Context-Aware Prefetching at the Storage Server

Gokul Soundararajan, Madalin Mihailescu’, and Cristiana Amza
Department of Electrical and Computer Engineering
Department of Computer Science'

University of Toronto

Abstract

In many of today’s applications, access to storage con-
stitutes the major cost of processing a user request.
Data prefetching has been used to alleviate the stor-
age access latency. Under current prefetching tech-
niques, the storage system prefetches a batch of blocks
upon detecting an access pattern. However, the high
level of concurrency in today’s applications typically
leads to interleaved block accesses, which makes detect-
ing an access pattern a very challenging problem. To-
wards this, we propose and evaluate QuickMine, a novel,
lightweight and minimally intrusive method for context-
aware prefetching. Under QuickMine, we capture ap-
plication contexts, such as a transaction or query, and
leverage them for context-aware prediction and improved
prefetching effectiveness in the storage cache.

We implement a prototype of our context-aware
prefetching algorithm in a storage-area network (SAN)
built using Network Block Device (NBD). Our proto-
type shows that context-aware prefetching clearly out-
performs existing context-oblivious prefetching algo-
rithms, resulting in factors of up to 2 improvements in
application latency for two e-commerce workloads with
repeatable access patterns, TPC-W and RUBIS.

1 Introduction

In many of today’s applications, such as, e-commerce,
on-line stores, file utilities, photo galleries, etc., access
to storage constitutes the major cost of processing a
user request. Therefore, recent research has focused
on techniques for alleviating the storage access latency
through storage caching [14, 23, 29] and prefetching
techniques [24, 25, 35, 36, 37]. Many traditional storage
prefetching algorithms implement sequential prefetch-
ing, where the storage server prefetches a batch of se-
quential blocks upon detecting a sequential access pat-
tern. Recent algorithms, like C-Miner* [24, 25], capture

repeatable non-sequential access patterns as well. How-
ever, the storage system receives interleaved requests
originating from many concurrent application streams.
Thus, even if the logical I/O sequence of a particular ap-
plication translates into physically sequential accesses,
and/or the application pattern is highly repeatable, this
pattern may be hard to recognize at the storage system.
This is the case for concurrent execution of several ap-
plications sharing a network attached storage, e.g., as
shown in Figure 1, and also for a single application with
multiple threads exhibiting different access patterns, e.g.,
a database application running multiple queries, as also
shown in the figure.

We investigate prefetching in storage systems and
present a novel caching and prefetching technique that
exploits logical application contexts to improve prefetch-
ing effectiveness. Our technique employs a context
tracking mechanism, as well as a lightweight frequent
sequence mining [38] technique. The context tracking
mechanism captures application contexts in an applica-
tion independent manner, with minimal instrumentation.
These contexts are leveraged by the sequence mining
technique for detecting block access patterns.

In our context tracking mechanism, we simply tag
each application I/O block request with a context iden-
tifier corresponding to the higher level application con-
text, e.g., a web interaction, database transaction, appli-
cation thread, or database query, where the 1/O request
to the storage manager occurs. Such contexts are readily
available in any application and can be easily captured.
We then pass this context identifier along with each read
block request, through the operating system, to the stor-
age server. This allows the storage server to correlate the
block accesses that it sees into frequent block sequences
according to their higher level context. Based on the de-
rived block correlations, the storage cache manager then
issues block prefetches per context rather than globally.

At the storage server, correlating block accesses is per-
formed by the frequent sequence mining component of

USENIX Association

USENIX ’08: 2008 USENIX Annual Technical Conference

377

our approach. In particular, we design and implement a
lightweight and dynamic frequent sequence mining tech-
nique, called QuickMine.

Just like state-of-the-art prefetching algorithms [24,
25], QuickMine detects sequential as well as non-
sequential correlations using a history-based mechanism.
QuickMine’s key novelty lies in detecting and leveraging
block correlations within logical application contexts. In
addition, QuickMine generates and adapts block corre-
lations incrementally, on-the-fly, through a lightweight
mining algorithm. As we will show in our experi-
mental evaluation, these novel features make Quick-
Mine uniquely suitable for on-line pattern mining and
prefetching by i) substantially reducing the footprint of
the block correlations it generates, ii) improving the like-
lihood that the block correlations maintained will lead to
accurate prefetches and iii) providing flexibility to dy-
namic changes in the application pattern, and concur-
rency degree.

We implement QuickMine in a lightweight storage
cache prototype embedded into the Network Block De-
vice (NBD) code. We also implement several alterna-
tive approaches for comparison with our scheme, includ-
ing a baseline LRU cache replacement algorithm with no
prefetching, and the following state-of-the-art context-
oblivious prefetching schemes: two adaptive sequential
prefetching schemes [10, 16] and the recently proposed
C-Miner* storage prefetching algorithm [24, 25].

In our experimental evaluation, we use three standard
database applications: the TPC-W e-commerce bench-
mark [1], the RUBIS auctions benchmark and DBT-
2 [40], a TPC-C-like benchmark [30]. The applications
have a wide range of access patterns. TPC-W and RU-
BiS are read-intensive workloads with highly repeatable
access patterns; they contain 80% and 85% read-only
transactions, respectively, in their workload mix. In con-
trast, DBT-2 is a write-intensive application with rapidly
changing access patterns; it contains only 4% read-only
transactions in its workload mix. We instrument the
MySQL/InnoDB database engine to track the contexts of
interest. We found that changing the DBMS to incorpo-
rate the context into an I/O request was trivial; the DBMS
already tracks various contexts, such as database thread,
transaction or query, and these contexts are easily ob-
tained for each I/O operation. We perform experiments
using our storage cache deployed within NBD, running
in a storage area network (SAN) environment.

Our experiments show that the context-aware Quick-
Mine brings substantial latency reductions of up to fac-
tors of 2.0. The latency reductions correspond to reduc-
tions of miss rates in the storage cache of up to 60%. In
contrast, the context oblivious schemes perform poorly
for all benchmarks, with latencies comparable to, or
worse than the baseline. This is due to either i) inaccurate

MySQL/InnoDB MySQL/InnoDB
088 o ™ @O
F— Thread-| — F— Thread-2 — F— Thread-3 — F— Thread-4 —

\ \
Operating System Operating System
0086080 | Vvoavaw

Volume | Volume 2

Consolidated Storage

o8vVaootevaeo ™

Figure 1: Interleaved Accesses. Accesses from con-
current processes/threads are interleaved at the storage
server.

prefetches or ii) non-repeatable (false) block correlations
at context boundaries, hence useless prefetch rules in the
context-oblivious approaches. Our evaluation shows that
QuickMine generates substantially more effective block
correlation rules overall, in terms of both the number of
prefetches triggered and the prefetching accuracy. We
also show that QuickMine is capable of adjusting its cor-
relation rules dynamically, without incurring undue over-
head for rapidly changing patterns.

The rest of this paper is organized as follows. Sec-
tions 2 provides the necessary background and motivates
our dynamic, context-aware algorithm. Section 3 in-
troduces our QuickMine context-aware prefetching solu-
tion. Section 4 provides details of our implementation.
Section 5 describes our experimental platform, method-
ology, other approaches in storage cache management
that we evaluate in our experiments. Section 6 presents
our experimental results. Section 7 discusses related
work and Section 8 concludes the paper.

2 Background and Motivation

We focus on improving the cache hit rate at the storage
cache in a SAN environment through prefetching. Our
techniques are applicable to situations where the work-
ing set of storage clients, like a database system or file
system, does not fit into the storage cache hierarchy i.e.,
into the combined caching capabilities of storage client
and server. This situation is, and will remain common in
the foreseeable future due to the following reasons.
First, while both client and storage server cache sizes
are increasing, so do the memory demands of storage
applications e.g., very large databases. Second, pre-
vious research has shown that access patterns at the
storage server cache typically exhibit long reuse dis-
tances [7, 26], hence poor cache utilization. Third, due
to server consolidation trends towards reducing the costs
of management in large data centers, several applica-

378

USENIX ’08: 2008 USENIX Annual Technical Conference

USENIX Association

25 ///
0 <Ié

0 25 50 75 100

Num. Concurrent Clients

== TPC-W -@=RUBIS

Interference Count
(Avg)
w
o

Figure 2: Interference count. Access interleavings of
different threads with increasing number of concurrent
clients.

tions typically run on a cluster with consolidated stor-
age, or even on the same physical server. This creates
application interference, hence potential capacity misses,
and reduced prefetching effectiveness [19] in the shared
storage-level cache.

In the following, we motivate our context-aware
prefetching approach through a workload characteriza-
tion for two e-commerce applications.

2.1 Workload Characterization

We analyze the access patterns of two popular e-
commerce benchmarks: TPC-W, and RUBiS. We con-
duct experiments using a network storage server based
on the NBD (network block device) protocol built into
Linux. The NBD server manages access to physical stor-
age and provides virtual block devices to applications.
We experiment with each benchmark separately, varying
the number of clients from 1 to 100. Each application
runs on MySQL/InnoDB, which uses the NBD client to
mount the virtual block device. We provide more details
on our experimental setup in Section 5.

We characterize the access patterns of the two appli-
cations using the following metrics. The average/maxi-
mum sequential run length [39] is the average/maximum
length of physically sequential block sequences for the
duration of the application’s execution. The average con-
text access length is the average number of I/O requests
issued by a logical unit of work in the application, i.e., by
a transaction. Finally, the interference count [19] mea-
sures the interference in the storage cache, defined as
the number of requests from other transactions that oc-
cur between consecutive requests from a given transac-
tion stream.

In our experiments, we first compute the sequential
run lengths when each thread is run in isolation i.e., on
the de-tangled trace [39] for each of the two benchmarks.
The lengths are: 1.05 (average) and 277 (maximum) for
TPC-W and 1.14 (average) and 64 (maximum) for RU-

BiS. We then measure the sequential run lengths on the
interleaved access traces, while progressively increasing
the number of clients. We find that the sequential run
length decreases significantly as we increase the concur-
rency degree. For example, with 10 concurrently run-
ning clients, the sequential run length is already affected:
1.04 (average) and 65 (maximum) for TPC-W, and 1.05
(average) and 64 (maximum) for RUBIS. With the com-
mon e-commerce workload of 100 clients, the average
sequential run length asymptotically approaches 1.0 for
both benchmarks. To further understand the drop in se-
quential run length, we plot the interference count for
each benchmark when increasing the number of clients
in Figure 2. The figure shows that the interference count
increases steadily with the number of concurrent clients,
from 5.87 for TPC-W and 2.91 for RUBIS at 10 clients,
to 82.22 for TPC-W and 15.95 for RUBiS with 100 con-
currently running clients.

To study the lower interference count in RUBiS com-
pared to TPC-W, we compute the average context access
length per transaction, in the two benchmarks. We find
that the average context access length for RUBIS is 71
blocks, compared to 1223 blocks for TPC-W, 87% of the
RUB;S transactions are short, reading only 1 to 10 blocks
of data, compared to 79% in TPC-W, and several RU-
BiS transactions access a single block. Hence in TPC-W,
longer logical access sequences result in higher interfer-
ence opportunities, and for both benchmarks only a few
logical sequences translate into physically sequential ac-
cesses.

The preliminary results presented in this section
show that: i) opportunities for sequential prefetch-
ing in e-commerce workloads are low, and ii) random
(non-repeatable) access interleavings can occur for the
high levels of application concurrency common in e-
commerce workloads. Accordingly, these results moti-
vate the need for a prefetching scheme that i) exploits
generic (non-sequential) access patterns in the applica-
tion, and ii) is aware of application concurrency and ca-
pable of detecting access patterns per application con-
text. For this purpose, in the following, we introduce
the QuickMine algorithm that employs data mining prin-
ciples to discover access correlations at runtime in a
context-aware manner.

3 Context-aware Mining and Prefetching

In this section, we describe our approach to context-
aware prefetching at the storage server. We first present
an overview of our approach, and introduce the termi-
nology we use. We then describe in more detail our tech-
nique for tracking application contexts, the QuickMine
algorithm for discovering block correlations and discuss
how we leverage them in our prefetching algorithm.

USENIX Association

USENIX ’08: 2008 USENIX Annual Technical Conference

379

RULE MFU e—» LFU RULE
D 7 et ! D

Ti[e]7]s] ! | ;
keY 2 3 4 5 6 7 [B ! !
\ H : | |
' : . ! ' !
') 6 | !
s i[s]a}>{s]s [7] i
s, 2]e 7 | 5o :
i | 4. { |
4 |l2|5|»l6]|7 ' i 1
Accesses k ! N !
interleaved 3. 1|24 5|6 ' o !

i ' '
at Storage 2 f2|afsla]s 7] L 1
Server 1 ; | ' |
Loile]7 s ! LRU i !
\ Prefi Suffi 1
5 Prefix Suffix z i refix Ut E

QuickMine No Contexts
PANEL | PANEL 2 PANEL 3

Figure 3: Walk-through. We compare QuickMine with a context-oblivious mining algorithm

3.1 Overview

We use application-level contexts to guide I/O block
prefetching at the storage server. An application-level
context is a logical unit of work corresponding to a spe-
cific level in the application’s structural hierarchy e.g., a
thread, a web interaction, a transaction, a query template,
or a query instance.

We tag each I/O access with a context identifier
provided by the application and pass these identifiers
through the operating system to the storage server. This
allows the storage server to group block accesses per
application-level context. In the example in Figure 1, as-
suming that the context identifier of an I/O access is the
thread identifier, the storage server is able to differentiate
that blocks {1, 2, 3} are accessed by Thread-1 and blocks
{5,7,9} are accessed by Thread-2, from the interleaved
access pattern.

Within each sequence of block accesses thus grouped
by application context, the storage server applies our
frequent sequence mining algorithm, called QuickMine.
The QuickMine algorithm predicts a set of blocks to be
accessed with high probability in the near future. The
predictions are made based on mining past access pat-
terns. Specifically, QuickMine derives per-context corre-
lation rules for blocks that appear together frequently for
a given context. Creation of new correlation rules and
pruning useless old rules for an application and its var-
ious contexts occurs incrementally, on-the-fly, while the
system performs its regular activities, including running
other applications. The QuickMine algorithm is embed-
ded in the storage server cache. The storage cache uses
the derived rules to issue prefetches for blocks that are
expected to occur within short order after a sequence of
already seen blocks.

Terminology: For the purposes of our data mining al-
gorithm, a sequence is a list of I/O reads issued by an ap-

plication context ordered by the timestamp of their disk
requests. A sequence database D = {51, Sa,...,S,}is
a set of sequences. The support of a sequence R in the
database D is the number of sequences for which R is
a subsequence. A subsequence is considered frequent if
it occurs with a frequency higher than a predefined min-
support threshold. Blocks in frequent subsequences are
said to be correlated. Correlated blocks do not have to
be consecutive. They should occur within a small dis-
tance, called a gap or lookahead distance, denoted G.
The larger the lookahead distance, the more aggressive
the algorithm is in determining correlations. For the pur-
poses of our storage caching and prefetching algorithm,
we distinguish between three types of cache accesses. A
cache hit is an application demand access to a block cur-
rently in the storage cache. A promote is a block demand
access for which a prefetch has been previously issued;
the respective block may or may not have arrived at the
cache at the time of the demand access. All other ac-
cesses are cache misses.

3.2 Context Tracking

Contexts are delineated with begin and end delimiters
and can be nested. We use our context tracking for
database applications and track information about three
types of contexts: application thread, database trans-
action and database query. For database queries, we
can track the context of each query instance, or of each
query template i.e., the same query with different argu-
ment values. We reuse pre-existing begin and end mark-
ers, such as, connection establishment/connection tear-
down, BEGIN and COMMIT/ROLLBACK statements, and
thread creation and destruction to identify the start and
end of a context. For application thread contexts, we tag
block accesses with the thread identifier of the database
system thread running the interaction. We differentiate

380

USENIX ’08: 2008 USENIX Annual Technical Conference

USENIX Association

database transaction contexts by tagging all block ac-
cesses between the BEGIN and COMMIT/ABORT with
the transaction identifier. A database query context sim-
ply associates each block access with the query or query
template identifier. We studied the feasibility of our tag-
ging approach in three open-source database engines:
MySQL, PostgreSQL, and Apache Derby, and we found
the necessary changes to be trivial in all these existing
code bases. The implementation and results presented in
this paper are based on minimal instrumentation of the
MySQL/InnoDB database server to track transaction and
query template contexts.

While defining meaningful contexts is intuitive, defin-
ing the right context granularity for optimizing the
prefetching algorithm may be non-trivial. There is
a trade-off between using coarse-grained contexts and
fine-grained contexts. Fine-grained contexts provide
greater prediction accuracy, but may limit prefetch-
ing aggressiveness because they contain fewer accesses.
Coarse-grained contexts, on the other hand, provide
more prefetching opportunities, but lower accuracy due
to more variability in access patterns, e.g., due to control
flow within a transaction or thread.

3.3 QuickMine

QuickMine derives block correlation rules for each ap-
plication context as follows. Given a sequence of al-
ready accessed blocks {a1,as, ..., ax}, and a lookahead
parameter GG, QuickMine derives block correlation rules
of the form {a;&a; — ax} for all 4, j and k, where
{ai,a;j,ar}isasubsequenceandi < j < k, (j—i) < G
and (k —1i) < G.

For each rule of the form {a&b — c}, {a&b} is
called a sequence prefix, and represents two blocks al-
ready seen on a hot path through the data i.e., a path
taken repeatedly during the execution of the correspond-
ing application context. For the same rule, {c} is one
of the block accesses about to follow the prefix with
high probability and is called a sequence suffix. Typi-
cally, the same prefix has several different suffixes de-
pending on the lookahead distance G and on the variabil-
ity of the access patterns within the given context, e.g.,
due to control flow. For each prefix, we maintain a list
of possible suffixes, up to a cut-off max-suffix number.
In addition, with each suffix, we maintain a frequency
counter to track the number of times the suffix was ac-
cessed i.e., the support for that block. The list of suffixes
is maintained in order of their respective frequencies to
help predict the most probable block(s) to be accessed
next. For example, assume that QuickMine has seen ac-
cess patterns { (a1, as, as, as), (az,as,ayq), (az,as,as)}
in the past for a given context. QuickMine creates rules
{as&as — a4} and {as&as — as} for this context.
Further assume that the current access sequence matches

the rule prefix {as&as}. QuickMine predicts that the
next block to be accessed will be suffix {a4} or {as}
in this order of probability because {as, as, a4} occurred
twice while {a2, as, as} occurred only once.

We track the blocks accessed within each context and
create/update block correlations for that context when-
ever a context ends. We maintain all block correlation
rules in a rule cache, which allows pruning old rules
through simple cache replacement policies. The cache
replacement policies act in two dimensions: i) for rule
prefixes and ii) within the suffixes of each prefix. We
keep the most recent max-prefix prefixes in the cache.
For each prefix, we keep max-suffix most probable suf-
fixes. Hence, the cache replacement policies are LRU
(Least-Recently-Used) for rule prefixes and LFU (Least-
Frequently-Used) for suffixes. Intuitively, these policies
match the goals of our mining algorithm well. Since
access paths change over time as the underlying data
changes, we need to remember recent hot paths and for-
get past paths. Furthermore, as mentioned before, we
need to remember only the most probable suffixes for
each prefix. To prevent quick evictions, newly added suf-
fixes are given a grace period.

Example: We show an example of QuickMine in Fig-
ure 3. We contrast context-aware mining with context-
oblivious mining. On the left hand side, we show an
example of an interleaved access pattern that is seen at
the storage server when two transactions (denoted 7}
and 7%) are running concurrently. Panel 2 shows the re-
sult of QuickMine. Panel 3 contrasts QuickMine with a
context-oblivious mining algorithm. To aid the reader,
we do not prune/evict items from the rule cache. In
Panel 2, we obtain the list of block accesses after T}
and T, finish execution. 7T} accesses {6,7,8} so we
obtain the correlation {6&7 — 8} (rule 1 in Panel 2).
T5 accesses {2, 3,4, 5,6, 7} leading to more correlations.
We set the lookahead parameter, G = 5, so we look
ahead by at most 5 entries when discovering correla-
tions. We discover correlations {(6&7 — 8), (2&3 —
4),(2&3 — 5),...,(5&6 — 7)}. Finally, we show a
snapshot of context-oblivious mining, with false correla-
tions highlighted, in Panel 3. At the end of transaction
T, the access pattern {2, 6,3,7,4,8,5,6, 7} is extracted
and the mined correlations are {(2&6 — 3), (2&6 —
7),(2&6 — 4),(2&6 — 8),...,(5&6 — T7)}. With
context-oblivious mining, false correlations are gener-
ated, e.g., {(2&6 — 3),(2&6 — 4),(2&6 — 8)} are
incorrect. False correlations will be eventually pruned
since they occur infrequently, hence have low support,
but the pruning process may evict some true correlations
as well.

USENIX Association

USENIX ’08: 2008 USENIX Annual Technical Conference

381

Virtual Storage
MySQL
/dev/raw/rawl NBD
K
| Linux
Linux
NBD + /dev/sdbl
aevTcbar O000
CLIENT SERVER

Figure 4: Storage Architecture: We show one client
connected to a storage server using NBD.

3.4 Prefetching Algorithm

The storage cache uses the block correlation rules to is-
sue block prefetches for predicted future read accesses.
Block prefetches are issued upon a read block miss. We
use the last two accesses of the corresponding context to
search the rule cache for the prefix just seen in the I/O
block sequence. We determine the set of possible blocks
to be accessed next as the set of suffixes stored for the
corresponding prefix. We prefetch blocks that are not
currently in the cache starting with the highest support
block up to either the maximum suffixes stored or the
maximum prefetching degree.

The number of block prefetches issued upon a block
miss called prefetch aggressiveness, is a configurable
parameter. We set the prefetching aggressiveness to
the same value as max-suffix for all contexts. How-
ever, in heavy load situations, we limit the prefetching
aggressiveness to prevent saturating the storage band-
width. Specifically, we leverage our context information
to selectively throttle or disable prefetching for contexts
where prefetching is not beneficial. Prefetching benefit is
determined per context, as the ratio of prefetches issued
versus prefetched blocks used by the application.

The prefetched blocks brought in by one application
context may be, however, consumed by a different appli-
cation context due to data affinity. We call such contexts
symbiotic contexts. We determine symbiotic contexts sets
by assigning context identifiers tracking the issuing and
using contexts for each prefetched cache block. We then
monitor the prefetching benefit at the level of symbiotic
context sets rather than per individual context. We dis-
able prefetching for contexts (or symbiotic context sets)
performing poorly.

4 Implementation Details

We implement our algorithms in our Linux-based virtual
storage prototype, which can be deployed over commod-

ity storage firmware. The architecture of our prototype
is shown in Figure 4. MySQL communicates to the vir-
tual storage device through standard Linux system calls
and drivers, either iSCSI or NBD (network block device),
as shown in the figure. Our storage cache is located on
the same physical node as the storage controller, which
in our case does not have a cache of its own. The stor-
age cache communicates to a disk module which maps
virtual disk accesses to physical disk accesses. We mod-
ified existing client and server NBD protocol processing
modules for the storage client and server, respectively, in
order to incorporate context awareness on the I/O com-
munication path.

In the following, we first describe the interfaces and
communication between the core modules, then describe
the role of each module in more detail.

4.1 Interfaces and Communication

Storage clients, such as MySQL, use NBD for read-
ing and writing logical blocks. For example, as
shown in Figure 4, MySQL mounts the NBD device
(/dev/nbdl) on /dev/raw/rawl. The Linux vir-
tual disk driver uses the NBD protocol to communicate
with the storage server. In NBD, an I/O request from
the client takes the form <type, offset, length>
where t ype is a read or write. The I/O request is passed
by the OS to the NBD kernel driver on the client, which
transfers the request over the network to the NBD proto-
col module running on the storage server.

4.2 Modules

Each module consists of several threads processing re-
quests. The modules are interconnected through in-
memory bounded buffers. The modular design allows
us to build many storage configurations by simply con-
necting different modules together.

Disk module: The disk module sits at the lowest
level of the module hierarchy. It provides the interface
with the underlying physical disk by translating appli-
cation I/O requests to the virtual disk into pread ()/
pwrite () system calls, reading/writing the underlying
physical data. We disable the operating system buffer
cache by using direct I/O i.e., the /O O_DIRECT flag in
Linux.

Cache module: The cache module supports context-
aware caching and prefetching. We developed a portable
caching library providing a simple hashtable-like inter-
face modelled after Berkeley DB. If the requested block
is found in the cache, the access is a cache hit and we
return the data. Otherwise, the access is a cache miss,
we fetch the block from the next level in the storage hi-
erarchy, store it in the cache, then return the data. When
prefetching is enabled, the cache is partitioned into two

382

USENIX ’08: 2008 USENIX Annual Technical Conference

USENIX Association

areas: a main cache (IMC) and a prefetch cache (PIFC).
The PEC contains blocks that were fetched from disk
by the prefetching algorithm. The IMC contains blocks
that were requested by application threads. If an appli-
cation thread requests a block for which a prefetch has
been issued, we classify the access as a promote. A block
promote may imply either waiting for the block to arrive
from disk, or simply moving the block from IPIFC to MC
if the block is already in the cache.

We use Berkeley DB to implement the rule cache and
store the mined correlations. The caching keys are rule
prefixes and the cached data are the rule suffixes. The
suffixes are maintained using the LFU replacement al-
gorithm and the prefixes are maintained using LRU. The
LRU policy is implemented using timeouts, where we pe-
riodically purge old entries. We configure Berkeley DB’s
environment to use a memory pool of 4MB.

NBD Protocol module: We modify the original NBD
protocol module on the server side, used in Linux for
virtual disk access, to convert the NBD packets into our
own internal protocol packets, i.e., into calls to our server
cache module.

4.3 Code Changes

To allow context awareness, we make minor changes to
MySQL, the Linux kernel, and the NBD protocol.

Linux: The changes required in the kernel are
straightforward and minimal. In the simplest case, we
need to pass a context identifier on I/O calls as a separate
argument into the kernel. In order to allow more flexi-
bility in our implementation, and enhancements such as
per-context tracking of prefetch effectiveness, we pass a
handle to a context structure, which contains the transac-
tion identifier, and query template identifier.

We add three new system calls, ctx_pread(),
ctx_pwrite () and ctx_action().
ctx_action() allows us to inform the storage
server of context begin/end delimiters. Each system
call takes a struct context =* as a parameter
representing the context of the I/O call. This context
handle is passed along the kernel until it reaches
the lowest level where the kernel contacts the block
storage device. Specifically, we add a field context
to struct request, which allows us to pass the
context information through the I/O subsystem with no
additional code changes. Once the I/O request reaches
the NBD driver code, we copy the context information
into the NBD request packet and pass the information to
the storage server.

NBD Protocol: We simply piggyback the context in-
formation on the NBD packet. In addition, we add two
new messages to the NBD protocol, for the correspond-
ing system call ctx_action (), to signify the begin-

ning of a context (CTX_BEG) and the end of a context
(CTX_END).

MySQL: A THD object is allocated for each connec-
tion made to MySQL. The THD object contains all con-
textual information that we communicate to the storage
server. For example, THD.query contains the query
currently being executed by the thread. We generate the
query template identifier using the query string. In addi-
tion, we call our ct x_action () asappropriate, e.g., at
transaction begin/end and at connection setup/tear-down
to inform the storage server of the start/end of a context.

5 Evaluation

In this section, we describe several prefetching algo-
rithms we use for comparison with QuickMine and evalu-
ate the performance using three industry-standard bench-
marks: TPC-W, RUBIS, and DBT-2.

5.1 Prefetching Algorithms used for
Comparison

In this section, we describe several prefetching al-
gorithms that we use for comparison with Quick-
Mine. These algorithms are categorized into sequential
prefetching schemes (RUN and SEQ) and history based
prefetching schemes (C-Miner*). The RUN and C-
Miner* algorithms share some of the features of Quick-
Mine, specifically, some form of concurrency awareness
(RUN) and history-based access pattern detection and
prefetching (C-Miner™).

Adaptive Sequential Prefetching (SEQ): We im-
plement an adaptive prefetching scheme following the
sequence-based read-ahead algorithm implemented in
Linux [10]. Sequence based prefetching is activated
when the algorithm detects a sequence (.S) of accesses to
K contiguous blocks. The algorithm uses two windows:
a current window and a read-ahead window. Prefetches
are issued for blocks contained in both windows. In
addition, the number of prefetched blocks used within
each window is monitored i.e., the block hits in the cur-
rent window and the read ahead window, S.cur Hit and
S.reaHit, respectively. When a block is accessed in
the read-ahead window, the current window is set to the
read-ahead window and a new read-ahead window of
size is 2 x S.curHit is created. To limit the prefetch-
ing aggressiveness, the size of the read-ahead window is
limited by 128KB as suggested by the authors [10].

Run-Based Prefetching (RUN): Hsu et al. [16] show
that many workloads, particularly database workloads,
do not exhibit strict sequential behavior, mainly due to
high application concurrency. To capture sequentiality in
a multi-threaded environment, Hsu et al. introduce run-
based prefetching (RUN) [17]. In run-based prefetch-

USENIX Association

USENIX ’08: 2008 USENIX Annual Technical Conference

383

ing, prefetching is initiated when a sequential run is de-
tected. A reference r to block b is considered to be part
of a sequential run R if b lies within —extentpqckward
and +extent forward Of the largest block accessed in R,
denoted by R.maxBlock. This modified definition of
sequentiality thus accommodates small jumps and small
reverses within an access trace. Once the size of the run
R exceeds a sequentiality threshold (32KB), prefetch-
ing is initiated for 16 blocks from R.maxBlock + 1 to
R.mazxBlock + 16.

History-based Prefetching: There are several his-
tory based prefetching algorithms proposed in recent
work [17, 13, 20, 26]. C-Miner* is a static mining algo-
rithm that extracts frequent block subsequences by min-
ing the entire sequence database [25].

C-Miner* builds on a frequent subsequence mining al-
gorithm, CloSpan [42]. It differs from QuickMine by
mining block correlations off-line, on a long sequence
of I/O block accesses. First, C-Miner* breaks the long
sequence trace into smaller sequences and creates a se-
quence database. From these sequences, as in Quick-
Mine, the algorithm considers frequent sequences of
blocks that occur within a gap window. Given the se-
quence databases and using the gap and min_support
parameters, the algorithm extracts frequent closed se-
quences, i.e., subsequences whose support value is dif-
ferent from that of its super-sequences. For example, if
{a1,a9,as3,a4} is a frequent subsequence with support
value of 5 and {a1,ag, a3} is a subsequence with sup-
port value of 5 then, only {aj, az,as,as} will be used
in the final result. On the other hand, if {a1, as, az} has
a support of 6 then, both sequences are recorded. For
each closed frequent sequence e.g., {a1,a2,a3,a4}, C-
Miner* generates association rules of the form {(a; —
a2), (m&az — ag), ..., (az — as)}.

As an optimization, C-Miner* uses the frequency of
a rule suffix in the rule set to prune predictions of low
probability through a parameter called min_confidence.
For example, if the mined trace contains 80 sequences
with {a2&as — a4} and 20 sequences with {ax&as —
as}, then {as&as — as} has a (relatively low)
confidence of 20% and might be pruned depending
on the min_confidence threshold. In our experiments,
we use maxr_gap = 10, min_support = 1, and
min_con fidence = 10% for C-Miner*.

5.2 Benchmarks

TPC-W1'%: The TPC-W benchmark from the Transac-
tion Processing Council [1] is a transactional web bench-
mark designed for evaluating e-commerce systems. Sev-
eral web interactions are used to simulate the activity of a
retail store. The database size is determined by the num-
ber of items in the inventory and the size of the customer

population. We use 100K items and 2.8 million cus-
tomers which results in a database of about 4 GB. We use
the shopping workload that consists of 20% writes. To
fully stress our architecture, we create TPC-W10 by run-
ning 10 TPC-W instances in parallel creating a database
of 40 GB.

RUBIiS'%: We use the RUBIS Auction Benchmark
to simulate a bidding workload similar to e-Bay. The
benchmark implements the core functionality of an auc-
tion site: selling, browsing, and bidding. We do not im-
plement complementary services like instant messaging,
or newsgroups. We distinguish between three kinds of
user sessions: visitor, buyer, and seller. For a visitor
session, users need not register but are only allowed to
browse. Buyer and seller sessions require registration. In
addition to the functionality provided during the visitor
sessions, during a buyer session, users can bid on items
and consult a summary of their current bid, rating, and
comments left by other users. We are using the default
RUBIS bidding workload containing 15% writes, consid-
ered the most representative of an auction site workload
according to an earlier study of e-Bay workloads [34].
We create a scaled workload, RUBiS!° by running 10
RUBIS instances in parallel.

DBT-2: DBT-2 is an OLTP workload derived from
the TPC-C benchmark [30, 40]. It simulates a wholesale
parts supplier that operates using a number of warehouse
and sales districts. Each warehouse has 10 sales districts
and each district serves 3000 customers. The workload
involves transactions from a number of terminal opera-
tors centered around an order entry environment. There
are 5 main transactions for: (1) entering orders (New
Order), (2) delivering orders (Delivery), (3) recording
payments (Payment), (4) checking the status of the or-
ders (Order Status), and (5) monitoring the level of stock
at the warehouses (Stock Level). Of the 5 transactions,
only Stock Level is read only, but constitutes only 4% of
the workload mix. We scale DBT-2 by using 256 ware-
houses, which gives a database footprint of 60GB.

5.3 Evaluation Methodology

We run our Web based applications on a dynamic content
infrastructure consisting of the Apache web server, the
PHP application server and the MySQL/InnoDB (ver-
sion 5.0.24) database storage engine. For the database
applications, we use the test harness provided by each
benchmark while hosting the database on MySQL. We
run the Apache Web server and MySQL on Dell Pow-
erEdge SC1450 with dual Intel Xeon processors running
at 3.0 Ghz with 2GB of memory. MySQL connects to
the raw device hosted by the NBD server. We run the
NBD server on a Dell PowerEdge PE1950 with 8 Intel
Xeon processors running at 2.8 Ghz with 3GB of mem-
ory. To maximize IO bandwidth, we use RAID 0 on 15

384

USENIX ’08: 2008 USENIX Annual Technical Conference

USENIX Association

10K RPM 250GB hard disks. We install Ubuntu 6.06
on both the client and server machines with Linux kernel
version 2.6.18-smp.

We configure our caching library to use 16KB block
size to match the MySQL/InnoDB block size. We use
100 clients for TPC-W1° and RUBiS!Y. For DBT-2, we
use 256 warehouses. We run each experiment for two
hours. We train C-Miner* on a trace collected from the
first hour of the experiment. We measure statistics for
both C-Miner* and QuickMine during the second hour of
the experiment. We use a lookahead value of 10 for C-
Miner*, which is the best value found experimentally for
the given applications and number of clients used in the
experiments. QuickMine is less sensitive to the looka-
head value, and any lookahead value between 5 and 10
gives similar results. We use a lookahead value of 5 for
QuickMine.

6 Results

We evaluate the performance of the following schemes: a
baseline caching scheme with no prefetching (denoted as
LRU), adaptive sequential prefetching (SEQ), run-based
prefetching (RUN), C-Miner* (CMINER), and Quick-
Mine (QMINE). In Section 6.1, we present the overall
performance of those schemes, whereas in Section 6.2,
we provide detailed analysis to further understand the
achieved overall performance of each scheme.

6.1 Overall Performance

In this section, we measure the storage cache hit rates,
miss rates, promote rates and the average read latency
for each of the prefetching schemes by running our three
benchmarks in several cache configurations. For all
experiments, the MySQL/InnoDB buffer pool is set to
1024MB and we partition the storage cache such that
the prefetching area is a fixed 4% of the total storage
cache size. For TPC-W!0 and RUBIiS!?, we use 100
clients and we vary the storage cache size, showing re-
sults for 512MB, 1024MB, and 2048MB storage cache
for each benchmark. For DBT-2, we show results only
for the 1024MB storage cache, since results for other
cache sizes are similar. In QuickMine, we use query-
template contexts for TPC-W and RUBIiS and transac-
tion contexts for DBT-2. However, the results vary only
slightly with the context granularity for our three bench-
marks.

TPC-W: Figures 5(a)-5(c) show the hit rates (black),
miss rates (white), and promote rates (shaded) for all
prefetching schemes with TPC-W'°. For a 512MB stor-
age cache, as shown in Fig. 5(a), the baseline (LRU) miss
rate is 89%. The sequential prefetching schemes reduce
the miss rate by 5% on average. C-Miner* reduces the

LRU SEQ
MHIT [SPROMOTE CIMISS

RUN CMINER QMINE LRU SEQ

RUN CMINER QMINE
MHIT SPROMOTE [IMISS

(a) Hit/Miss/Promote (512M) (b) Hit/Miss/Promote (1024M)

100% 3

75%

50%

25%

Avg. Read Latency (ms)

0% 1024 2048

Total Storage Cache Size (MB)
M LRU E1SEQ EIRUN E5CMINER CIQMINE

LRU SEQ RUN CMINER QMINE
MHIT EIPROMOTE CIMISS

(c) Hit/Miss/Promote (2048M) (d) Average Read Latency
Figure 5: TPC-W. Prefetching benefit in terms of miss
rate and average read latency.

miss rate by 15%, while QuickMine reduces the miss rate
by 60%. The benefit of sequential prefetching schemes
is low due to lack of sequentiality in the workload. With
larger cache sizes, the baseline miss rates are reduced to
45% for the 1024MB cache (Fig. 5(b)) and to 20% for
the 2048MB cache (Fig. 5(c)). With lower miss rates,
there are lower opportunities for prefetching. In spite of
this, QuickMine still provides a 30% and 17% reduction
in miss rates for the 1024MB and 2048MB cache sizes,
respectively.

For QuickMine, the cache miss reductions translate
into substantial read latency reductions as well, as shown
in Figure 5(d). In their turn, these translate into decreases
in overall storage access latency by factors ranging from
2.0 for the 512MB to 1.22 for the 2048MB caches, re-
spectively. This is in contrast to the other prefetching
algorithms, where the average read latency is compara-
ble to the baseline average latency for all storage cache
sizes.

RUBIS: Context-aware prefetching benefits RUBiS
as well, as shown in Figure 6. The baseline (LRU)
cache miss rates are 85%, 36% and 2% for the 512MB,
1024MB, and 2048MB cache sizes, respectively. For a
512MB cache, as shown in Figure 6(a), the SEQ and
RUN schemes reduce the miss rate by 6% and 9%, re-
spectively. C-Miner* reduces the miss rate by only 3%
while QuickMine reduces the miss rate by 48%. In RU-
BiS, the queries access a spatially-local cluster of blocks.
Thus, triggering prefetching for a weakly sequential ac-
cess pattern, as in RUN, results in more promotes than
for SEQ. C-Miner* performs poorly for RUBIS because
many RUBIS contexts are short. This results in many
false correlations across context boundaries in C-Miner*.

USENIX Association

USENIX ’08: 2008 USENIX Annual Technical Conference

385

LRU SEQ RUN
M HIT SYPROMOTE CIMISS

(a) Hit/Miss/Promote (512M)

100%

CMINER QMINE LRU SEQ RUN CMINER QMINE
WHIT NPROMOTE [IMISS

(b) Hit/Miss/Promote (1024M)

75%

50%

Avg. Read Latency (ms)

25%

10
Total Storage Cache Size (MB)
MILRU CISEQ EIRUN EICMINER [IQMINE

0% 2048

LRU SEQ RUN CMINER QMINE
WHIT NPROMOTE [IMISS

(c) Hit/Miss/Promote (2048M) (d) Average Read Latency

Figure 6: RUBIS. Prefetching benefit in terms of miss
rate and average read latency.

100%

75%

50%

25%

Avg. Read Latency (ms)

0%
LRU SEQ RUN
M HIT NPROMOTE CIMISS

(a) Hit/Miss/Promote

CMINER QMINE LRU SEQ RUN

CMINER QMINE
MLRU [JSEQ EZRUN [CMINER NQMINE

(b) Average Read Latency

Figure 7: DBT-2. Prefetching benefit in terms of miss
rate and average read latency for 1024MB storage cache.

Hence, only a few prefetch rule prefixes derived during
training can be later matched on-line, while many rule
suffixes are pruned due to low confidence. QuickMine
overcomes the limitations of C-Miner* by tracking cor-
relations per context.

The performance of the prefetching algorithms is re-
flected in the average read latency as well. As shown
in Figure 6(d), the sequential prefetching schemes (SEQ
and RUN) reduce the average read latency by up to 10%
compared to LRU. The reductions in miss rate using
QuickMine translate to reductions in read latencies of
45% (512MB) and 22% (1024MB) compared to LRU,
corresponding to an overall storage access latency reduc-
tion by a factor of 1.63 for the 512MB cache and 1.3 for
the 1024MB cache.

DBT-2: Prefetching is difficult for DBT-2, since the
workload mix for this benchmark contains a high frac-
tion of writes; furthermore, some of its transactions issue
very few I/Os. The I/O accesses are not sequential.
As Figure 7 shows, the lack of sequentiality causes the
sequential prefetching algorithms to perform poorly. Se-

e
S
&

Prefetches Issued
Prefetch Accuracy
°
&

o
5
4

il

1024 2048 512 1024 2048
Total Cache Size

EISEQ ERUN BICMINER CIQMINE

(b) TPC-W (Accuracy)

°

Total Cache Size
[ZSEQ EZRUN EJCMINER ESQMINE

(a) TPC-W (Issued)

075

°
o

o
I~
&

Prefetches Issued
Prefetch Accuracy

oLl

512 1024 2048 512 1024 2048
Total Cache Size (MB) Total Cache Size (MB)
[ISEQ BIRUN EICMINER CIQMINE £ISEQ BRUN B3 CMINER S QMINE

(c) RUBIS (Issued) (d) RUBIS (Accuracy)

PRS- 0

Figure 8: RUBIS!*/TPC-W!°. We show the number of
prefetches issued (in thousands) and the accuracy of the
prefetches.

quential prefetching schemes decrease the miss rate by
less than 1%. C-Miner* and QuickMine perform slightly
better. C-Miner* lowers the miss rate by 2% and Quick-
Mine reduces the miss rate by 6%. However, the high
I/O footprint of this benchmark causes disk congestion,
hence increases the promote latency. Overall, the average
read latency increases by 2% for the sequential prefetch-
ing schemes and C-Miner*, while the read latency is re-
duced by 3% for QuickMine.

6.2 Detailed Analysis

In this section, we evaluate the prefetching effectiveness
of the different schemes by measuring the number of
prefetches issued and their accuracy, i.e., the percentage
of prefetched blocks consumed by the application. Both
metrics are important since if only a few prefetches are
issued, their overall impact is low, even at high accuracy
for these prefetches. We also compare the two history-
based schemes, QuickMine and C-Miner*, in more de-
tail. Specifically, we show the benefits of context aware-
ness and the benefit of incremental mining, versus static
mining.

Detailed Comparison of Prefetching Effectiveness:
In Figure 8, we show the number of prefetches issued,
and their corresponding accuracy for all prefetching al-
gorithms. For TPC-W'° with a 512MB cache, shown in
Figure 8(a), QuickMine issues 2M prefetches, while C-
Miner*, SEQ, and RUN issue less than 500K prefetches.
The RUN scheme is the least accurate (< 50%) since
many prefetches are spuriously triggered. The SEQ
scheme exhibits a better prefetch accuracy of between
50% and 75% for the three cache sizes. Both QuickMine

386

USENIX °08: 2008 USENIX Annual Technical Conference

USENIX Association

and C-Miner* achieve greater than 75% accuracy. While
C-Miner* has slightly higher accuracy than QuickMine
for the rules issued, this accuracy corresponds to sub-
stantially fewer rules than QuickMine. This is because,
many of the C-Miner* correlation rules correspond to
false correlations at the context switch boundary, hence
are not triggered at runtime. As a positive side-effect, the
higher number of issued prefetches in QuickMine allows
the disk scheduler to re-order the requests for optimizing
seeks, thus reducing the average prefetch latency. As a
result, average promote latencies are significantly lower
in QuickMine compared to C-Miner*, specifically, 600us
versus 2400us for the 512MB cache. For comparison, a
cache hit takes 7us on average and a cache miss takes
3200us on average, for all algorithms.

For RUBiS!? with a 512MB cache, shown in Fig-
ure 8(c), QuickMine issues 1.5M prefetches, which is ten
times more than C-Miner* and SEQ. In the RUN scheme,
the spatial locality of RUBIS causes more prefetches
(250K) to be issued compared to SEQ, but only 38%
of these are accurate, as shown in Figure 8(d). As be-
fore, while C-Miner* is highly accurate (92%) for the
prefetches it issues, substantially fewer correlation rules
are matched at runtime compared to QuickMine, due to
false correlations. With larger cache sizes, there is less
opportunity for prefetching, because there are fewer stor-
age cache misses, but at all cache sizes QuickMine issues
more prefetch requests than other prefetching schemes.
Similar as for TPC-W, the higher number of prefetches
results in a lower promote latency for QuickMine com-
pared to C-Miner* i.e., 150us versus 650us for RUBiS
in the 512MB cache configuration.

Benefit of Context Awareness: We compare the to-
tal number of correlation rules generated by frequent se-
quence mining, with and without context awareness. In
our evaluation, we isolate the impact of context aware-
ness from other algorithm artifacts, by running C-Miner*
without rule pruning, on its original access traces of RU-
BiS and DBT-2, and the de-tangled access traces of the
same. In the de-tangled trace, the accesses are separated
by thread identifier, then concatenated. We notice an or-
der of magnitude reduction in the number of rules gen-
erated by C-Miner*. Specifically, on the original traces,
C-Miner* without rule pruning generates 8M rules and
36M rules for RUBiS and DBT-2, respectively. Using
the de-tangled trace, C-Miner* without rule pruning gen-
erates 800K rules for RUBIS and 2.8M rules for DBT-2.
These experiments show that context awareness reduces
the number of rules generated, because it avoids gener-
ating false block correlation rules for the blocks at the
context switch boundaries.

Another benefit of context-awareness is that it makes
parameter settings in QuickMine insensitive to the con-
currency degree. For example, the value of the looka-

head/gap parameter correlates with the concurrency de-
gree in context oblivious approaches, such as C-Miner*,
i.e., needs to be higher for a higher concurrency degree.
In contrast, QuickMine’s parameters, including the value
of the lookahead parameter, are independent of the con-
currency degree; they mainly control the prefetch aggres-
siveness. While the ideal prefetch aggressiveness does
depend on the application and environment, QuickMine
has built-in dynamic tuning mechanisms that make it ro-
bust to overly aggressive parameter settings.

The ability to dynamically tune the prefetching de-
cisions at run-time is yet another benefit of context-
awareness. For example, in TPC-W, QuickMine au-
tomatically detects that the BestSeller and the symbi-
otic pair of Search and NewProducts benefit the most
from prefetching, while other queries in TPC-W do not.
Similarly, it detects that only the StockLevel transac-
tion in DBT-2 benefits from prefetching. Tracking the
prefetching benefit per context allows QuickMine to se-
lectively disable or throttle prefetching for low perform-
ing query templates thus avoiding unnecessary disk con-
gestion caused by useless prefetches. In particular, this
feature allows QuickMine to provide a small benefit for
DBT-2, while C-Miner* degrades the application perfor-
mance.

Benefit of Incremental Mining: We show the ben-
efit of dynamically and incrementally updating correla-
tion rules through the use of the LRU based rule cache
as in QuickMine versus statically mining the entire se-
quence database to generate association rules as in C-
Miner* [24,25]. Figure 9 shows the number of promotes,
cumulatively, over the duration of the experiment for C-
Miner*, C-Miner* with periodic retraining (denoted as
C-Miner™) and QuickMine. For these experiments, we
train C-Miner* on the de-tangled trace to eliminate the
effects of interleaved I/O, hence make it comparable with
QuickMine. As Figure 9 shows, the change in the ac-
cess patterns limits the prefetching effectiveness of C-
Miner+, since many of its mined correlations become
obsolete quickly. Thus, no new promotes are issued af-
ter the first 10 minutes of the experiment. In C-Miner™,
where we retrain C-Miner* at the 10 minute mark, and at
the 20 minute mark of the experiment, the effectiveness
of prefetching improves. However, C-Miner™ still lags
behind QuickMine, which adjusts its rules continuously,
on-the-fly. By dynamically aging old correlation rules
and incrementally learning new correlations, QuickMine
maintains a steady performance throughout the experi-
ment. The dynamic nature of QuickMine allows it to au-
tomatically and gracefully adapt to the changes in the I/O
access pattern, hence eliminating the need for explicit re-
training decisions.

USENIX Association

USENIX ’08: 2008 USENIX Annual Technical Conference

387

Thousands
N
£=3
S

\
\

N
\
\

Num. Promotes
=)
o

g
\
1|

i

q

'

'

/

0 5 10 15 20 25 30

Time (minutes)

\\

= = CMINER =— CMINER+ === QMINE

Figure 9: Incremental Mining. When access patterns
change, the performance of static mining deteriorates
over time.

7 Related Work

This section discusses related techniques for improving
caching efficiency at the storage server, including: i) col-
laborative approaches like our own, which pass explicit
hints between client and storage caches, or require more
extensive code restructuring and reorganization, ii) gray-
box approaches, which infer application patterns at the
storage based on application semantics known a priori,
and iii) black box approaches, which infer application
patterns at the storage server in the absence of any se-
mantic information.

Explicitly Collaborative Approaches. Several ap-
proaches pass explicit hints from the client cache to the
storage cache [6, 12, 23, 28]. These hints can indicate,
for example, the reason behind a write block request to
storage [23], explicit demotions of blocks from the stor-
age client to the server cache [41], or the relative impor-
tance of requested blocks [7]. These techniques modify
the interface between the storage client and server, by
requiring that an additional identifier (representing the
hint) be passed to the storage server. Thus, similar to
QuickMine, these techniques improve storage cache ef-
ficiency through explicit context information. However,
as opposed to our work, inserting the appropriate hints
needs thorough understanding of the application inter-
nals. For example, Li et al. [23] require the understand-
ing of database system internals to distinguish the con-
text surrounding each block I/O request. In contrast, we
use readily available information within the application
about preexisting contexts.

In general, collaboration between the application and
storage server has been extensively studied in the con-
text of database systems, e.g., by providing the DBMS
with more knowledge of the underlying storage charac-
teristics [32], by providing application semantic knowl-
edge to storage servers i.e., by mapping database re-
lations to objects [33], or by offloading some tasks to
the storage server [31]. Other recent approaches in

this area [4, 11, 15] take advantage of context informa-
tion available to the database query optimizer [11, 15],
or add new middleware components for exploiting ex-
plicit query dependencies e.g., by SQL code re-writing
to group related queries together [4]. Unlike our tech-
nique, these explicitly collaborative approaches require
substantial restructuring of the database system, code re-
organization in the application, or modifications to the
software stack in order to effectively leverage semantic
contexts. In contrast, we show that substantial perfor-
mance advantage can be obtained with minimal changes
to existing software components and interfaces.

Gray-box Approaches. Transparent techniques for
storage cache optimization leverage I/O meta-data, or ap-
plication semantics known a priori. Meta-data based ap-
proaches include using file-system meta-data, i.e., dis-
tinguishing between i-node and data blocks explicitly,
or using filenames [5, 20, 22, 35, 43], or indirectly by
probing at the storage client [2, 3, 37]. Alternative tech-
niques based on application semantics leverage the pro-
gram backtrace [12], user information [43], or specific
characteristics, such as in-memory addresses of 1/O re-
quests [8, 18] to classify or infer application patterns.

Sivathanu et al. [36] use minimally intrusive instru-
mentation to the DBMS and log snooping to record a
number of statistics, such that the storage system can pro-
vide cache exclusiveness and reliability for the database
system running on top. However, this technique is
DBMS-specific, the storage server needs to be aware of
the characteristics of the particular database system.

Graph-based prefetching techniques based on discov-
ering correlations among files in filesystems [13, 21] also
fall into this category, although they are not scalable to
the number of blocks typical in storage systems [24].

In contrast to the above approaches, our work is gen-
erally applicable to any type of storage client and appli-
cation; any database and file-based application can ben-
efit from QuickMine. We can use arbitrary contexts, not
necessarily tied to the accesses of a particular user [43],
known application code paths [12], or certain types of
meta-data accesses, which may be client or application
specific.

Black Box Approaches. Our work is also related to
caching/prefetching techniques that treat the storage as
a black box, and use fully transparent techniques to in-
fer access patterns [10, 17, 26, 27]. These techniques
use sophisticated sequence detection algorithms for de-
tecting application I/O patterns, in spite of access in-
terleaving due to concurrency at the storage server. In
this paper, we have implemented and compared against
two such techniques, run-based prefetching [17], and
C-Miner* [24, 25]. We have shown that the high con-
currency degree common in e-commerce applications
makes these techniques ineffective. We have also argued

388

USENIX °08: 2008 USENIX Annual Technical Conference

USENIX Association

that QuickMine’s incremental, dynamic approach is the
most suitable in modern environments, where the num-
ber of applications, and number of clients for each ap-
plication, hence the degree of concurrency at the storage
server vary dynamically.

8 Conclusions and Future Work

The high concurrency degree in modern applications
makes recognizing higher level application access pat-
terns challenging at the storage level, because the storage
server sees random interleavings of accesses from dif-
ferent application streams. We introduce QuickMine, a
novel caching and prefetching approach that exploits the
knowledge of logical application sequences to improve
prefetching effectiveness for storage systems.

QuickMine is based on a minimally intrusive method
for capturing high-level application contexts, such as
an application thread, database transaction, or query.
QuickMine leverages these contexts at the storage cache
through a dynamic, incremental approach to I/O block
prefetching.

We implement our context-aware, incremental min-
ing technique at the storage cache in the Network Block
Device (NBD), and we compare it with three state-of-
the-art context-oblivious sequential and non-sequential
prefetching algorithms. In our evaluation, we use
three dynamic content applications accessing a MySQL
database engine: the TPC-W e-commerce benchmark,
the RUBIS auctions benchmark and DBT-2, a TPC-C-
like benchmark. Our results show that context-awareness
improves the effectiveness of block prefetching, which
results in reduced cache miss rates by up to 60% and sub-
stantial reductions in storage access latencies by up to a
factor of 2, for the read-intensive TPC-W and RUBIS.
Due to the write intensive nature and rapidly changing
access patterns in DBT-2, QuickMine has fewer opportu-
nities for improvements in this benchmark. However, we
show that our algorithm does not degrade performance
by pruning useless prefetches for low performing con-
texts, hence avoiding unnecessary disk congestion, while
gracefully adapting to the changing application pattern.

We expect that context-aware caching and prefetching
techniques will be of most benefit in modern data center
environments, where the client load and number of co-
scheduled applications change continuously, and largely
unpredictably. In these environments, a fully on-line, in-
cremental technique, robust to changes, and insensitive
to the concurrency degree, such as QuickMine, has clear
advantages. We believe that our approach can match the
needs of many state-of-the-art database and file-based
applications. For example, various persistence solutions,
such as Berkeley DB or Amazon’s Dynamo [9], use a
mapping scheme between logical identifiers and physi-

cal block numbers e.g., corresponding to the MD5 hash
function [9]. Extending the applicability of our Quick-
Mine algorithm to such logical to physical mappings is
an area of future work.

Acknowledgements

We thank the anonymous reviewers for their comments,
Livio Soares for helping with the Linux kernel changes,
and Mohamed Sharaf for helping us improve the writing
of this paper. We also acknowledge the generous support
of the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC), through an NSERC Canada
CGS scholarship for Gokul Soundararajan, and several
NSERC Discovery and NSERC CRD faculty grants, On-
tario Centers of Excellence (OCE), IBM Center of Ad-
vanced Studies (IBM CAS), IBM Research, and Intel.

References

[1] Transaction processing council. http://www.tpc.org.

[2] ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. In-
formation and Control in Gray-Box Systems. In Proc. of the
18th ACM Symposium on Operating System Principles (October
2001), pp. 43-56.

[3] BAIRAVASUNDARAM, L. N., SIVATHANU, M., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. X-RAY: A
Non-Invasive Exclusive Caching Mechanism for RAIDs. In Proc.
of the 31st International Symposium on Computer Architecture
(June 2004), pp. 176-187.

[4] BowMAN, I. T., AND SALEM, K. Optimization of Query
Streams Using Semantic Prefetching. ACM Transactions on
Database Systems 30, 4 (December 2005), pp. 1056-1101.

[5] Cao, P., FELTEN, E. W., KARLIN, A. R., AND LI, K. A
study of integrated prefetching and caching strategies. In Proc. of
the International Conference on Measurements and Modeling of
Computer Systems, SIGMETRICS (1995), pp. 188-197.

[6] CHANG, F. W., AND GIBSON, G. A. Automatic I/O hint gener-
ation through speculative execution. In Proc. of the 3rd USENIX
Symposium on Operating Systems Design and Implementation
(1999), pp. 1-14.

[7] CHEN, Z., ZHANG, Y., ZHOU, Y., SCOTT, H., AND SCHIEFER,
B. Empirical Evaluation of Multi-level Buffer Cache Collabo-
ration for Storage Systems. In Proc. of the ACM SIGMETRICS
International Conference on Measurement and Modeling of Com-
puter Systems (June 2005), pp. 145-156.

[8] CHEN, Z., ZHOU, Y., AND LI, K. Eviction-based Cache Place-
ment for Storage Caches. In Proc. of the USENIX Annual Tech-
nical Conference, General Track (June 2003), pp. 269-281.

[9] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI,
G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S.,
VOSSHALL, P., AND VOGELS, W. Dynamo: Amazon’s highly
available key-value store. In Proc. of the 21st ACM Symposium
on Operating Systems Principles (2007), pp. 205-220.

[10] DING, X., JIANG, S., CHEN, F., Davis, K., AND ZHANG, X.
Diskseen: Exploiting disk layout and access history to enhance
1/O prefetch. In USENIX Annual Technical Conference (2007),
USENIX, pp. 261-274.

USENIX Association

USENIX ’08: 2008 USENIX Annual Technical Conference

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

[22]

(23]

[24]

(25]

[26]

(27]

GAO, K., HARIZOPOULOS, S., PANDIS, I., SHKAPENYUK, V.,
AND AILAMAKI, A. Simultaneous pipelining in QPipe: Ex-
ploiting work sharing opportunities across queries. In Proc. of
the 22nd International Conference on Data Engineering, ICDE
(April 2006), pp. 162-174.

GNIADY, C., BUTT, A. R., AND Hu, Y. C. Program-counter-
based pattern classification in buffer caching. In Proc. of the
6th Symposium on Operating System Design and Implementation
(2004), pp. 395-408.

GRIFFIOEN, J., AND APPLETON, R. Reducing file system la-
tency using a predictive approach. In Proc. of the USENIX Sum-
mer Technical Conference (1994), pp. 197-207.

HAAs, L. M., KOSSMANN, D., AND URSU, I. Loading a cache
with query results. In Proc. of 25th International Conference on
Very Large Data Bases (1999), pp. 351-362.

HARIZOPOULOS, S., AND AILAMAKI, A. StagedDB: Designing
database servers for modern hardware. IEEE Data Eng. Bull. 28,
2 (2005), 11-16.

Hsu, W. W., SMITH, A. J., AND YOUNG, H. C. T/O reference
behavior of production database workloads and the TPC bench-
marks - an analysis at the logical level. ACM Transaction on
Database Systems 26, 1 (2001), 96-143.

Hsu, W. W., SMITH, A. J., AND YOUNG, H. C. The automatic
improvement of locality in storage systems. ACM Transactions
on Computer Systems 23, 4 (2005), 424-473.

JONES, S. T., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Geiger: monitoring the buffer cache in a virtual
machine environment. In Proc. of the 12th International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (2006), pp. 14-24.

KEETON, K., ALVAREZ, G., RIEDEL, E., AND UYSAL, M.
Characterizing I/O-intensive workload sequentiality on modern
disk arrays. In 4th Workshop on Computer Architecture Evalua-
tion using Commercial Workloads (2001).

KROEGER, T. M., AND LONG, D. D. E. Design and implemen-
tation of a predictive file prefetching algorithm. In Proc. of the
USENIX Annual Technical Conference (2001), pp. 105-118.

KUENNING, G. H., POPEK, G. J., AND REIHER, P. L. An anal-
ysis of trace data for predictive file caching in mobile computing.
In Proc. of the USENIX Summer Technical Conference (1994),
pp. 291-303.

LEI, H., AND DUCHAMP, D. An analytical approach to file
prefetching. In Proc. of the USENIX Annual Technical Confer-
ence (1997), pp. 21-21.

L1, X., ABOULNAGA, A., SALEM, K., SACHEDINA, A., AND
GAO, S. Second-Tier Cache Management Using Write Hints. In
Proc. of the Conference on File and Storage Technologies (De-
cember 2005).

L1, Z., CHEN, Z., SRINIVASAN, S. M., AND ZHOU, Y. C-
Miner: Mining Block Correlations in Storage Systems. In Proc.
of the FAST '04 Conference on File and Storage Technologies
(San Francisco, California, USA, March 2004), pp. 173-186.

L1, Z., CHEN, Z., AND ZHOU, Y. Mining Block Correlations to
Improve Storage Performance. ACM Transactions on Storage 1,
2 (May 2005), 213-245.

LIANG, S., JIANG, S., AND ZHANG, X. STEP: Sequential-
ity and thrashing detection based prefetching to improve per-
formance of networked storage servers. In Proc. of the 27th
IEEE International Conference on Distributed Computing Sys-
tems (2007), p. 64.

MADHYASTHA, T. M., GIBSON, G. A., AND FALOUTSOS, C.
Informed Prefetching of Collective Input/Output Requests. In
Proc. of the ACM/IEEE Conference on Supercomputing: High
Performance Networking and Computing (1999).

[28]

[29]

[30]

[31]

[32]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

PATTERSON, R. H., GIBSON, G. A., GINTING, E., STODOL-
SKY, D., AND ZELENKA, J. Informed prefetching and caching.
In Proc. of the 15th ACM Symposium on Operating System Prin-
ciples (1995), pp. 79-95.

PHILLIPS, L., AND FITZPATRICK, B. Livejournal’s backend and
memcached: Past, present, and future. In Proc. of the 19th Con-

ference on Systems Administration (2004).

RaAB, F. TPC-C - The Standard Benchmark for Online trans-
action Processing (OLTP). In The Benchmark Handbook for
Database and Transaction Systems (2nd Edition). 1993.

RIEDEL, E., FALOUTSOS, C., GIBSON, G. A., AND NAGLE,
D. Active disks for large-scale data processing. IEEE Computer
34,6 (2001), 68-74.

SCHINDLER, J., GRIFFIN, J. L., LUMB, C. R., AND GANGER,
G. R. Track-aligned Extents: Matching Access Patterns to Disk
Drive Characteristics. In Proc. of the Conference on File and
Storage Technologies (January 2002), pp. 259-274.

SCHLOSSER, S. W., AND IREN, S. Database Storage Manage-
ment with Object-based Storage Devices. In Workshop on Data
Management on New Hardware (June 2005).

SHEN, K., YANG, T., CHU, L., HOLLIDAY, J., KUSCHNER,
D. A., AND ZHU, H. Neptune: Scalable Replication Manage-
ment and Programming Support for Cluster-based Network Ser-
vices. In Proc. of the 3rd USENIX Symposium on Internet Tech-
nologies and Systems (March 2001), pp. 197-208.

SIVATHANU, G., SUNDARARAMAN, S., AND ZADOK, E. Type-
Safe Disks. In Proc. of the 7th Symposium on Operating Sys-
tems Design and Implementation (Seattle, WA, USA, November
2006).

SIVATHANU, M., BAIRAVASUNDARAM, L. N., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. Database-
Aware Semantically-Smart Storage. In Proc. of the FAST '05
Conference on File and Storage Technologies (December 2005),
pp. 239-252.

SIVATHANU, M., PRABHAKARAN, V., Porovici, F. I,
DENEHY, T. E., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Semantically-Smart Disk Systems. In Proc.
of the FAST ’03 Conference on File and Storage Technologies
(March 2003).

SRIKANT, R., AND AGRAWAL, R. Mining Sequential Patterns:
Generalizations and Performance Improvements. In Proc. of the
5th International Conference on Extending Database Technology
(March 1996), pp. 3-17.

WILKES, J. Traveling to Rome: QoS specifications for auto-
mated storage system management. In Proc. of 9th International
Workshop on Quality of Service (2001), pp. 75-91.

WONG, M., ZHANG, J., THoMAs, C., OLM-
STEAD, B., AND WHITE, C. Database Test 2 Ar-
chitecture, 0.4 ed. Open Source Development Lab,

http://www.osdl.org/lab_activities/kernel_
testing/osdl_database_test_su%ite/osdl_
dbt-2/dbt_2_architecture.pdf, June 2002.

WONG, T. M., AND WILKES, J. My Cache or Yours? Making
Storage More Exclusive. In Proc. of the USENIX Annual Techni-
cal Conference, General Track (June 2002), pp. 161-175.

YAN, X., HAN, J., AND AFSHAR, R. CloSpan: Mining closed
sequential patterns in large databases. In Proc. of the 3rd SIAM
International Conference on Data Mining (2003).

YEH, T., LONG, D. D. E., AND BRANDT, S. A. Increasing
predictive accuracy by prefetching multiple program and user
specific files. In Proc. of the 16th Annual International Sympo-
sium on High Performance Computing Systems and Applications
(2002), pp. 12-19.

390

USENIX ’08: 2008 USENIX Annual Technical Conference

USENIX Association

