
LeakSurvivor: Towards Safely Tolerating Memory Leaks for
Garbage-Collected Languages

Yan Tang, Qi Gao, and Feng Qin
The Ohio State University

{tangya, gaoq, qin}@cse.ohio-state.edu

Abstract

Continuous memory leaks severely hurt program per-
formance and software availability for garbage-collected
programs. This paper presents a safe method, called
LeakSurvivor, to tolerate continuous memory leaks at
runtime for garbage-collected programs. Our main idea
is to periodically swap out the “Potentially Leaked” (PL)
memory objects identified by leak detectors from the vir-
tual memory to disks. As a result, the virtual memory
space occupied by the PL objects can be reclaimed by
garbage collectors and available for future uses. If a
swapped-out PL object is accesses later, LeakSurvivor
will restore it from disks to the memory for correct pro-
gram execution. Furthermore, LeakSurvivor helps de-
velopers to prune false positives.
We have built the prototype of LeakSurvivor on top of
Jikes RVM 2.4.2, a high performance Java-in-Java vir-
tual machine developed by IBM. We conduct the exper-
iments with three Java applications including Eclipse,
SPECjbb2000 and Jigsaw. Among them, Eclipse and
Jigsaw contain memory leaks introduced by their devel-
opers, while SPECjbb2000 contain a memory leak in-
jected by us. Our results show that LeakSurvivor ef-
fectively tolerates memory leaks for two applications
(Eclipse and SPECjbb2000), i.e., no cumulative perfor-
mance degradation and no software failures when fac-
ing continuous memory leaks at runtime. For Jigsaw,
LeakSurvivor extends the program lifetime by two times
and improves the performance by 46% compared with
native runs. Furthermore, when there are no memory
leaks, LeakSurvivor imposes small runtime overhead,
i.e., 2.5% over the leak detector and 23.7% over the na-
tive runs.

1 Introduction

Garbage-collected languages such as Java and C# be-
come increasingly popular. This is partly because pro-
grams written in these languages are free of many types
of memory errors, which are notorious for compromis-
ing system availability and security [42]. For example,
by forbidding explicit pointers, Java programs do not
encounter memory corruptions due to incorrect pointer

arithmetics. With tremendous advances of hardware
and Just-In-Time (JIT) compiler techniques, garbage-
collected languages are now applied even in enterprise
server environments [3, 7].
Unfortunately, memory leaks still exist and severely
affect performance and availability for garbage-
collected programs, even though garbage collectors can
reclaim unreachable memory objects [23]. Memory
leaks occur in a garbage-collected program when the
program keeps references to memory objects that are
no longer needed. As a result, the heap space occupied
by leaked memory objects cannot be reclaimed by
garbage collectors. For long-running garbage-collected
programs, continuously-leaked memory objects take up
more and more space in the heap, leading to more fre-
quent invocation of garbage collections (GC) at runtime.
Additionally, more leaked objects in the heap space
increase the object traversal time during each GC phase.
Therefore, continuous memory leaks cumulatively
degrade overall program performance [12, 27]. Even
worse, memory leaks may exhaust system resources,
eventually causing program crashes [18, 27].
The performance degradation problem due to memory
leaks cannot be completely solved by the paging mech-
anism used in OS memory management or by infinitely
increasing the heap size (e.g., in 64-bit machines). The
OS paging mechanism swaps out physical memory to
disks when physical memory is under pressure, which
leaves the virtual memory space un-reclaimed. There-
fore, heap pressure (i.e., little available heap space) in
the virtual memory due to memory leaks remains the
same, leading to cumulative performance degradation.
Alternatively, infinitely increasing the heap size, e.g.,
in 64-bit machines, reduces the heap pressure and thus
eliminates the increasing GC frequency. However, once
the working set of garbage collectors, i.e., the whole
heap, becomes too large to fit into the available physi-
cal memory, the program performancewill be drastically
degraded due to increased memory paging during each
GC phase [44].
Therefore, it is imperative to devise mechanisms
for tolerating continuous memory leaks at runtime for
garbage-collected programs. The mechanisms must
enable programs to maintain relatively stable perfor-

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 307



mance and survive software failures caused by contin-
uous memory leaks.
There are only a few studies [13, 35, 24, 34] on tol-
erating memory leaks. They are either unsafe or unable
to prevent performance degradation and out-of-memory
errors. Cyclic memory allocation [34] tolerates memory
leaks by restricting each allocation site to a fixed number
of live objects. While this method may work for appli-
cations that have predictable memory requirements, it is
in general unsafe since the live objects could be over-
written. Melt [13] and Plug [35] isolate leaked objects
from non-leaked objects and rely on the OS paging for
releasing the physical memory occupied by leaked ob-
jects. While they are effective in alleviating the phys-
ical memory shortage caused by memory leaks, these
methods cannot reduce heap usage in the virtual mem-
ory and will eventually trigger the out-of-memory errors.
Goldstein et al. proposed to dump large unused objects
to disks [24]. However, their approach does not handle
small leaked objects, which can insidiously cause perfor-
mance and availability problems. Furthermore, it lacks
an automatic mechanism to detect leaked objects.

Our Contributions. In this paper, we propose a safe
method for tolerating continuous memory leaks for
garbage-collected programs at runtime. It can avoid cu-
mulative performance degradation and software failures
due to continuous memory leaks. In addition, it helps
developers to prune false positives.
Our idea is to periodically move the “Potentially
Leaked” (PL) memory objects identified by leak detec-
tors from the virtual memory to disks. As a result, the
heap space occupied by PL objects can be reclaimed by
garbage collectors and thus are available for future uses.
If a swapped-out PL object is accesses later, LeakSur-
vivor will restore it from disks to the memory for correct
program execution.
Based on the above idea, we build a tool called Leak-
Survivor in Jikes RVM [7], a high performance Java-
in-Java virtual machine developed by IBM, to tolerate
memory leaks at runtime. We evaluate LeakSurvivor
with three applications, including Eclipse, a popular
integrated development environment, SPECjbb2000, a
simulator of an order-processing server system, and Jig-
saw, a web server. Among them, Eclipse and Jigsaw
contain memory leaks introduced by their developers,
while SPECjbb2000 contain a memory leak injected by
us. Unlike previous approaches, LeakSurvivor possesses
the following advantages:

• LeakSurvivor can safely and effectively tolerate
memory leaks for garbage-collected program at
runtime. Our evaluation shows that it can tolerate
leaks for two of the three applications (Eclipse and
SPECjbb2000). For Jigsaw, LeakSurvivor extends

its lifetime by two times and improves performance
by 46% compared with native runs.

• LeakSurvivor incurs low overhead for programs
during normal execution without memory leaks.
This is because it only adds one extra check dur-
ing GC phase. Our evaluation with DaCapo bench-
marks shows that LeakSurvivor incurs small run-
time overhead, i.e., 2.5% over the leak detector and
23.7% over the native runs, when there are no leaks.

• LeakSurvivor requires no modification in the appli-
cations’ source codes. Therefore, it can be easily
applied to legacy garbage-collected programs.

• LeakSurvivor provides false positive information
on memory leaks, if any, to developers for prun-
ing purposes. Once a PL object is restored to the
memory, LeakSurvivor marks it as a false positive
and passes this information to the leak detectors.

2 Main Idea of LeakSurvivor

The main idea of LeakSurvivor is to periodically swap
out “Potentially Leaked” (PL) objects from the vir-
tual memory to disks so that garbage collectors can re-
claim the heap space occupied by these objects. If all
leaked memory objects are identified as PL objects and
swapped out, the heap pressure due to memory leaks is
eliminated. As a result, LeakSurvivor can avoid cumu-
lative program performance degradation and future pro-
gram crashes due to continuous memory leaks. Upon
accesses to some swapped-out PL objects during sub-
sequent program execution, i.e., PL objects are falsely
identified, LeakSurvivor swaps them from disks to mem-
ory so that the programs can continue execution cor-
rectly. In this way, LeakSurvivor guarantees the safety
of leak tolerance. Additionally, LeakSurvivor helps de-
velopers to prune false positives.
Figure 1 shows the process by which LeakSurvivor
tolerates memory leaks at runtime and guarantees the
correctness of subsequent program execution. During
program execution, LeakSurvivor periodically checks
whether there are PL objects marked by the integrated
leak detectors. If so, it swaps out the PL objects by copy-
ing the object contents from memory to the leak space
(See Section 3.2.1), which is mainly on disks. Addition-
ally, LeakSurvivormodifies all the PL objects’ incoming
references, i.e., references from other objects to the PL
objects, and outgoing references, i.e., references from
the PL objects to other objects (See Section 3.2). After
this, the virtual memory space occupied by the PL ob-
jects can be safely reclaimed by garbage collectors and
are available for future uses. Figure 1(a)(b) shows the

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association308



Virtual

Memory

Physical

Memory

PL

object

Leak Space/Disk

Virtual

Memory

Physical

Memory

Leak Space/Disk

Virtual

Memory

Physical

Memory

Leak Space/Disk

Virtual

Memory

Physical

Memory

Leak Space/Disk

(a) Mark a PL object (b) Swap out a PL object (c) Access a PL object (d) Swap in a PL object

Figure 1: LeakSurvivor: The main idea (PL means “Potentially Leaked”).

swap-out process, which reduces heap pressure due to
memory leaks.
Unfortunately, even the state-of-the-art leak detectors
report false positives, i.e., PL objects that are not really
leaked. Once the program accesses a swapped-out PL
object through an incoming reference, which was modi-
fied to a unique reserved address during a swapping out
phase, an OS exception (segmentation fault) will be trig-
gered. In the exception handling routine, LeakSurvivor
identifies the PL object based on the unique reserved
address and swaps in the object by copying its content
from the leak space to memory and restoring the corre-
sponding incoming and outgoing references. After re-
turning from the exception, the program continues exe-
cution correctly by retrying the “faulty” instruction. The
swap-in process is shown in Figure 1(c)(d).

3 Design and Implementation

LeakSurvivor consists of three major components that
detect and tolerate memory leaks during program exe-
cution. As shown in Figure 2, the three components in
LeakSurvivor are: (1) leak detectors for detecting “Po-
tentially Leaked” (PL) memory objects; (2) a swap-out
component for copying PL objects from the memory to
the leak space, which is mainly on disks; (3) a swap-in
component for restoring PL objects from the leak space
to the memory upon future accesses to them. We imple-
ment LeakSurvivor on top of Jikes RVM 2.4.2, a high-
performance Java-in-Java virtual machine [7]. We do
not see any particular difficulties to implement the ideas
of LeakSurvivor in other Java Virtual Machines (JVM).

3.1 Leak Detectors

Leak detectors identify PL memory objects and pass this
information to the swap-out component. For garbage-
collected programs, memory objects that are unreach-

LeakSurvivor

Figure 2: LeakSurvivor architecture

able from roots, i.e., references in global, static, and
stack variables, are automatically reclaimed by garbage
collectors. Therefore, leak detectors for garbage-
collected programs only report potentially leaked ob-
jects that are still reachable from roots as PL objects.
There are two types of such leak detectors. The first
type is to exploit heap growth and heap difference for
identifying leaked objects or data types that cause heap
growth. This type of tools include JRockit [43], Leak-
Bot [33], and Cork [31], just to name a few. The second
type is to exploit the lifetime or staleness of each ob-
ject for identifying leaked objects that are not used for
a long time. In the prototype of LeakSurvivor, we use
Sleigh [12], a lightweight, low space overhead leak de-
tector of the second type. The idea of our LeakSurvivor,
however, is independent of leak detection methods.
Sleigh tracks accesses to each object at runtime and
marks objects that are not accessed for a long time as
stale objects. More specifically, Sleigh designates two
bits as the stale counter for each object to record how
long the object has not been accessed. It resets the
stale counter to zero upon object allocation and accesses,
and increases the stale counter in logarithmic scale at

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 309



garbage collection (GC) time. Once both stale bits be-
come ones, the object is deemed as stale. To mini-
mize the space overhead, Sleigh leverages a statistical
approach, called BELL, to encode object allocation and
last-use site information into a single bit per object. Pe-
riodically, it decodes the information based on a large
number of stale objects and reports class names, the al-
location and last-use sites of stale objects. In its imple-
mentation, Sleigh borrows four unused bits in the object
header and thus incurs no per-object space overhead. For
more details about Sleigh, please refer to the paper [12].

LeakSurvivor considers the stale objects whose class
names are reported by Sleigh’s decoding phases as PL
objects. Sleigh does not report class names for the stale
objects with small occurrence since they are most un-
likely continuous leaks and much less harmful. Further-
more, LeakSurvivor focuses on application classes in-
stead of primitive types such as char array, classes with
the prefix “java.*”, etc. Since Sleigh’s decoding phase is
expensive, we currently run it offline and pass the results
to LeakSurvivor. In the future, we plan to extend Sleigh
to run the decoding phase online in a separate machine
or different cores of the same machine. Additionally, we
modified Sleigh to record false positives reported by the
swap-in component so that they can assist developers for
further bug diagnosis and the falsely identified objects
will no longer be marked as PL objects.

3.2 Swap-Out Component

The swap-out component saves the PL objects at runtime
so that the virtual memory space occupied by them can
be safely reclaimed by garbage collectors and are avail-
able for future memory requests. More specifically, after
PL objects are identified by leak detectors, the swap-out
component copies their content from the virtual mem-
ory to the leak space (Section 3.2.1). In addition, the
swap-out component assigns all the incoming references
to each PL object with a unique reserved address (Sec-
tion 3.2.2) that is not allowed to be dereferenced at the
user level. For all the outgoing references from each PL
object, the swap-out component uses a swap-out table
(Section 3.2.3) to record such information for facilitating
future garbage collections. During subsequent program
execution after a swap-out process (Section 3.2.4), if an
instruction has nothing to do with any reserved address,
it is normally executed. Otherwise, it triggers an OS ex-
ception, which will be handled by the swap-in compo-
nent (Section 3.3) so that the program can correctly con-
tinue execution. We summarize the swap-out process in
Section 3.2.5.

3.2.1 Leak Space

The leak space mainly uses disks for storing PL objects
so that the memory space for these objects can be re-
leased for future uses and the PL objects can be restored
if needed. Due to slow disk operations, it is essential
to manage the leak space for efficient object write and
read operations in the leak space. In LeakSurvivor, write
operations are dominant since continuous memory leaks
make PL objects continuously to be moved to the disks.
In the meantime, LeakSurvivor reads PL objects from
disks only when they are falsely identified by Sleigh,
which has low false positive rates [12].

Obj 1 Obj 2

Obj 3 Obj 4

. . .

Meta Data Object Data

32

24

24

16

.
.

.

Figure 3: Leak space structure

LeakSurvivor organizes the leak space in a way sim-
ilar to the Log-structured File System [38] for efficient
write accesses of various-sized PL objects and random
read accesses. More specifically, a PL object is sequen-
tially appended to the last PL object in the leak space
for a write operation. The disk space occupied by the
PL objects will not be reclaimed even when the ob-
jects are brought back to the memory. This design is to
trade disk capacity for slow write operations given the
ever-increasing disk capacity per dollar [26]. Once the
disk capacity becomes a real problem, we can use com-
paction techniques [17] to clean up disk space occupied
by useless PL objects.
To provide efficient random read accesses to PL ob-
jects in the leak space, LeakSurvivor uses fix-sized meta
data for each PL object. As shown in Figure 3, the meta
data for each PL object consists of its size, its disk ad-
dress, and other related information specific for Jikes
RVM. The index of each entry is the unique id associ-
ated with a PL object. With the index number, LeakSur-
vivor can easily identify the meta data of the PL object
and read the object from the leak space.
To further improve the performance of the leak space
write and read operations, LeakSurvivor dedicates two
chunks of memory as buffers for storing PL objects and
their meta data respectively. More specifically, Leak-
Survivor first stores a PL object and its meta data in the
buffer. Once the buffer is full, the chunk of PL objects
and their meta data will be flushed to disks. We currently
implement synchronous flushes in LeakSurvivor. For

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association310



better performance, we plan to support asynchronous
flushes. During our experiments, 8 MB buffer is large
enough to provide efficient PL object writes to the leak
space. Furthermore, when LeakSurvivor reads a PL ob-
ject from the leak space, it first checks the buffer to see
whether the object is still there. If yes, LeakSurvivor
avoids the expensive disk read (See Section 5.2.5).

3.2.2 Incoming References and Reserved Addresses

After a PL object is copied from the memory to the
leak space, LeakSurvivor assigns all the incoming ref-
erences, i.e. references to the PL object, with a unique
reserved address to guarantee correct program execution
upon future accesses to the PL object. To modify all the
incoming references, LeakSurvivor leverages forward-
ing pointer techniques [17, 21] and integrates the ref-
erence modification into the object traversal process at
GC phases. More specifically, LeakSurvivor stores the
unique reserved address for each PL object in its object
header as the forwarding pointer. During the GC phase,
when the traversed object has a reference to a PL ob-
ject, LeakSurvivor modifies its reference to the reserved
address stored in the forwarding pointer. As a result,
LeakSurvivor avoids one extra live object traversal for
modifying incoming references of each PL object.
The reserved addresses are within the address range
reserved exclusively for the OS kernel use. Conse-
quently, any access to a PL object via de-referencing
the associated reserved address at the user level triggers
an OS exception. In the exception handling routine, the
swap-in component brings the PL object from the leak
space to the memory so that the program can continue
execution correctly.
Such use of reserved addresses in LeakSurvivor has
no conflict with the use of reserved addresses by the ker-
nel itself. This is because the virtual memory pointed to
by reserved addresses can be normally accessed at the
kernel level without raising any exception. However, it
may cause problems if the reserved addresses for some
PL objects are passed from applications to the kernel. To
address it, LeakSurvivor intercepts system calls in Java
system call wrappers and swaps in the objects before in-
voking the system calls.
LeakSurvivor maintains a one-to-one mapping be-
tween the reserved addresses and the PL objects by
sequentially assigning a different reserved address to
each new PL object. Equation 1 shows this mapping,
whereAddr(obj) is the reserved address of a PL object,
Index(obj) is the meta data index of a PL object, and
OFFSET is the base address of the reserved address
range. Therefore, given a reserved address, LeakSur-
vivor can easily locate the corresponding PL object by
calculating the meta data index, and vice versa.

Addr(obj) = Index(obj) + OFFSET (1)

The reserved address range is large enough for tol-
erating many leaked memory objects. In a 32-bit ma-
chine, OSes such as Linux usually reserve 1GB address
range exclusively for the kernel use, which means Leak-
Survivor can move around 1G PL objects to the leak
space. According to previous study [10], the size of
most objects in Java is from 40 to 80 bytes, which in-
cludes both the object content and header information.
Therefore, LeakSurvivor can tolerate continuous mem-
ory leaks with total size of 40-80 GB, which is 10-20
times of the entire virtual memory space, in a 32-bit ma-
chine. With emerging 64-bit machines, LeakSurvivor
can leverage much more reserved addresses for tolerat-
ing memory leaks.
It is obvious that garbage collectors should not fol-
low reserved addresses. Otherwise, it will trigger un-
necessary swapping of PL objects from the leak space
to the memory. We modify the garbage collector so
that it checks whether the currently-being-traversed ref-
erence is within the reserved address range or not. If
yes, the garbage collector does not de-reference it and
continue with other references and objects. Otherwise,
the garbage collector executes as usual.

3.2.3 Outgoing References and Swap-Out Table

After a PL object is moved from the memory to the leak
space, LeakSurvivor must properly handle its outgoing
references for two reasons. First, the outgoing refer-
ences need to be updated if the pointed-to objects are
moved to different memory locations, which can happen
for copying garbage collectors [17, 21]. Second, garbage
collectors need to traverse the outgoing references dur-
ing GC phases. Otherwise, objects that are pointed to
only by these references will be incorrectly reclaimed.
LeakSurvivor uses a in-memory Swap-Out Table
(SOT) to record all the outgoing references for each PL
object. More specifically, each SOT entry represents one
outgoing reference from a PL object. We modify the
garbage collector to add all the outgoing references in
the SOT to the roots before it starts the object traversal
process. Consequently, the garbage collector can effi-
ciently and correctly reclaim unreachable objects with-
out reading PL objects from disks.
As shown in Figure 4, each SOT entry consists of two
fields: one is the outgoing reference from the PL ob-
ject to another object in the memory and the other is the
reference counter for recording the number of outgoing
references sharing the entry. For handling each outgo-
ing reference from a PL object in the swap-out process,
LeakSurvivor first looks it up in the SOT. If any match-
ing entry is found, LeakSurvivor simply increments the
reference counter of that entry by one. Otherwise, a new

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 311



Leak SpaceVirtual Memory
Reserved Address

Mapping

Swap-Out Table

0x6625844C 2

. . .

. . .

Figure 4: Swap-out table and outgoing references

entry is created for the outgoing reference. After this,
LeakSurvivor modifies the field in the PL object from
the outgoing reference to the index of the SOT entry.
Since the SOT resides in memory, we must limit its
memory consumption from overshadowing the benefits
of swapping out PL objects. Fortunately, the memory
consumed by the SOT is much smaller than the mem-
ory saved by moving PL objects to the leak space. This
is because many objects in garbage collected languages,
such as Java, only have 1 to 2 incoming reference [10].
In this situation, The children objects of a PL object are
also likely leaked since they cannot be reached with-
out accessing the only parent PL object first. There-
fore, LeakSurvivor does not need to create a SOT en-
try for many PL objects upon moving them to the leak
space. Additionally, LeakSurvivor reduces the SOT size
by reference counters if multiple PL objects have outgo-
ing references to the same object in the memory. Fur-
thermore, LeakSurvivor reclaims a SOT entry if the ref-
erence counter becomes zero, which occurs when all the
related PL objects are moved back to the memory. An-
other chance to reclaim a SOT entry is before flushing
PL objects from the memory to disks. During this pe-
riod, LeakSurvivor checks the SOT entries used by the
PL objects in the buffers to see whether their outgoing
references are modified to some reserved addresses. If
any, LeakSurvivor reclaims the SOT entry and modifies
the field of the PL object to the reserved address. Our
experiments show that a SOT with 1 MB is sufficient to
tolerate continuous memory leaks for the evaluated ap-
plications (See Section 5.2.4).

3.2.4 Instruction Execution

LeakSurvivor guarantees correct program execution af-
ter swapping out PL objects into the leak space. We can
verify it by examining all the machine instructions that
are possibly executed since Jikes RVM compiles class
methods into native code for better performance.
We classify all the machine instructions into three
types based on how the instructions are related to the ref-
erences (i.e., reserved addresses) to PL objects. The first

and simplest type is instructions whose operands have
nothing to do with the references to any PL object, i.e.,
not performing any operations over the references. This
type of instructions can be correctly executed without
being affected by LeakSurvivor.
The second type of instructions perform non-de-
referencing operations such as the equality operation
“==” and the assignment “=” over the references to
some PL objects. This type of instructions can be cor-
rectly executed since LeakSurvivor associates each PL
object with a unique reserved address so that the pro-
gram distinguishes references to different PL objects
from each other. For example, after a PL object A is
moved to the leak space, its incoming reference value
will be changed from Aold to some reserved address
Aresv . In this scenario, if Aold equals to Bold, i.e., both
references pointing to the same PL object, then LeakSur-
vivor ensures that Aresv equals to Bresv as described in
Section 3.2.2, and vice versa. Note, type checking sys-
tems in garbage-collected programs prohibit arithmetic
operations such as + and − over references [25].
The last type of instructions de-reference the refer-
ences to some PL objects, which triggers OS excep-
tions due to the reserved addresses. Such instructions are
compiled from operators such as field access, method in-
vocation, instanceof, type cast, etc. [25]. They attempt to
access either the content or the header information of the
PL objects. Therefore, LeakSurvivor needs to bring the
corresponding PL objects to the memory for continuing
program execution correctly. Array bounds checking,
for example, will trigger the swapping in of the array
object itself, but leave the objects referenced by array
elements untouched.

3.2.5 Swap-out Process

There are three steps for moving a PL object to the
leak space and modifying the outgoing references. First,
LeakSurvivor attempts to move the children objects to
the leak space if they are stale. Otherwise, LeakSur-
vivor skips them since they are being actively accessed.
Second, the content of the PL object is copied from the
memory to the leak space. We use the depth-first order
to avoid unnecessary SOT entries if children objects are
also swapped out. The last step is to create a SOT en-
try for each outgoing reference that is still pointing to an
object in memory.
LeakSurvivor integrates the swap-out process with
GC’s object traversal process to achieve better perfor-
mance. More specifically, when each object is being
traversed by the garbage collector, LeakSurvivor checks
whether it is stale and its class name reported by Sleigh.
If yes, it is a PL object and LeakSurvivor swaps it out
via the above three steps. Additionally, if a stale object

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association312



is pointed to by the reference of any SOT entry, LeakSur-
vivor swaps it out since it is likely to be a PL object due
to its staleness and its ancient PL object. After an ob-
ject is swapped out, the garbage collector will assign all
the future incoming references to this object with its as-
sociated reserved address using forwarding pointer tech-
niques. Note, we modify the garbage collector to add the
references in all the SOT entries to the roots before the
object traversal.
When there are circular references among some
swapped-out objects, the above swap-out process creates
one SOT entry recording the outgoing reference from the
last PL object to the first PL object. This is incorrect be-
cause after the swap-out process the first PL object is
moved to the leak space, which makes this outgoing ref-
erence in the SOT entry obsolete. To address it, Leak-
Survivor inspects all the SOT entries to see whether the
outgoing references are pointing to some objects in the
leak space. If so, LeakSurvivor modifies the fields in the
corresponding PL objects to the reserved addresses.
.

3.3 Swap-in Component

To handle an OS exception due to de-referencing a re-
served address, the swap-in component first identifies
the target PL object (Section 3.3.1), allocates virtual
memory space for the PL object, copies its content from
leak space to the memory, and restores its incoming
and outgoing references (Section 3.3.2). Additionally,
the swap-in component notifies the leak detectors of the
falsely-identified PL object. After this, the program au-
tomatically retries the “faulty” instruction and continues
the execution correctly. We discuss the multi-threading
issue in Section 3.3.3 and summarize the swap-in pro-
cess in Section 3.3.4.

3.3.1 PL Object Identification

In an OS exception, LeakSurvivor checks whether it is
a segmentation fault. If yes, LeakSurvivor retrieves the
de-referenced reserved address from the base register in
the faulty instruction. Otherwise, it passes the excep-
tion to the default handlers. Given a reserved address
Addr(obj), LeakSurvivor can calculate themeta data in-
dex of the PL object, i.e.,Addr(obj)−OFFSET , based
on Equation 1. Then, LeakSurvivor fetches the informa-
tion of the PL object and reads it from the leak space.
The above scheme works in most cases since the com-
piler often generates code with base address + offset

addressing mode, where base address is the starting
address of an PL object. However, the compiler occa-
sionally generates code that first calculates the result of
base address + offset , then stores the result in the base
register, and finally de-references the address stored in

Leak SpaceVirtual Memory

Mapping

Swap-In Table

0x6625864C 0xC000010C

. . .

. . .

Swapped in

Memory
Reference

Reserved
Address

Figure 5: Swap-in table and incoming references

the base register. In this case, LeakSurvivor incorrectly
considers the value of base address + offset stored in
the base register as another PL object. To solve this
problem, we currently modify the compiler to only gen-
erate code with base address+offset addressing mode.
We plan to extend LeakSurvivor to solve this problem
more elegantly based on ideas of derived pointers [20].

3.3.2 Incoming and Outgoing References

After copying the PL object from the leak space to the
memory at a new location, LeakSurvivor needs to restore
its incoming and outgoing references. The incoming ref-
erences come from three sources: registers, the memory,
and the leak space. For incoming references from regis-
ters, LeakSurvivor scans the general registers and mod-
ifies their values to the new memory address if they are
the reserved address.
For incoming references from the memory, one sim-
ple way is to traverse all the live objects from roots and
modify the incoming references from the reserved ad-
dress to the new memory address of a swapped-in PL
object. For better performance, LeakSurvivor delays this
modification process to the next GC phase with the help
of the swap-in table described as below.
For incoming references from other PL objects in the
leak space, it is prohibitively expensive to scan all the
PL objects and make modifications. LeakSurvivor intro-
duces a Swap-In Table (SIT) to address this issue. As
shown in Figure 5, each SIT entry records the mapping
from the reserved address of a PL object to its newmem-
ory address after being swapped in. With the SIT, Leak-
Survivor can leave the incoming references from the leak
space untouched until the PL object is swapped back to
the memory. In such situation, LeakSurvivor looks up
the incoming reference in the SIT and modifies the ref-
erence to the new memory address.
In summary, LeakSurvivor only modifies the incom-
ing references from registers at the time of handling
the exception and retries the “faulty” instruction. This
method may severely hurt overall program performance
in some scenarios, although we have not experienced

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 313



such situation in the experiments. For example, if a pro-
gram de-references a reserved address in a loop, it may
raise exceptions repetitively by the same faulty instruc-
tion since LeakSurvivor does not modify the incoming
reference from the memory. To alleviate this problem,
we can modify local variables that contain incoming ref-
erences to the new memory address by scanning the
stack frames. Also we can modify the incoming refer-
ences in the memory by performing live object traversal
to avoid such repetitive exceptions.
The SIT is small due to the low false positive rate of
the leak detector [12]. Our experimental results in Sec-
tion 5 show that 0.5 MB SIT size is big enough for all
the three evaluated applications. If the SIT becomes too
large, it indicates that the false positive of the leak de-
tector is high and we should try other detectors.
For the outgoing references in the PL object that is
being swapped into the memory, LeakSurvivor resolves
them by looking up the SOT. More specifically, for each
outgoing reference, LeakSurvivor reads the correspond-
ing SOT entry, and modifies the outgoing reference to
the reference in that entry. A more sophisticated alterna-
tive is to first check whether that SOT entry is pointing
to the memory. If so, it is up-to-date and LeakSurvivor
will update outgoing reference with it; otherwise, it will
search SIT table until either there is no matching result
or the reference in the matching entry points to an object
in the memory. We implement the lazy method (the first
one) because of its simplicity.

3.3.3 Multi-Threading

When an application has multiple threads, more than
one thread can access some PL objects by de-referencing
the reserved addresses concurrently. This triggers mul-
tiple OS exceptions at the same time. Therefore, Leak-
Survivor has to be thread-safe for the swap-in process.
Similarly, the swap-out process also needs to be thread-
safe. The prototype of LeakSurvivor serializes the swap-
in and swap-out processes in multiple threads by dis-
abling thread switching once it enters any of the pro-
cesses. It is equivalent to use a big lock to synchronize
the entire swap-in and swap-out processes among mul-
tiple threads. For better performance, we plan to extend
LeakSurvivor with fine-grained locks to enable concur-
rent execution of the swap-in and swap-out processes in
multiple threads.

3.3.4 Swap-in Process

During the swap-in process, LeakSurvivor first identify
the reserved address of the accessed PL object based on
the faulty instruction. Then it looks up the reserved ad-
dress in the SIT to see whether the PL object has already
been swapped into the memory. If hit, LeakSurvivor

modifies the registers that contain the reserved address
to the new memory address found in the SIT. Otherwise,
LeakSurvivor reads the PL object from the leak space to
the memory and inserts the mapping from the reserved
address to the new memory address into the SIT. After
this, LeakSurvivor updates the PL object’s outgoing ref-
erences based on the result of SOT look-up. Finally, it
notifies the leak detector of the false positive.

4 Evaluation Methodology

Our experiments are conducted on two machines, each
has a 2.8 GHz Intel Xeon processor, 512 KB L2 cache,
1 GB of memory, and 120 GB hard drive, running with
Linux 2.4.27-no-SMP. They are connected by a 100
Mbps Ethernet connection. We run the evaluated appli-
cations on one machine. For server programs, we run
their clients on the other machine.
We implement LeakSurvivor on top of Jikes RVM
2.4.2, a high performance Java-in-Java virtual machine
developed by IBM [7]. The leak detector deployed in
LeakSurvivor is Sleigh, a space-efficient, low false posi-
tive leak detection tool for Java applications [12]. Leak-
Survivor uses a mark-sweep garbage collector because
currently Sleigh does not support moving objects. How-
ever, we do not see any difficulty in porting LeakSur-
vivor to copying garbage collectors. For all the experi-
ments, we use the fast adaptive optimizing compiler, and
default heap size (100 MB) in Jikes RVM. Additionally,
we set the base of the stale counter to 4, the default value
in Sleigh.

Application Version #LOC Description
Eclipse 3.1.2 2813358 an integrated develop-

ment environment
SPECjbb- 1.02 30486 a server simulator
2000
Jigsaw 2.0.2 121776 a web server
SPECjbb- 1.02 30586 SPECjbb2000 with con-
2000-fp trolled false positives
DaCapo 2006-10 N/A A standard Java

MR2 benchmark suite

Table 1: Applications used in evaluation

We evaluate LeakSurvivor with four different appli-
cations shown in Table 1, including a popular inte-
grated development environment (Eclipse [2]), a simu-
lator of an order-processing server (SPECjbb2000 [6]),
a web server (Jigsaw [4]), and a standard Java bench-
mark suite consisting of 11 benchmarks(DaCapo [10]).
Among them, Eclipse and Jigsaw contain memory
leaks originally introduced by their developers, while
SPECjbb2000 contain a memory leak injected by us.
In addition, to evaluate the performance of LeakSur-
vivor under different false positive rates, we modify

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association314



SPECjbb2000 by accessing leaked objects with different
controlled rates and rename it as SPECjbb2000-fp. We
use DaCapo benchmarks to measure the performance
overhead of LeakSurvivor when there is no leaks.
In this paper, we design three sets of experiments to
evaluate the key aspects of LeakSurvivor:

• The first set evaluates the functionality of LeakSur-
vivor in tolerating memory leaks at runtime. In this
set of experiments, we run the applications with
memory leaks being triggered as fast as possible
in two different configurations: one with LeakSur-
vivor, i.e., running programs in Jikes RVM with
Sleigh and LeakSurvivor, and the other without
LeakSurvivor, i.e., natively running programs in
JikesRVM without Sleigh and LeakSurvivor. We
collect the average response time for client pro-
grams (Eclipse) and average throughput for server
programs (SPECjbb2000 and Jigsaw) and the de-
tailed statistics, e.g., GC time, memory usage, etc.

• The second set evaluates the performance overhead
of LeakSurvivor when there is no memory leaks,
which tells us how LeakSurvivor performs during
normal program execution. We measure the run-
time and space overhead.

• The third set evaluates the sensitivity of LeakSur-
vivor to different false positive rates of leak detec-
tors. We test SPECjbb2000-fp with LeakSurvivor
using different controlled false positive rates.

For Eclipse, each comparison between two directories
triggers memory leaks. We adopt the script developed
at the University of Texas at Austin [12] to repeatedly
compare the source code of two versions of Jikes RVM:
2.4.0 and 2.4.1 (109 of 898 files differ; textual diff is
874 lines). We measure the time for each round of such
comparison and consider it as the response time.
For SPECjbb2000, we inject a memory leak by modi-
fying the object access order of a transaction queue from
First-in First-out to Last-in First-out. We run it with
these leak-triggering transactions in an infinite loop and
measure the average transactions per second during last
60 seconds as the throughput.
For Jigsaw, the leak occurs during a client disconnec-
tion. We write a client with 10 threads, each sends 20
connect and disconnect requests per second concurrently
for triggering the memory leaks. In the meantime, we
use ab [1] in the Apache Web server suite as a normal
client and measure the throughput of Jigsaw. The client
ab creates 10 concurrent connections. For each connec-
tion, ab continuously sends out requests to fetch differ-
ent files whose sizes range in 1 KB, 2 KB, 4 KB, ..., 256
KB with uniform distribution.

5 Experimental Results

5.1 Overall Results

Table 2 shows the overall effectiveness of LeakSurvivor
in tolerating memory leaks. For each buggy applica-
tion, the table shows whether the program crashes and
how long it executes before crash, if any, in two differ-
ent configurations: one with LeakSurvivor and the other
without LeakSurvivor. The table also shows the ratio
of the program performance with LeakSurvivor to the
performance without LeakSurvivor. The performance is
averaged over the period when both of the programs are
alive. The last three columns in the table show the total
sizes of swapped-out objects and live objects, i.e., ob-
jects reachable from roots, when programs are execut-
ing with LeakSurvivor and without LeakSurvivor.
As shown in Table 2, LeakSurvivor successfully tol-
erates memory leaks for two of the three applications,
including Eclipse and SPECjbb2000. Without LeakSur-
vivor, they crash after 555 seconds’ and 328 seconds’
execution respectively. This is because continuously-
leaked memory objects gradually occupy the heap space
and quickly push the total size of live objects to reach
their upper bounds, 54.7 MB and 55.3 MB respectively.
Note, the live object region is part of the whole heap
in Jikes RVM, whose default maximal size, 100 MB, is
used in our experiments. In contrast, with LeakSurvivor,
the two applications do not crash even after around 2
hours and still maintain relatively stable performance.
In this situation, we believe LeakSurvivor successfully
tolerate memory leaks and forcefully terminate the ex-
ecution. LeakSurvivor can tolerate memory leaks be-
cause it swaps out leaked memory objects and releases
virtual space occupied by them for future uses. There-
fore, the total size of the live objects can be kept un-
der a certain percentage of the maximal heap size. For
example, LeakSurvivor swaps out 673 MB memory ob-
jects and maintains its live object size under 34 MB for
Eclipse before we terminate it.
LeakSurvivor does not survive Jigsaw since it has
“semantic” memory leaks, which are not detected by
the integrated leak detector. The class name of leaked
objects in Jigsaw is HashTableEntry, which is a <

key, value > pair. However, the leak detector can only
report the value part as PL objects. This is because the
key part is still accessed from time to time for hash ta-
ble lookup and rehashing. Therefore, LeakSurvivor only
swaps out the value part of the leaked entry and the key

part in the heap cumulatively degrades the program per-
formance and eventually crashes the program. Nonethe-
less, LeakSurvivor still helps extend the program life-
time by two times — the program crashes at 3402 sec-
onds when running with LeakSurvivor and crashes at

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 315



Apps Tolerable? Live Time (sec) Performance Ratio* Total Size of Objects (MB)
w/ LS w/o LS w/ LS w/o LS (w/ LS : w/o LS) SO (w/ LS) Live (w/ LS) Live (w/o LS)

Eclipse Yes No > 7626 555 1.27:1 > 673 34 55
SPECjbb2000 Yes No > 7135 328 1.24:1 > 857 28 55
Jigsaw No No 3402 1147 1.46:1 82 45 52

Table 2: Overall results of LeakSurvivor. w/ LS means with LeakSurvivor, w/o LS means without LeakSurvivor,
SO means Swapped-Out. Live objects are objects reachable from roots. *Performance ratio is the ratio of averaged
program performance (response time for Eclipse and throughput for SPECjbb2000 and Jigsaw) with LeakSurvivor to
that without LeakSurvivor during the period when both are still executing.

0

5

10

15

20

25

80006000400020000

T
im

e
fo

r
C

om
pa

ri
so

n(
s)

Elapsed Time(s)

w/ LS
w/o LS

0

2000

4000

6000

8000

10000

12000

80006000400020000A
ve

ra
ge

T
ra

ns
ac

tio
n

pe
r

Se
co

nd

Elapsed Time(s)

w/ LS
w/o LS

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000 3500

T
hr

ou
gh

pu
t(

M
B

/s
)

Elapsed Time(s)

w/ LS
w/o LS

(a) Eclipse (b) SPECjbb2000 (c) Jigsaw

Figure 6: Overall performance for applications w/ and w/o LeakSurvivor

1147 seconds when running without LeakSurvivor. This
is because LeakSurvivor swaps out part of the leaked ob-
jects, 82 MB out of 120 MB total leaked objects.
Table 2 also shows that LeakSurvivor improves the
overall program performance when memory leaks occur
continuously. For example, Jigsaw with LeakSurvivor
provides 46% more average throughput than that with-
out LeakSurvivor when both are alive. This is mainly
because continuously leaked objects occupy more and
more heap space, which in turn invokes GC more often,
when executing programs without LeakSurvivor. Fur-
thermore, the object traversal time in GC phases also
increases due to more live objects. On the contrary, exe-
cuting programswith LeakSurvivor does not suffer from
these two problems because LeakSurvivor keeps swap-
ping out leaked objects and maintains low heap pressure.

5.2 LeakSurvivor Performance with Applica-
tion Leaks

5.2.1 LeakSurvivor Performance

We measure the performance for the three applications
with and without LeakSurvivor when memory leaks oc-
cur continuously. As shown in Figure 6, LeakSurvivor
helps avoid cumulative performance degradation and
software failures for Eclipse and SPECjbb2000. For
example, with LeakSurvivor, the comparison time for
Eclipse is within the range from 7.2 to 11.3 seconds
without increasing trends before we manually terminate
the program at around 2 hours. In contrast, without
LeakSurvivor, the comparison time for Eclipse drasti-
cally increases from 6.7 to 20.9 seconds within around

9.5 minutes before its crash. Although LeakSurvivor
cannot fully tolerate leaks in Jigsaw, it alleviates the
degree of cumulative performance degradation caused
by continuously leaked memory objects. With Leak-
Survivor, Jigsaw takes around 2580 seconds for the
throughput degraded to below 2 MB per second, while it
only takes about 920 seconds for the same performance
degradation without LeakSurvivor.
Figure 6 also shows that the performance of programs
without LeakSurvivor is slightly better than the perfor-
mance of programs with LeakSurvivor at the initial pe-
riod of program execution. For example, Eclipse without
LeakSurvivor outperforms Eclipse with LeakSurvivor
by 9.7% on average during the execution period from
0 to 200 seconds. This is because, at the initial period
of program execution, the runtime overhead incurred by
LeakSurvivor and the leak detector is larger than the per-
formance degradation due to continuous memory leaks.

5.2.2 Live Objects Size

Figure 7 shows that LeakSurvivor can effectively con-
trol the growth of live object sizes when memory leaks
continuously occur, which contributes significantly to
the relatively stable overall program performance. For
example, without LeakSurvivor the live object size in
Eclipse increases sharply from 30 MB to 55 MB before
the program crashes. In contrast, with LeakSurvivor the
live object size in Eclipse is bounded between 33 MB
and 41 MB. This is because LeakSurvivor swaps out PL
objects periodically, which in most cases brings down
the live object size from 38 to 34 MB when the live
object size reaches 38 MB due to continuously-leaked

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association316



0

10

20

30

40

50

60

70

80

7006005004003002001000

L
iv

e
O

bj
ec

ts
Si

ze
(M

B
)

Elapsed Time(s)

w/ LS
w/o LS

0

10

20

30

40

50

60

70

4003002001000

L
iv

e
O

bj
ec

ts
Si

ze
(M

B
)

Elapsed Time(s)

w/ LS
w/o LS

0

10

20

30

40

50

60

70

35002800210014007000

L
iv

e
O

bj
ec

ts
Si

ze
(M

B
)

Elapsed Time(s)

w/ LS
w/o LS

(a) Eclipse (b) SPECjbb2000 (c) Jigsaw

Figure 7: Live object sizes for w/ and w/o LeakSurvivor

1500

1000

500

0
7006005004003002001000

T
im

e
fo

r
G

C
(m

s)

Elapsed Time(s)

w/ LS

1000

500

0

w/o LS

800

400

0
4003002001000

T
im

e
fo

r
G

C
(m

s)

Elapsed Time(s)

w/ LS

800

400

0

w/o LS

1500

1000

500

0
35002800210014007000

T
im

e
fo

r
G

C
(m

s)

Elapsed Time(s)

w/ LS

1500

1000

500

0

w/o LS

(a) Eclipse (b) SPECjbb2000 (c) Jigsaw

Figure 8: GC performance for w/ and w/o LeakSurvivor

memory objects. When Eclipse is forcefully terminated,
LeakSurvivor swaps out 673 MB PL objects, while its
live object size is still under 37 MB. For better readabil-
ity, Figure 7(a) and (b) show shorter time ranges.

5.2.3 GC Performance

Figure 8 shows the time for performing one GC phase,
which is directly related to the performance in garbage-
collected programs. With LeakSurvivor, the GC time is
mostly stable except for some spikes, which are caused
by swapping out PL objects at certain GC phases syn-
chronously. However, the overhead of the swap-out pro-
cess in LeakSurvivor is amortized among all the GC
phases and thus not reflected in the overall program per-
formance. For example, the average GC time for Eclipse
is 0.607 seconds, while the average non-spike GC time
for Eclipse is 0.585 seconds. In other words, the amor-
tized overhead caused by the swap-out process in Leak-
Survivor is 3.7 % for GC time.
In contrast, without LeakSurvivor, the GC time
steadily increases. For example, the GC time for Eclipse
increases from 0.414 to 0.711 seconds right before it
crashes. The increased GC time partially contributes to
the performance degradation shown in Figure 6.
More importantly, without LeakSurvivor, the GC fre-
quency dramatically increases (not readable in the fig-
ure), which severely degrades the program performance.
For example, at the beginning of Eclipse’s execution, the
GC frequency is 23 GCs per minute, and it becomes

Apps SOT Size SIT Size LS Buf
(MB) (MB) Size (MB)

Eclipse 0.56 0.02 8
SPECjbb2000 0.66 0.20 8
Jigsaw 0.53 0.00008 8

Table 3: LeakSurvivor space overhead. LS means Leak
Space, Buf means Buffer.

51 GCs per minute right before it crashes. In con-
trast, the GC frequency remains the stable for programs
with LeakSurvivor. For example, the GC frequency for
Eclipse with LeakSurvivor falls within the range of 21
to 30 GCs per minute.

5.2.4 LeakSurvivor Space Overhead

Table 3 shows the space overhead of LeakSurvivor for
the three applications before their termination or crash.
The space overhead of LeakSurvivor is relatively small
(8.02 MB – 8.86 MB). It consists of three parts: SOT,
SIT, and the leak space buffer. The space overhead
comes predominantly from the leak space buffer, which
has fixed size, i.e., 8 MB, for better swap-out perfor-
mance. The SIT size depends on false positive rates,
which are 0.001%, 0.17%, and 0.0004% for Eclipse,
SPECjbb2000, and Jigsaw respectively. The SOT size
is small and increases very slowly compared with the
size of swapped out objects. For example, the SOT size
for Eclipse increases from 0.51 MB (0 entries) to 0.56
MB (35270 entries) before it is forcefully terminated at

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 317



Apps SOT Entry # SwapOut Obj # SIT Entry # SIT Hit # Buf Hit # Disk Hit # Exp #
Eclipse 35270 19293061 200 155816 189 11 78163

SPECjbb2000 41419 15020902 25277 59285 18967 6310 46219
Jigsaw 108 2831100 10 10 10 0 20

Table 4: Swap-in & swap-out statistics. Buf means Buffer, Exp means Exception. SIT Hit #, Buffer Hit #, and Disk
Hit # are the number of hits when LeakSurvivor looks up reserved addresses in the swap-in table, the leak space buffer,
and disks, respectively, during swap-in operations.

0

0.5

1

1.5

2

2.5

xa
la

n

pm
d

lu
in

de
x

jy
th

onfo
p

bl
oa

t

an
tlr

N
or

m
al

iz
ed

E
xe

cu
tio

n
T

im
e

Baseline
Sleigh

LS

Figure 9: Performance of DaCapo benchmarks. We
run the benchmarks in three different configurations:
(1) Baseline, i.e., without Sleigh and LeakSurvivor; (2)
Sleigh, i.e., only enabling Sleigh; (3) LS, i.e., enabling
both Sleigh and LeakSurvivor.

7626 seconds, after swapping out 19293061 PL objects
with total size of 673 MB.
There are two reasons for the small SOT size. First,
LeakSurvivor swaps out the children PL objects before
swapping the parent so that it does not need one SOT
entry to record the outgoing reference from the parent
PL object. Second, the SOT uses reference counters to
share entries if possible.

5.2.5 Exceptions and False Positives

Table 4 shows that SIT and the leak space buffer help
reduce the swap-in overhead. First, once an object has
been swapped in, all the subsequent exceptions incurred
at the same reserved address only need to search SIT
and update new references. More than 70% of swap-in
operations belong to this category. Second, more than
75% of the first-time swap-in operations hit in the leak
space buffer. For this case, we only need a memcpy

to move the PL object back from the in-memory buffer
without disk reads. In addition, Table 4 shows the false
positive rates of the leak detector (SIT Entry # / SwapOut
Obj #), i.e., 0.001%, 0.17%, and 0.0004% for Eclipse,
SPECjbb2000, and Jigsaw respectively, are low.

5.3 LeakSurvivor Overhead without Applica-
tion Leaks

We measure the runtime overhead incurred by LeakSur-
vivor when running with programs that have no mem-

0

2000

4000

6000

8000

10000

2520151050

A
vg

T
ra

ns
ac

tio
ns

pe
r

Se
co

nd

False Positive Rate(%)

Figure 10: LeakSurvivor performance for SPECjbb2000
with different false positive rates

ory leaks. Figure 9 shows the performance of DaCapo
benchmarks in three different configurations: baseline
without Sleigh and LeakSurvivor, with Sleigh, and with
LeakSurvivor (including Sleigh). The results show that
LeakSurvivor incurs small runtime overhead, i.e., 2.5%,
on top of Sleigh. The overhead mainly comes from one
extra PL object checking for each object traversal dur-
ing GC phases and slightly increased boot image size
(51.30MB for LeakSurvivor v.s. 50.61MB for Sleigh).
Compared with the baseline, LeakSurvivor (including
Sleigh) incurs 23.7% runtime overhead, which is mainly
caused by the instrumentation code for tracking memory
object accesses. Additionally, LeakSurvivor’s internal
data structure imposes no space overhead when there is
no leaks because the SOT, SIT, and the leak space buffer
are created on demand.

5.4 Sensitivity Study

We conduct experiments to examine how sensitive the
LeakSurvivor is to different false positive rates. As
shown in Figure 10, the performance of LeakSurvivor
can be severely hurt by the large false positive rates. For
example, the average throughput decreases from 7920
to 4400 transactions per second when the false positive
rates increases from 0.16% to 23.03%. This is because
the overhead incurred by the swap-in process increases
dramatically once the false positives increase. Figure 10
also shows that LeakSurvivor’s performance is accept-
able if the false positive rates are within 5%, which
serves as a guide for selecting leak detectors.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association318



6 Related Work

Our work builds on much previous work. Due to the
space limit, this section briefly describes the related
work that is not discussed in previous sections.

General Fault Tolerance. A considerable amount of
research, such as software rejuvenation [30, 22, 11],
micro-rebooting [15, 14], and checkpointing-based re-
execution methods [8, 45, 16, 32], has been conducted
in surviving general software failures. These approaches
can deal with failures caused by memory leaks, but pro-
grams still suffer cumulative performance degradation
before restart and may repetitively fail even after re-
execution given that most memory leaks are determin-
istic. Recently proposed approaches including Rx [37]
and DieHard [9] exploit data diversity for tolerating
many types of deterministic bugs such as buffer over-
flows, dangling pointers, and double free, but they do
not address memory leaks.

Memory Leak Detection. Memory leaks can be de-
tected statically or dynamically. While static meth-
ods [28] can detect some memory leaks without in-
curring runtime overhead, they may report many false
positives due to lack of runtime information. To dy-
namically detect memory leaks, Purify [27] and Val-
grind [39] track object references to identify unreach-
able objects for C/C++ programs. For garbage-collected
programs, unreachable objects are implicitly reclaimed
by GCs [23] and thereby only useless objects threaten
system availability. JRockit [43], .NET Memory Pro-
filer [40], JProbe [5], LeakBot [33], and Cork [31],
track heap updates to identify objects that cause the heap
to grow. Other methods, such as SWAT [18], Safe-
Mem [36], and Sleigh [12], leverage object lifetime or
staleness (time since last use) to identify leaked objects.

Other Related Work. Bookmarking collection [29] can
be used to save physical memory from memory leaks at
page granularity although its primary goal is to reduce
garbage collection overhead. It has the same problem as
Melt [13] because it fails to reclaim the heap space.
LeakSurvivor reclaims the PL objects and thereby the
space can be reused by the application, which may re-
sult in “hot” objects clustered together. This may im-
prove program performance as done in various prior
work on data layout optimizations [19]. The object
recovery mechanism exploited by the Swap-In compo-
nent is related to OS page faults [41]. The SIT is re-
lated to forwarding pointer techniques used by Copying
GC [17, 21].

7 Conclusions and Future Work

In summary, LeakSurvivor is a safe and non-invasive
method to tolerate continuous memory leaks at runtime
for garbage-collected programs. It helps programs to
avoid cumulative performance degradation and software
failures due to continuous memory leaks. It does so
by swapping out potentially-leaked memory objects to
disks and reclaiming virtual memory space occupied by
them. LeakSurvivor is safe because it swaps in the
swapped-out objects to the memory upon future accesses
to them if they are falsely identified as leaks. Addition-
ally, LeakSurvivor assists developers to diagnose mem-
ory leaks by providing false positives information due to
swapped-in objects. Furthermore, it requires no modifi-
cation to applications’ source code.
We evaluate LeakSurvivorwith three applications that
contain continuous memory leaks. The results show
that LeakSurvivor can effectively tolerate memory leaks
for two of the applications (Eclipse and JBB2000) and
extend the lifetime of one application (Jigsaw) by two
times. Without LeakSurvivor, all the three applications
severely suffer cumulative performance degradation and
eventually crash within 20 minutes. This indicates that
safely reclaiming virtual memory space occupied by
potentially-leaked objects is an effective way to toler-
ate memory leaks. In addition, LeakSurvivor improves
the performance of programs with continuous memory
leaks by 24%–46%.
We plan to extend our work in several dimensions
in the future. First, we will evaluate LeakSurvivor us-
ing more applications with memory leaks. We currently
only have three applications since it is difficult to find
real-world applications with well-documented memory
leaks. Second, we plan to support LeakSurvivor with
asynchronous disk flushes and derived pointers. Third,
we will investigate the idea of LeakSurvivor for tolerat-
ing memory leaks in C/C++ programs, which is difficult
since there is no type information at the binary level.

8 Acknowledgments

The authors would like to thank the anonymous review-
ers for their invaluable feedback on this paper. We ap-
preciate that Yu Chen and Ming Wu in Microsoft Re-
search Asia provided insightful comments at the very
early stage of this project. We are indebted to Michael
Bond and Dr. Kathryn McKinley in generous sharing
and answering questions about Sleigh and the script in
addition to their invaluable comments. We thank Enhua
Tan for setting up the experiment platform, as well as
Shuang Liang, Feng Chen and XiaoningDing for discus-
sion. We appreciate enormous support for this project
from Dr. Xiaodong Zhang.

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 319



References
[1] ab - Apache HTTP Server Benchmarking Tool. http://httpd.
apache.org/docs/2.0/programs/ab.html.

[2] Eclipse - An Open Development Platform. http://
www.eclipse.org.

[3] Java 2 Platform, Enterprise Edition. http://java.sun.com/j2ee/
reference/whitepapers/j2ee guide.pdf.

[4] Jigsaw - W3C’s Server. http://www.w3.org/Jigsaw/.
[5] JProbe. http://www.javaperformancetuning.com/tools/jprobe/.
[6] SPECjbb2000, A Java Business Benchmark. http://
www.spec.org/osg/jbb2000.

[7] B. Alpern, S. Augart, S. M. Blackburn, and et al. The Jikes Re-
search Virtual Machine Project: Building An Open-source Re-
search Community. IBM Syst. J., 44(2):399–417, 2005.

[8] C. Amza, Armando Cox, and W. Zwaenepoel. Data Replication
Strategies for Fault Tolerance and Availability on Commodity
Clusters. In Proceedings of the 2000 International Conference
on Dependable Systems and Networks, Jun 2000.

[9] Emery D. Berger and Benjamin G. Zorn. DieHard: Probabilis-
tic Memory Safety for Unsafe Languages. In ACM conf. on
Programming language design and implementation(PLDI’06),
2006.

[10] S. M. Blackburn, R. Garner, and et al. The DaCapo Benchmarks:
Java Benchmarking Development and Analysis. In ACM conf. on
Object-Oriented Programing, Systems, Languages, and Applica-
tions (OOPSLA’06), New York, NY, USA, October 2006.

[11] Andrea Bobbio and Matteo Sereno. Fine Grained Software Re-
juvenation Models. In International Computer Performance and
Dependability Symposium, Sep 1998.

[12] Michael D. Bond and Kathryn S. McKinley. Bell: Bit-encoding
Online Memory Leak Detection. In Intl. Conf. on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS’06), Oct 2006.

[13] Michael D. Bond and Kathryn S. McKinley. Tolerating Memory
Leaks. Technical report, UT Austin Technical Report TR-07-64,
Dec 2007.

[14] George Candea, James Cutler, Armando Fox, Rushabh Doshi,
Priyank Garg, and Rakesh Gowda. Reducing Recovery Time
in A Small Recursively Restartable System. In Intl. Conf. on
Dependable Systems and Networks, Jun 2002.

[15] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Fried-
man, and Armando Fox. Microreboot – A Technique for Cheap
Recovery. In Proceedings of the 6th Symposium on Operating
System Design and Implementation, Dec 2004.

[16] Y. Chen, James S. Plank, and Kai Li. CLIP: A Checkpointing
Tool for Message-passing Parallel Programs. In ACM/IEEE Su-
percomputing Conference (SC’97), Nov 1997.

[17] C. J. Cheney. A Non-recursive List Compacting Algorithm.
Communications of the ACM, 13(11):677, November 1970.

[18] Trishul M. Chilimbi and Matthias Hauswirth. Low-overhead
Memory Leak Detection Using Adaptive Statistical Profiling. In
Intl. Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’04), Oct 2004.

[19] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-
conscious Structure Layout. In SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 1–12,
1999.

[20] A. Diwan, E. Moss, and R. Hudson. Compiler Support for
Garbage Collection in A Statically Typed Language. In ACM
Conf. on Programming Language Design and Implementation
(PLDI ’92), June 1992.

[21] Robert R. Fenichel and Jerome C. Yochelson. A Lisp Garbage
Collector for Virtual Memory Computer Systems. Communica-
tions of the ACM, 12(11):611–612, November 1969.

[22] S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi. On The Anal-
ysis of Software Rejuvenation Policies. In Proceedings of the
Annual Conference on Computer Assurance, Jun 1997.

[23] Richard Gillam. An Introduction to Garbage Col-
lection. http://oss.software.ibm.com/icu/docs/papers/
cpp report/an introduction to garbage collection part i.html.

[24] Maayan Goldstein, Onn Shehory, and Yaron Weinsberg. Can
Self-healing Software Cope with Loitering? In SOQUA ’07:
Fourth international workshop on Software quality assurance,
pages 1–8, New York, NY, USA, 2007. ACM.

[25] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The
Java Language Specification Second Edition. Addison-Wesley,
Boston, Mass., 2000.

[26] E. Grochowski and R. D. Halem. Technological Impact of
Magnetic Hard Disk Drives on Storage Systems. IBM Syst. J.,
42(2):338–346, 2003.

[27] R. Hasting and B. Joyce. Purify: Fast Detection of Memory
Leaks and Access Errors. In Proceedings of the USENIX Winter
1992 Technical Conference, Dec 1992.

[28] David L. Heine and Monica S. Lam. A Practical Flow-sensitive
and Context-sensitive C And C++ Memory Leak Detector. In
ACM conf. on Programming language design and implementa-
tion (PLDI’03), 2003.

[29] Matthew Hertz, Yi Feng, and Emery D. Berger. Garbage Collec-
tion without Paging. SIGPLAN Not., 40(6):143–153, 2005.

[30] Yennun Huang, Chandra Kintala, Nick Kolettis, and N. Dudley
Fulton. Software Rejuvenation: Analysis, Module and Applica-
tions. In Proceedings of the 25th Annual International Sympo-
sium on Fault-Tolerant Computing, Jun 1995.

[31] Maria Jump and Kathryn S. McKinley. Cork: Dynamic Mem-
ory Leak Detection for Java. In Proceedings of the 34th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, Jan 2007.

[32] David E. Lowell and Peter M. Chen. Discount Checking: Trans-
parent, Low-Overhead Recovery for General Applications. Tech-
nical report, CSE-TR-410-99, Univ. of Michigan, 1998.

[33] Nick Mitchell and Gary Sevitsky. LeakBot: An Automated and
Lightweight Tool for Diagnosing Memory Leaks in Large Java
Applications. In European Conference on Object-Oriented Pro-
gramming, (ECOOP ’03), 2003.

[34] Huu Hai Nguyen and Martin Rinard. Detecting and Eliminat-
ing Memory Leaks Using Cyclic Memory Allocation. In ISMM
’07: Proceedings of the 6th international symposium on Memory
management, pages 15–30, New York, NY, USA, 2007. ACM.

[35] Gene Novark, Emery D. Berger, and Benjamin G. Zorn. Plug:
Automatically Tolerating Memory Leaks in C and C++ Appli-
cations. Technical report, UMass CS Technical Report 08-09,
April 2008.

[36] Feng Qin, Shan Lu, and Yuanyuan Zhou. SafeMem: Exploiting
ECC-Memory for Detecting Memory Leaks and Memory Cor-
ruption During Production Runs. In Intl. Symposium on High-
Performance Computer Architecture, Feb 2005.

[37] Feng Qin, Joe Tucek, Jagadeesan Sundaresan, and Yuanyuan
Zhou. Rx: Treating Bugs as Allergies – A Safe Method to Sur-
vive Software Failure. In Proceedings of the 20th ACM Sympo-
sium on Operating System Principles, Oct 2005.

[38] Mendel Rosenblum and John K. Ousterhout. The Design and
Implementation of A Log-structured File System. ACM Trans.
Comput. Syst., 10(1):26–52, 1992.

[39] J. Seward. Valgrind, An Open-source Memory Debugger for
x86-GNU/Linux. available at URL http://developer.kde.org/ se-
wardj/.

[40] SciTech Software. .NET Memory Profiler. http://www.scitech.
se/-memprofiler/.

[41] Andrew S. Tanenbaum. Modern Operating Systems. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[42] US-CERT. US-CERT Vulnerability Notes Database.
http://www.kb.cert.org/vuls.

[43] BEA WebLogic. JRockit: Java for The Enterprise.
http://www.bea.com/content/news events/white papers/
BEA Rockit wp.pdf.

[44] Ting Yang, Emery D. Berger, Scott F. Kaplan, J. Eliot B. Moss,
and B. Moss. CRAMM: virtual Memory Support for Garbage-
collected Applications. In USENIX Symposium on Operating
Systems Design and Implementation, 2006.

[45] Yuanyuan Zhou, Peter M. Chen, and Kai Li. Fast Cluster
Failover Using Virtual Memory-Mapped Communication. In
Proceedings of the 1999 ACM International Conference on Su-
percomputing, Jun 1999.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association320




