q : safe

Lserver +k ·nm 8 8 8 k ≥ (q + q · r) : 8
k < (q + q · r) : temporal safe

Lserver +Lclient +k ·nm 8 8 8 k ≥ (q + q · r) : 8
k < (q + q · r) : temporal safe

Table 1: Summary of attack resistance provided by PERSPECTIVES in comparison to the standard Tofu approach. The left
column contains abbreviated attack descriptions as defined in the text. Columns show resistance to availability (DoS) and
MitM attacks. 8 indicates no resistance, “safe” indicates that attacks are detected, and “temporal safe” indicates temporal
safety, as defined below.

As discussed earlier, Lclient is a likely attack, due to
the prevalence of open wifi hotspots and insecure home
networks that allow compromised hosts or home routers
to easily inject or modify traffic. In contrast, servers often
reside in more controlled network environments, making
Lserver significantly harder. This is particularly true in the
case of HTTPS. Thus, to achieve Lserver, an adversary
might compromise the gateway router for the destination,
or use BGP to falsely announce the destination’s prefix,
misdirecting some or all traffic destined for the server. An
attacker may also control arbitrary Internet routers that
place it on k of the n notary-to-service paths. However,
because this attacker is a strictly weaker version of
the k ·nm attacker, we do not examine it separately.
Additionally, since Lclient or Lserver allows the attacker to
mount a trivial DoS attack in either scenario, we do not
explicitly mention this attack below.

Analysis Parameters:

As described in Section 4, the actual security and
availability that a client will receive depends on its choice
for the following policy parameters:

n: Number of notary servers contacted by the
client.

q: Quorum threshold of client.
r: Number of shadow servers (per notary) the

client requires for data redundancy.

We do not directly model the length of an attack or a
client’s quorum duration. Instead, we use the concept of
“temporal safety”, which means that a client will be safe as
long as its quorum duration threshold is larger than the ac-

tual duration of the attack.6 Table 1 summarizes the results.

Analysis Results:

Lclient Compromise: When only the client’s access link
is compromised, Tofu provides no defense against a MitM
attack, while data from network notaries allows a client to
easily detect and avoid the same attack.

It is important to recognize that the attacker gains no
MitM advantage by using Lclient to disrupt client-to-notary
communication. All data returned by a notary is protected
by a signature from that same notary, meaning that notary
responses cannot be spoofed, even if the attacker has
compromised other notaries. Furthermore, adversaries
cannot encourage acceptance of a false key by making
notaries or shadow servers unreachable, since blocking
such communication will prevent any key (including
a malicious one) from achieving quorum. Maliciously
dropping client-to-notary communication to prevent a
legitimate key from achieving quorum does not increase
attacker power, since control over Lclient already allows
for a trivial DoS attack by simply dropping all packets.

Lserver Compromise: A compromise of only the server
link also renders a basic Tofu client vulnerable to MitM
attacks. For PERSPECTIVES, the compromise of all paths
to the server will prevent spatial diversity alone from
detecting an attack. However, historical key data provides
a client with temporal safety against network attacks.

6Additionally, to simplify our analysis, we assume a sufficiently large
number of notary servers such that no overlap exists among the q notary
servers and the q · r shadow servers used by a client. A set of notaries
that is too small to satisfy this assumption would reduce the number of
compromised notaries needed to undermine data redundancy.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association328

k ·nm Compromise: The compromise of notaries alone
will not enable an adversary to inject a false key to the
client and launch a MitM attack. However, this adversary
can attack availability by trying to cause a client to
incorrectly reject a valid key. Disabling k > n - q notary
servers, either by compromising them or by making
them unreachable, prevents the client from establishing
a quorum even if the remaining servers all agree on the
valid public key. Because this attack is possible even if the
adversary is not on the client-to-service path, it represents
an availability vulnerability that does not exist with the
Tofu approach. However, this attack is limited to scenarios
when clients receive a new key for a service; it does not
apply to repeated connections between a client and a
server using a cached key.

Lclient + Lserver Compromise: The analysis of this
scenario is identical to Lserver, since, as discussed above,
using Lclient to restrict client access to notary servers
provides no attack benefits.

Lclient + k ·nm Compromise: Control over the client
link and some notary nodes lets the attacker use notaries
to “promote” an invalid key using false observations.
An attacker cannot perform a MitM attack unless it
compromises a full quorum q of notaries, since the
client rejects keys that do not achieve quorum. If an
attacker compromises q notary servers, the situation is
identical to the Lserver scenario described above: the
client is still protected for a time period determined by its
quorum-duration. However, if the adversary compromises
an additional q · r notaries beyond the basic quorum, it
can overcome the data redundancy of the system. Without
data redundancy the attacker can forge the observation
history, eliminating the protections of temporal safety. 7

Lserver +k ·nm Compromise: This attack is stronger than
the previous Lclient + k ·nm scenario, since control over
the destination service’s link means that even legitimate
notaries will observe the attacker’s key. As a result, even
if fewer than q notaries are compromised, the client relies
entirely on temporal safety.

Lserver + Lclient + k ·nm Compromise: This scenario is
identical to the previous attack. As described in the
Lserver +Lclient case, client link access grants no additional
power if an adversary already has server link access.
This attack analysis demonstrates that PERSPECTIVES sig-
nificantly improves resistance to MitM attacks compared
to Tofu. Additionally, PERSPECTIVES is robust to limited
compromises of the notary infrastructure itself.

7We note that this is a worst-case analysis. If the client selects notaries
randomly and the total number of available notaries is larger than (n + n ·
r), the attacker cannot easily predict which notaries or shadows it must
compromise in order to mislead the client.

7 Experience with Notary Server
and Client Implementations

To demonstrate the viability of a network notaries and to
gain experience with its deployment, we have implemented
and are running a publicly available network notary on the
RON testbed [23]. Additionally, we have created two dif-
ferent PERSPECTIVES clients: a modified version of the
OpenSSH client for SSH and an extension to the Mozilla
Firefox browser for use with HTTPS certificates. We have
made both server and client source code publicly available
at: http://www.cs.cmu.edu/~perspectives/.
Our performance measurements indicate that a single no-
tary server can monitor several million hosts a day while
simultaneously handling a large number of client queries.

7.1 Notary Server Implementation

Our notary server code is written in C and uses the Berke-
ley DB library for storing observed key data and signatures.
The notary probes services running either SSL or SSH us-
ing probing modules based on code from OpenSSL and
OpenSSH. The only substantial difference between our
implementation and the design described in Section 3 is
that we do not implement data redundancy, in part because
our notary deployment is run by a single trusted entity.

We benchmarked our notary server with respect to ser-
vice monitoring and query response operations to demon-
strate that network notaries are practical on commonplace
hardware. In our implementation, notaries use 1369-bit
RSA keys for service entry signatures8 and store public
keys as 128-bit MD5 fingerprints.9

We run our each benchmark on two different machines.
One is a modern server (ServerFast) with two dual-core
2 GHz AMD Opteron CPUs and 8 GB of RAM. The
other server (ServerSlow) is a three year old machine with
a single-core P4 2.4GHz CPU and 512 MB of RAM,
intended to demonstrate that a modest notary infrastructure
could still be run on older (perhaps donated) hardware. A
summary of the results is provided in Table 2.

Monitoring Load: To benchmark notary monitoring, we
identified a set of .com domains running HTTPS using
a web-crawl and had our notary server monitor these
sites (Our SSH scans exhibited nearly identical rates and
are therefore omitted). When monitoring a service, the
notary must perform the protocol negotiation necessary
to retrieve the service’s key, load the existing service

8 Notary signatures covering observed key data do not need long-term
security, as signatures are recomputed frequently and notary keys are
easily updated. 1369-bit RSA is deemed secure through 2010[14]. Only
KAuthority needs long-term security (e.g., 2048 bits) to enable key rollover.

9While MD5 collision resistance has been compromised, the security
of public key fingerprints depends instead on second pre-image collision
resistance, which is still considered secure for MD5.

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 329

Operation Operations / Sec

ServerSlow ServerFast
Monitor service key 26 195
Monitor service key (no sig.) 112 270
Handle query (in memory) 21,700 25,600
Handle query (disk-bound) 114 -

Table 2: Summary of notary server benchmarks for ma-
chines ServerSlow and ServerFast .

entry from the database, update the entry, recompute the
entry’s signature, and store the entry again. Our code uses
RSA signatures implemented in OpenSSL and takes the
simple (albeit heavyweight) approach of forking a process
running a slightly modified OpenSSH or OpenSSL client
for each probe.10 ServerFast and ServerSlow performs
195 and 26 such operations per second, respectively.
While these rates may seem small, even at only 50%
utilization they correspond to 8.4 million and 1.1 million
probes per day. Table 2 also shows monitoring rates when
signatures are not computed, indicating that optimizing
the cryptographic processing by batching service records
or creating a hash-tree over multiple service entries would
significantly improve performance.

Query Handling Load: The primary consideration for
query processing performance is whether the notary’s
databases fit in memory (recall that a notary may have mul-
tiple databases due to shadowing). With the cryptographic
parameters described above, a single service entry with
several keys and timespans will consume approximately
250 bytes. Thus, a database with one million entries (250
MB) can easily fit even in the small memory of ServerSlow.
Table 2 shows benchmarks for both servers responding to
randomized client queries (measured over the loop-back
interface). If the database is in memory, the response rate
is above 20,000 requests/sec for both servers (because our
server code is single-threaded, there is little difference
between the two machines). To identify likely response
rates when the database must be accessed from disk, we
tested ServerSlow with a database that was four times the
size of its main memory. In this case, the speed of a
disk-seek limits the response rate to 114 queries/second.
However, even this query-processing rate (which translates
to just under 10 million per day) may be viable when
clients contact notaries only on rare cache misses.11

Bandwidth Requirements: Bandwidth usage depends on

10OpenSSH’s key-scan utility served as our initial SSH scanner, but it
exhibited bugs that caused us to discontinue its use.

11This disk-bound query-handling does not significantly contend with
the CPU-bound service monitoring, meaning that their respective rates
are unlikely to diminish significantly when both are run simultaneously.

both the monitoring rate and query rate. Including all
network headers and TCP acknowledgments, monitoring
a single SSH service requires about 1.5 KB of upstream
bandwidth and 2.3 KB of downstream bandwidth. For
SSL the same values are 0.5 KB and 2.0 KB. Such data
sizes are comparable to a single small image embedded
in a webpage. Monitoring a million hosts a day would
correspond to an average rate of less than 213 Kb/s in
each direction. With network headers, notary requests
are approximately 60 bytes and replies are 315 bytes (for
standard key sizes). While handling a flood of 20,000
requests per second would require 50 Mb/s of upstream
bandwidth, a server could handle 10 million requests a day
(116 requests per second) using only 420 Kb/s.

Because we expect notary nodes to be deployed pri-
marily by universities and large companies like ISPs or
webhosting providers, we do not expect bandwidth to be a
limiting factor unless a server is under DoS attack.

7.2 Notary Client Implementations
To demonstrate the general nature of the PERSPECTIVES
approach, we created two client implementations that
access our notary group. Both clients share common
library code that reads notary configurations, creates and
parses protocol messages and implements basic quorum
duration policies. As a result, we expect that porting other
clients to work with PERSPECTIVES will not be difficult.

OpenSSH Client: We modified the popular
OpenSSH [17] client software to contact notary
servers when no cached key exists or when the offered key
differs from the cached key. The modifications consisted
of a few library calls within the SSH code that checks the
key cache, as well as functionality to interact with the
user when making a key-trust decision (our client roughly
follows the expert user example described in Section 4).
We have used the modified client within our university
for nearly a year and have found the added latency of
contacting notary servers to be negligible.

Mozilla Firefox HTTPS Client: We implemented our no-
tary client for HTTPS within the Mozilla Firefox extension
framework, meaning that users can easily install it without
having to download a new browser. The HTTPS notary
extension (Figure 6) is written in a combination of C++
and javascript. Whenever a certificate validation fails, the
notary client extracts the public key from the certificate
and contacts the notaries.

Our implementation allows users to set a preference for
“High Security” or “Medium Security”, which correspond
to different quorum duration thresholds. Keys that achieve
quorum duration are accepted automatically, while other
keys result in disconnection with an error message. The
“High Availability” security setting gives expert users the

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association330

Figure 6: This screen capture shows the bottom right-hand
corner of a Firefox browser window, which contains the
HTTPS notary extension’s visual indicator. In this case, the
website satisfied quorum duration, so the browser automat-
ically accepted the certificate and suppressed the certificate
warnings usually displayed to the user. The image also shows
the tool-tip that summarizes the notary data for the user.

ability to connect even when a key does not achieve quo-
rum duration. These users are provided with the certificate
and a summary of notary data in order to make their own
key-trust decision.

Because use of our OpenSSH and Firefox clients is
currently limited to the Linux and FreeBSD/Mac OS X
platforms, we also provide a web page that allows users to
query notary servers even without a modified client.

7.3 Generating a List of Services to Monitor

Section 3 assumes a priori knowledge of what services the
notary server should periodically monitor. We consider
two possibilities for how notaries might build this list.

The first approach, which we use in our implementation,
is for a notary to add a service to its database the first time a
client queries for it. While this approach does not initially
provide clients with temporal redundancy, when bootstrap-
ping the system, notaries might probe “on-demand” to
provide even the first client with spatial redundancy to
help detect Lclient attacks. A client could seed the notary
with services (e.g., from the known_hosts file in SSH)
and a server could register for monitoring by querying a
notary with its own address as the service-id.

The second approach is to proactively discover services.
For example, HTTPS websites can be found using web
crawling or search engines. For less public services, such
as SSH, TCP-layer scanning on standard protocol ports
could discover a large number of services. We built one
such scanning engine to evaluate this approach on SSH
servers within our campus network and a few large public
IP blocks. We found that while scanning can quickly
identify tens of thousands of SSH servers, it has three key
limitations. First, if reverse DNS is unavailable for an IP
address, we cannot reference a service entry in terms of
the DNS name. Second, such scanning misses services
running on non-standard ports. Finally, scanning may
be misinterpreted as an attack. Because active discovery
cannot identify all services, one promising approach is to
seed notaries with data from active discovery, and then
identify additional services as clients query for them.

7.4 Notary Parameters

We now outline the primary considerations for choosing a
notary group’s global parameters.

Number of Notaries: Because MitM attacks are most
likely at the network edge (i.e., Lclient or Lserver),
increasing spatial redundancy is likely to have diminishing
returns: in the case of Lclient, even a few valid notaries
will detect an attack, while for Lserver, all notaries will
see the same false key. We therefore suggest that clients
query from 4 to 10 notaries, depending on their desired
robustness to notary compromises or failures.

Notary Monitoring Frequency: A notary would like to
minimize the time between when a server first comes
online or changes its public key and when the notary
server observes this change. Our measurements indicate
that a single notary could monitor several million different
servers a few times each day.

Degree of Data Redundancy: The degree of data redun-
dancy required for a set of notaries depends greatly on
who administers individual notary nodes. If nodes are run
by one or a few trusted entities that take great care to se-
cure the machines, little or no data redundancy may be
needed. However, even when data redundancy is needed,
MAX-REDUNDANCY can likely be small (2 to 4), be-
cause clients can detect inconsistencies if any one of the
contacted shadow servers are not compromised.

8 Discussion

Notaries and DNS Attacks: So far, we have focused
on adversaries that compromise IP-level paths or notary
servers. Adversaries could also manipulate DNS to falsely
map a service’s hostname to an IP address that places the
adversary “on path”. When notaries and clients use DNS
names to identify services, a compromised local or remote
DNS server present the same threat as the corresponding
Lclient or Lserver attack. Thus, the analysis in Section 6
applies to DNS attacks as well.

Additionally, if an attacker controls only DNS, notaries
can help clients detect and even circumvent such attacks.
To do so, notaries would also record the IP address used
when monitoring a service. If a client sees that both the
service key and IP have changed from a previously trusted
or stable key, it can connect directly to the IP addresses
associated with the old key to test if that key is still visible
on the network. If the client receives the prior key from
any of the past addresses, it can (depending on local
policy) disregard the new key as a DNS attack and instead

acceptedically
atisfieswebsite

notaryHTTPS
Faofnercor

This6:eFigur

tessedsupprandcertificatethed
wobrtheso,durationquorumed

In.atorr.indicvisualsextension’y
which,wwindowserobroxeffoxFir
bottomthewsshoecaptureenscrs

certificatethe
automat-wser

thecase,this
thecontains

right-handm

theniurns:ret
spatingreasiinc
hetatyelkli

NofNumber

group’notary
outlinewnoeWWe

Notar7.4

vwfeaneve,clientLofcasehe
evhatoyeliklisyncredundaalati

clientL.e.,(iedgeorknetwe
acksatttMMiBecauseNotaries:

parameters.globals
ofionstradeonsicryaprimthene

arametersPry

iesnotarlidav
ngnishimidie

),ervserLor
tmosarecks

ainghooscor

thatool-tipthe
usuaningswar

acceptedically

miliyentlcurr
suBecause

deciy-trustek
summaraand

ion.duratrum
conntoylitabi

offordatanotarythesummarizesat
maiThe.userr.thetoeddisplaylly

tessedsupprandcertificatethed

SD/MeeBFrandLinuxtheottedi
refoxFiandSHnSpeOourofes

sion.
maktorordeinatdarynotaofyr

thwitvidedproearersusThese
notdoesyekawhenenvenect

.userr.theor
wsshoalsoage

certificatethe

XOSacD/M
isentsclifox

wnotheireak
eificatcertthe

quo-evchiea

ninglesattha
observervser

changesorneonli
theizenimmi

MoniNotary

toustnessrob
4fromquery
esamthesee
anectdetwill

ilmeralvsetormonicouldarynot
uremmeasurO.changesthiesv
whenandyekicpubltsianges

erervsawhenenewbetmetie
wynotarAequency:Fritoring

ailuresforcompromisesnotary
onndingdepe,iesnotar10ot

uggestserefortheeWWe.yeksealffal
lal,ervserLorfforewhilack,attn

erentffffdionlil
tendicaateientsm

arynottheen
escomtfirsr
toeiklouldw

s.
reddesiheirt

sientclthatst
lwilesarinot

arynotaforis
approach,firstThe

possibilitiotw
reservrynota

assum3ionSect

Gener7.3

snotaryquery
ewms,tforpla

theedatabastsitoviceseraaddot
mpliourineusewchhiwproach,

uildbmightnotarieswhofories
.tormonilyodicalperishould
hawofwledgeknoioripraesum

tvicesSerofListarating

modifiedawithoutenveersserv
latthapagewebavideprooals

ametifirsthe
on,atiementpl

list.thisd
derconsieWWe
hetcesserviat

Monitorto

client.d
otsuserswllo

entsclicause
EDUR-MAX

woHneeded.
achinesmthecure

effeaoroneby
teadminiswho
redrequiydanc

DaofeeDegr

wfeaersserv

anifesencionsistincdetectanc
allsmbeyelklicanCYANNDU

edundancradatwhenenve,erve
redundancdatanoorleittl,hines

greaetakhattiesntiteedrusttwe
nIfnodes.ryanotvidualindirse

dependsesarinotofsetafored
oeegrdeTheRedundancy:ata

.dayeachtimes

theofoneyn
be-4),ot2(l

needed,siync
beaymyanc
e-stoarectea

unrarenodes
onlygreatds

dun-redataof

ple,xameorF
secondThe

itswithnotary
creervsaand

esvicerswith
cLectdetphel

envevidepro
esysthetping

ientclvidepro
squerieclient

arynotaforis

founbencaeswebsitTTPSH
codiselyviproactotisoachapprd

service-idtheasaddresswnos
bngtorimoniforrstegiredcoul

known_hoststheomfr(e.g.,
seedcouldientclAtacks.atclient

redundancalspatiwithientcltfirsthe
on-“probeghtmiriesnotaem,
when,yedundancralemportwiths

doechapproahistWhileit.for
theedatabastsitoviceseraaddot

ebwusingnd
ces.serviervo

.
ayingquery

SSH)infiles
arynotheted
toyedundanc
tond”-demaand”

trap-bootshen
tiallyininots

ametifirsthe

eservicamap
eAdvrs.evser
esarieradvon

andNotaries

Discu8

shacontacted

thatddressaIPantoemhostnase’
Dtenipulamalsoadcouliesersar

palevP-leIeiscompromthates
hew,arffarSoAttacks:DNSd

ussion

compromisnotareersservwado

thesceplahat
elyalsffalstoNSD
arynotoraths
edfocusevha

sed.

namNSDthe
cwess,addre
Fions.tatmili
otensidentify
Wks.blocIP

hinwitservser
scanningsuch

evdiscodcoul
PTC,SSHas
esorwlingcra

p ,

misanningscsuchSecond,e.m
yentrceervisaencerefercannot
aailvunaisSDNersevrefit,irs
hits,errvseHSSofthousandsof

ngscannilehiwtthafoundeWWe
weffeandaorkwtnecampusourn

approthisuatealveotengineg
Wces.serviofbernumgelaraer

prdtandarsonanningsclayer-
servicespublicslesorFs.engineearch

cesservisess
ofsermtiny
IPanorfforable
yekethresha

cklyquinca
cpubligeralw

SSHonhoac
onetuilbeWWe

tsporotocolr
uchs,ervices

g

andyekviceser
tormoniwhen

anoto,sdooTTo
entscliphelcan

Additionally
DNtoapplies

serLorclientL
perrvseSDN

dentiitoesnam
“onersaryadv

viprearomffromdchangeevhaIPnd
seesientclafIce.ervisaingr

IPtheordrecsoalouldwesari
entvrcumcienveandectdetnts

Donlycontrolsrecktataanif,ly
well.asattacksNS

ysisanalhet,husTtack.atervr

cotheashreattamestheesentpr
locsedpromicommpromiavices,serfynti
liecandriesnotahenWh”.patn

edrusttyiousl
theboththat

usedsaddres
acks.attuchs

seinotar,NSD

6ionSectin
ngrespondior

eemotroraloc
NSDeusntse

additiidentify
esarinotseed

identifcannot
eerprsintmibe

nonngrunni

fqueryclientsasservicesional
evscodievtiacromffromdatahwit
appromisingoneervices,sallyf

actieBecaustack.atanaseted
sc,ynallFis.portdtandaron-s

them.for
thenand,ery

toispproach
eryvscodievi

maycanning

gedisry)cpoli
phetofyan
orwnetheton
tiwedociatass
,yekablestor

cttaaNSDasayekwnehetrda
(dependicantises,addrestas

prtheesveirecientclhetIfrk.
yekhattfiestttoyekdolhetth

theotyectldirtconnecncait

teadinsandk
alloconngdi

omfryekrior
esiblvililstsi

sesaddresIP

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 331

connect directly to the address using the prior key.12

Client Privacy Considerations: While benign notary
servers would not record a client’s IP address, a malicious
notary could link client addresses and destination services,
impinging on client privacy. Because clients access the no-
tary group only rarely (when the offered key is not cached)
and do so only when a legitimate security threat exists,
we believe that most clients will consider this potential
privacy risk acceptable.

However, clients that desire additional privacy could
contact the notary group through a proxy. One promising
design for such a proxy is to have the notary authority
run a DNS nameserver for a special notary domain
(e.g., notary.com). A notary client looking for observed
key data for server.domain.com from num-notary
different servers would perform a DNS look-up for num-
notary.server.domain.com.notary.com.13 The nameserver
for notary.com would then randomly query num-notary
servers and return the base64-encoded results as a DNS
TXT record. Because of the recursive nature of DNS
look-ups, the notary nameserver would learn only general
information about the client (e.g., that they use CMU’s
DNS servers), and the rest of the notaries would learn
no client-specific information. Clients are unlikely to
have privacy concerns about notary queries via local DNS
resolvers, since they already expose basic connection
information to the resolver with standard DNS look-ups.

Detecting Authentication Downgrade Attacks: Our
primary motivation for designing PERSPECTIVES was
to help authenticate services that do not have certificates
signed by a global PKI. However, users can also benefit
from using PERSPECTIVES even when accessing websites
with PKI-signed certificate by gaining protection against
authentication downgrade attacks. In an authentication
downgrade attack, a MitM adversary injects a self-signed
certificate in place of the PKI-signed certificate sent by
the legitimate server. Because the attacker can spoof
legitimate names in the domain name and issuer fields, the
significant number of users who routinely ignore many
browser security warnings [21, 10] would fall victim to
such an attack. In fact, a malicious exit-node in the Tor
anonymizing network was recently observed running
such an attack [24]. However, if notaries also monitor
services with PKI-signed certificates, clients could detect
this attack by comparing the received certificate against
the notary replies. This same approach would also help
prevent the even more damaging attack in which an

12 Adding IP addresses to the observed key data returned by a notary
also helps clients handle cases when DNS-based load-balancing maps a
single hostname to different machines that each have their own key.

13A similar DNS trick is used by the popular Coral Cache content
distribution network [11]. Using a TTL of 0 and appending random
data to the beginning of the DNS name can prevent DNS caching from
providing stale data.

attacker tricks one of the many root CAs trusted by a
browser into signing an invalid certificate.14

On-demand Service Monitoring: A slightly modified
notary design could allow clients to request that notaries
probe a service “on-demand”, for example, when the
client’s offered key does not match the most recent entry
in the notary history. Depending on client policy, this ap-
proach could reduce the likelihood that a client incorrectly
rejects a key following a legitimate server key change.
However, because the notary must cryptographically sign
the each new probe result, it would be more vulnerable to
DoS attacks. In light of this and other potential abuses,
on-demand probing is best suited for either a private
notary group with limited access or a public notary group
augmented with a strong rate-limiting mechanism like
client puzzles [13].

Scaling the Notary Infrastructure: Our design and im-
plementation focuses on a notary infrastructure that is
easily deployed and capable of regularly monitoring sev-
eral million unique services. If PERSPECTIVES is widely
adopted as a standard host authentication mechanism, it
can easily scale. First, note that notary replies are simply
static data, which could be made available via a content de-
livery network (e.g., Akamai) or a network storage service
(e.g., Amazon’s S3). The physical location or ownership
of these machines would be unrelated to the hosts generat-
ing observed key data. Because monitoring and updating
observed key data is trivially parallelizable, this work can
be distributed to a cluster of machines in each notary lo-
cation. Trends toward many-core machines should further
improve the efficiency of service monitoring.

9 Related Work
Significant work exists on the problem of authenticating re-
mote Internet hosts. Standard solutions include X.509 cer-
tificates within a global PKI [5], or Kerberos [15], which
assumes that each participant has a shared secret with a
trusted third party. Such solutions are extremely useful,
but the popularity of the SSH model demonstrates the need
for lightweight alternatives.

Ali and Smith [1] propose improving SSH key authenti-
cation using a “portable key cache”, which the user stores
along with an authenticating MAC on a personal webserver.
With a modified SSH client, the user can access this cache
from any machine, use a passphrase to verify the integrity
of its contents, and then compare the offered key to entries
in the cache. This design helps users who would otherwise
see the same new or changed key warning several times

14 To accommodate legitimate key turnover, the site owner can sign
the new public key using the older key that is already recognized as valid
by the notaries.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association332

when connecting to the same server(s) from multiple client
machines. However, unlike PERSPECTIVES, it provides
no help in determining a key’s validity when a user either
accesses a service for the first time or when an offered key
does not match the key in the user’s portable cache.

Advocating a more significant departure from the stan-
dard SSH authentication model, RFC 4255 [22] proposes
storing SSH host key fingerprints in DNS. Unfortunately,
this proposal relies on the deployment of the secure DNS
PKI to authenticate the fingerprint data itself, and secure
DNS has shown little traction to date. Additionally, the
proposal requires that a domain’s DNS administrator ful-
fill the responsibilities of a certificate authority: verifying
that a real-world entity who contacts him with a certificate
request legitimately owns a particular host. In contrast,
PERSPECTIVES requires no heavyweight verification and
instead automatically creates authentication data using
probes.

ConfiDNS [19] suggests performing DNS look-ups
from diverse network vantage points. However, the pri-
mary focus of the ConfiDNS work was dealing with the
fact that DNS replies (unlike public keys used in PERSPEC-
TIVES) frequently have legitimate inconsistencies due to
factors like DNS load-balancing. Additionally, because
the system was designed to avoid pollution in cooperative
DNS systems, the design only protects against a malicious
or failed local DNS server, not an “on path” adversary
(e.g., Lclient) launching a MitM attack.

Web tripwires [20] are javascript verification functions
embedded by a webserver in HTTP responses to perform
client-side detection of in-flight data modification. While
lightweight, tripwires are not robust to adversaries, which
can remove the tripwire code from the HTTP response to
thwart detection.

Notary client policies bear some similarity to client
behavior in the “web-of-trust” model used by Pretty-Good-
Privacy (PGP) [4], a decentralized PKI for email. However,
because PGP uses human contact to bind entities to keys,
its primary challenge is estimating the strength of key trust
chains that include multiple links, each representing a pair
of real-world acquaintances. PERSPECTIVES policies do
not have trust chains (each notary probes a service directly),
but do have other complexities not seen in PGP, including
the temporal nature of key histories.

The concept of building a “lightweight PKI” based on
the normal operation of the network was also proposed
in the context of securing BGP routing. A “Grassroots
PKI” [12] binds a public key to a prefix of IP address
space if that key is included in a stable and widely used
routing announcement for that prefix.

10 Future Work
We believe that the network notary concept introduced
by PERSPECTIVES opens several promising avenues
for additional exploration in the area of host authentication.

Notary-Aware Services: As presented, PERSPECTIVES
only requires client modifications. However, if notaries
become common, servers might be modified to also com-
municate with notaries. This would provide three primary
benefits:

1. Immediate Probing of New Keys: A server could
immediately alert notaries when it comes online or
changes its key, allowing notaries to quickly begin
building an observation history for the new key.

2. Reduced Need to Query Notaries: The server could
act as a caching proxy by querying notaries on behalf
of clients. This would eliminate privacy issues related
to clients querying notaries directly and would also
allow clients to receive cached observed key data even
if notaries were temporarily unavailable.

3. Attack Detection: With access to the notary infras-
tructure, a server could request observed key data for
its own service-id and alert its administrator if the
notary replies include any illegitimate keys. Such a
false key is a likely indication that either a network
element near the server is malicious or that a notary
is compromised, thereby aiding attack detection.

Unlike standard PKIs, these changes do not require
server owners to manually prove their identity to a
third-party CA, making them simple to adopt.

Applying PERSPECTIVES to Additional Protocols:
PERSPECTIVES opens the door for more widespread use
of SSH-style authentication with other protocols because,
unlike Tofu, use of key-trust policies can automatically
authenticate keys in a secure fashion, even on the first
connection to a service.

SMTP: Many SMTP servers already have self-signed
SSL certificates so that local clients who manually install
these certificates can authenticate their outgoing mail
server. However, because no PKI exists for one server
to verify another server’s certificate, emails are often
transmitted “in-the-clear,” leaving them vulnerable to
snooping by whomever controls the intermediate networks.
PERSPECTIVES could support mutual authentication
of inter-SMTP server communication, allowing, for
example, a server to refuse to transmit a message the
user has deemed “sensitive” to an unauthenticated server.15

Incremental DNSSEC: The deployment of secure DNS
(DNSSEC) is hampered by the fact that a sub-domain (e.g.,

15DomainKeys [6] could also benefit from PERSPECTIVES, as keys
are currently acquired using unauthenticated DNS look-ups.

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 333

example.com) cannot protect its hosts until its parent do-
main (e.g., .com) publishes its own public key and signs
the sub-domain’s public key. Unfortunately, to date, ma-
jor top-level domains have shown little enthusiasm for
deploying DNSSEC. With PERSPECTIVES, the authori-
tative nameserver for any sub-domain could publish an
un-signed key used to sign its zone, with resolving name
servers using notaries to validate key prior to caching.

11 Conclusion

As evidenced by its widespread use, SSH-style host au-
thentication offers a simple and attractive alternative to
a heavyweight PKI. Unfortunately, “Trust-on-first-use”
leaves users vulnerable to simple MitM attacks, limiting
the effectiveness of current Tofu applications and prevent-
ing other protocols from being able to take advantage of
lightweight SSH-style host authentication. To enhance
security without requiring a PKI, we designed PERSPEC-
TIVES to supplement Tofu-based applications with spatial
and temporal redundancy. Our implementation demon-
strates that the notary concept is practical, and after using
our PERSPECTIVES clients for nearly a year, we have
found them invaluable at several occasions: when logging
in to a new server while connecting through a public wire-
less network, or when connecting to a known server after
a server key change. As a result, we believe that PERSPEC-
TIVES is a practical approach to improving the security of
users communicating with SSH and self-signed HTTPS.

Acknowledgments
Dan Wendlandt was supported by a graduate fellowship
from the Dept. of Homeland Security and an award from
the ARCS Foundation. This research was supported in
part by CyLab at Carnegie Mellon under grant DAAD19-
02-1-0389 from the Army Research Office, grants CCF-
0424422 and CNS-0716278 from the National Science
Foundation, and a Sloan Foundation faculty fellowship.
The views contained here are those of the authors and do
not necessarily represent the official policies or endorse-
ments of ARO, CMU, NSF, or the U.S. Government. We
thank Bryan Parno, Himabindu Pucha, and our many re-
viewers for useful comments. Special thanks to Ramu
Panayappan for developing the Perspectives extension for
Firefox.

References
[1] Y. Ali and S. Smith. Flexible and scalable public key security for

SSH. In EuroPKI, pages 43–56, 2004.
[2] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris.

Experience with an Evolving Overlay Network Testbed. ACM
Computer Communications Review, 33(3):13–19, July 2003.

[3] M. Bellare and S. K. Miner. A forward-secure digital signature
scheme. Lecture Notes in Computer Science, 1666:431–448, 1999.

[4] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer.
OpenPGP Message Format. Internet Engineering Task Force, Nov.
2007. RFC 4880.

[5] S. Chokhani and W. Ford. Internet X.509 Public Key Infrastructure
Certificate Policy and Certification Practices Framework. Internet
Engineering Task Force, 1999. RFC 2527.

[6] M. Delany. Domain-based Email Authentication Using Public Keys
Advertised in the DNS (DomainKeys), Aug. 2004.

[7] W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication and
authenticated key exchanges. Designs, Codes and Cryptography,
pages 107–125, 1992.

[8] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. In Proc. 13th USENIX Security Symposium,
Aug. 2004.

[9] Drive-by Pharming. Symantec security response weblog: Drive-
by pharming in the wild. http://www.symantec.com/
enterprise/security_response/weblog/2008/01/
driveby_pharming_in_the_wild.html.

[10] S. Egelman, L. F. Cranor, and J. Hong. You’ve been warned:
An empirical study of the effectiveness of web browser phishing
warnings. In Proceedings of the SIGCHI conference on Human
factors in computing systems (CHI ’08), 2008.

[11] M. Freedman, E. Freudenthal, and D. Mazieres. Democratizing con-
tent publication with Coral. In Proceedings of the 4th USENIX Sym-
posium on Network Systems Design and Implementation (NSDI),
2004.

[12] Y.-C. Hu, D. McGrew, A. Perrig, B. Weis, and D. Wendlandt.
(R)Evolutionary bootstrapping of a global PKI for securing BGP.
In Proc. 5th ACM Workshop on Hot Topics in Networks (Hotnets-V),
Nov. 2006.

[13] A. Juels and J. Brainard. Client puzzles: A cryptographic counter-
measure against connection depletion attacks. In Symposium on
Network and Distributed Systems Security (NDSS ’99), Feb. 1999.

[14] A. Lenstra and E. Verheul. Selecting cryptographic key sizes.
Journal of Cryptology, 14(4):255–293, 2001.

[15] S. Miller, B. Neuman, J. Schiller, and J. Saltzer. Kerberos authenti-
cation and authorization system. Technical report, MIT, Oct. 1988.
Project Athena Technical Plan.

[16] NTP-Pool. pool.ntp.org : the Internet cluster of NTP servers. http:
//www.pool.ntp.org.

[17] OpenSSH. http://www.openssh.com.
[18] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint

for introducing disruptive technology into the Internet. In Proc. 1st
ACM Workshop on Hot Topics in Networks (Hotnets-I), Oct. 2002.

[19] L. Poole and V. S. Pai. ConfiDNS: Leveraging scale and history to
improve DNS security. In Proceedings of Third Workshop on Real,
Large Distributed Systems (WORLDS), November 2006.

[20] C. Reis, S. D. Gribble, T. Kohno, and N. C. Weaver. Detecting
in-flight page changes with web tripwires. 2008.

[21] S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer. The
emperor’s new security indicators. In SP ’07: Proceedings of the
2007 IEEE Symposium on Security and Privacy, 2007.

[22] J. Schlyter and W. Griffin. Using DNS to Securely Publish Secure
Shell (SSH) Key Fingerprints. Internet Engineering Task Force, Jan.
2006. RFC 4255.

[23] The RON/IRIS Testbed. http://www.datapository.net/tb/.
[24] Tor Exit Node Hijacks. TOR exit-node doing MITM at-

tacks. http://www.teamfurry.com/wordpress/2007/
11/20/tor-exit-node-doing-mitm-attacks.

[25] Traceroute.org. Traceroute.org. http://www.traceroute.
org.

[26] W32.Arpiframe. W32.arpiframe. http://http://www.
symantec.com/business/security_response/
writeup.jsp?docid=2007-061222-0609-99.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association334

