
Idle Read After Write - IRAW

Alma Riska
Seagate Research

1251 Waterfront Place
Pittsburgh, PA 15222

Alma.Riska@seagate.com

Erik Riedel
Seagate Research

1251 Waterfront Place
Pittsburgh, PA 15222

Erik.Riedel@seagate.com

Abstract

Despite a low occurrence rate, silent data corruption rep-
resents a growing concern for storage systems designers.
Throughout the storage hierarchy, from the file system
down to the disk drives, various solutions exist to avoid,
detect, and correct silent data corruption. Undetected er-
rors during the completion of WRITEs may cause silent
data corruption. A portion of the WRITE errors may
be detected and corrected successfully by verifying the
data written on the disk with the data in the disk cache.
Write verification traditionally is scheduled immediately
after a WRITE completion (Read After Write - RAW)
which is unattractive, because it degrades user perfor-
mance. To reduce the performance penalty associated
with RAW, we propose to retain the written content in
the disk cache and verify it once the disk drive becomes
idle. Although attractive, this approach (called IRAW -
Idle Read After Write) contends for resources, i.e., cache
and idle time, with user traffic and other background ac-
tivities. In this paper, we present a trace-driven evalua-
tion of IRAW and show its feasibility. Our analysis in-
dicates that idleness is present in disk drives and can be
utilized for WRITE verification with minimal effect on
user performance. IRAW benefits significantly if some
amount of cache, i.e., 1 or 2 MB, is dedicated to retain
the unverified WRITEs. If the cache is shared with the
user requests then a cache retention policy that places
both READs and WRITEs upon completion at the most
recently used cache segment, yields best IRAW perfor-
mance without effecting user READs cache hit ratio and
overall user performance.

1 Introduction

Nowadays the majority of the available information is
digitally stored and preserved. As a result, it becomes
critically important that this vast amount of data is avail-

able and accurate anytime it is accessed. Storage sys-
tems that host digitally stored data strive to achieve data
availability and consistency. Data availability is asso-
ciated mostly with hardware failures and redundancy is
the common approach to address it. Data consistency
is associated with hardware, firmware, and software er-
rors. Redundancy is not sufficient to protect the data
from corruption and sophisticated techniques, including
checksumming, versioning, and verification, need to be
in place throughout the storage hierarchy to avoid, detect,
and successfully correct errors that cause data inconsis-
tencies [9].

Generally, faults that affect data availability [20, 14]
occur more often than errors that cause data corrup-
tion [2]. Consequently, data availability [13, 10] has re-
ceived wider attention on storage design than data con-
sistency [9]. Recent evaluation of a large data set [2]
shows that the probability of an enterprise-level disk ex-
periencing data corruption is low, i.e., only 0.06%. Nev-
ertheless, when considering the large amount of digitally
stored data, the occurrence rate of data corruption be-
comes non-negligible. As a result, ensuring data con-
sistency has gained wide interest among storage system
designers [2, 9, 12].

Data corruption often occurs during the WRITE pro-
cess somewhere in the IO path. Consequently, tech-
niques that avoid, detect, and correct data corruption are
commonly associated with the management of WRITEs.
Examples include the log-structured and journaling file
systems [19, 22], data checksumming and identifica-
tion at the file system level (i.e., ZFS) or controller
level [12, 15], as well as WRITE verification anywhere
in the IO path.

Traditionally, Read After Write (RAW) ensures the cor-
rectness of a WRITE by verifying the written content via
an additional READ immediately after the WRITE com-
pletes. RAW degrades user performance significantly be-
cause it doubles the service time of WRITEs. As a result,

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 43

RAW is activated at the disk drive level only during spe-
cial circumstances, such as high temperatures, that may
cause more WRITE errors. In this paper, we propose
an effective technique to conduct WRITE verification at
the disk drive level. Specifically, we propose Idle Read
After Write - IRAW, which retains the content of a com-
pleted and acknowledged user WRITE request in the disk
cache and verifies the on-disk content with the cached
content during idle times. Using idle times for WRITE
verification reduces significantly the negative impact this
process has on the user performance. We show the effec-
tiveness of IRAW via extensive trace-driven simulations.

Unlike RAW, IRAW requires resources, i.e., cache space
and idle time to operate efficiently at the disk level.
Cache space is used to retain the unverified WRITEs un-
til the idle time becomes available for their verification.
Nevertheless, in-disk caches of 16MB and underutilized
disks (as indicated by disk-level traces) enable the effec-
tive operation of a feature like IRAW.

IRAW benefits significantly if some amount (i.e., 2 MB)
of dedicated cache is available for the retention of the
unverified WRITEs. Our analysis shows that even if
the cache space is fully shared between the user traffic
and the unverified WRITEs, a cache retention policy that
places both READs and WRITEs at the most-recently-
used position in the cache segment list, yields satisfac-
tory IRAW performance, without affecting READ cache
hit ratio, and consequently, user performance. We con-
clude that IRAW is a feature that with a priority similar to
“best-effort” enhances data consistency at the disk drive
level, because it validates more than 90% of all the writ-
ten content even in the busiest environments.

The rest of the paper is organized as follows. Section 2
discusses the causes of data corruption and focuses on
data corruption detection and correction at the disk drive
level. We describe the WRITE verification process in
Section 3. Section 4 describes the disk-level traces used
in our evaluation and relates their characteristics to the
effectiveness of detection and correction of data corrup-
tion at the disk drive level. In Section 5, we present a
comprehensive analysis of WRITE verification in idle
time and its effectiveness under various resources man-
agement policies. Section 6 presents a summary of the
existing work on data availability and reliability, in gen-
eral, and data consistency, in particular. We conclude the
paper with Section 7, which summarizes our work.

2 Background

In this section, we provide some background on data cor-
ruption and ways to address it at various levels of the
IO path. Generally, data corruption is caused during the

WRITE process because of various causes. Data cor-
ruption occurs when a WRITE, even if acknowledged as
successful, is erroneous. WRITE errors may lead to data
being stored incorrectly, partially, or not in the location
where it is supposed to be [9]. These WRITE errors are
known as lost WRITEs, torn WRITEs, and misdirected
WRITEs, respectively. The cause of such errors may be
found anywhere in the storage hierarchy.

Traditionally, data inconsistencies have been linked with
the non-atomicity of the file system WRITEs [19, 22].
A file-system WRITE consists of several steps and if the
system crashes or there is a power failure while these
steps are being carried out, the data may be inconsistent
upon restarting the system. Legacy file systems such as
log-structured and journaling file systems address data
inconsistencies caused by system crashes and power fail-
ures [19, 22].

However, data corruption may be caused during the
WRITE process by errors (bugs) in the software or
firmware throughout the IO path, from the file system
to the disk drives, or by faulty hardware. Although er-
roneous, these WRITEs are acknowledged as success-
ful to the user. These errors are detected only when the
data is accessed again and as a result these errors cause
silent data corruption. WRITE errors that cause silent
data corruption are the focus of this paper. Addressing
data inconsistencies because of power failures or system
crashes are outside the scope of our paper.

Errors that cause silent data corruption represent a con-
cern in storage system design, because, if left undetected,
they may lead to data loss or even worse deliver inaccu-
rate data to the user. Various checksumming techniques
are used to detect and correct silent data corruption in the
higher levels of the IO hierarchy. For example, ZFS [12]
uses checksumming to ensure data integrity and consis-
tency. Similarly, at the storage controller level check-
summing techniques are coupled with the available data
redundancy to further improve data integrity [9]. Logical
background media scans detect parity inconsistencies by
accessing the data in a disk array and building and check-
ing the parity for each stripe of data [1].

Disk drives are responsible for a portion of WRITE er-
rors that may cause silent data corruption in a storage
system. WRITE errors at the disk drive may be caused
by faulty firmware or hardware. The written content is
incorrect although the completion of the WRITE com-
mand is acknowledged as successful to the user. Disk
drives can detect and correct the majority of the disk-
level WRITE errors via WRITE verification. In partic-
ular, disk drives can detect and correct WRITE errors
when data is written incorrectly, partially or not at all at
a specific location. WRITE verification at the disk level

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association44

does not help with misdirected WRITEs, where the con-
tent is written somewhere else on the disk or on another
disk in a RAID array.

3 Disk-level WRITE Verification

At the disk level, WRITE errors can be detected and re-
covered by verifying that the WRITE command was re-
ally successful, i.e., by comparing the written content
with the original content in the disk drive cache. If in-
consistency is found, then the data is re-written. WRITE
verification can be conducted only if the written data is
still in the disk cache. As a result, WRITE verification
can occur immediately upon completion of a WRITE
or soon thereafter. If the verification occurs immedi-
ately upon a WRITE completion, the process is known
as WRITE Verify or Read-After-Write (RAW). RAW has
been available for a long time as an optional feature in
the majority of hard drives. Its major drawback is that
it requires one additional READ for each WRITE, dou-
bling the completion time of WRITEs (in average). Con-
sequently, RAW is turned on only if the drive operates in
extreme conditions (such as high temperature) when the
probability of WRITE errors is high.

If the recently written data is retained in the disk cache
even after a WRITE is completed, then the disk may be
able to verify the written content at a more opportune
time, such as the disk idle times (when no user requests
are waiting for service). This technique is called Idle
READ After WRITE (IRAW). Because disk arm seeking
is a non-instantaneously preemptable process, the user
requests will be delayed even if verifications happen in
idle time, albeit the delay is much smaller than under
RAW. As a result IRAW represents a more attractive op-
tion to WRITE verification at the disk drive level than
RAW.

There is a significant difference between RAW and
IRAW with regard to the resource requirements these
two features have. RAW does not require additional re-
sources to run, while IRAW is enabled only if there are
resources, namely cache and idle time, available at the
disk drive. The main enabler for IRAW in modern disk
drives is the large amount of the available in-disk cache.
The majority of disk drives today have 16 MB of cache
space. The existence of such amount of cache enables
the drive to retain the recently written data for longer,
i.e., until the disk drive becomes idle, when the WRITE
verification causes minimal performance degradation on
user performance.

The effectiveness of IRAW depends on effective man-
agement of the available cache and idle time. Both cache
and idle time represent resources that are used exten-

sively at the disk drive, and IRAW will contend with
other features and processes to make use of them both.
For example, in-disk cache is mainly used to improve
READ performance by exploiting the spatial and tempo-
ral locality of the workload, i.e., aggressively prefetch-
ing data from the disk or retaining recent READs in the
cache hoping that incoming requests will find the data in
the cache and avoid costly disk accesses. On the other
hand, idle time is often used to deploy features that en-
hance drive operation such as background media scans.
IRAW should not fully utilize the idle time and limit the
execution of other background features.

On average, disk drives exhibit low to moderate utiliza-
tion [17], which indicates that idle intervals will be avail-
able for WRITE verifications. Furthermore, in low and
moderate utilization, busy periods are short as well. As
a result only a few WRITEs will need to be retained in
the cache, and wait for verification during the incoming
idle period. Consequently, IRAW cache requirements
are expected to be reasonable. However, the disk drive
workloads are characterized by bursty periods [18] which
cause temporal resource contention and inability to com-
plete WRITE verifications. In this paper, we focus on the
evaluation of IRAW and ways to manage resources, i.e.,
cache and idle time, such that IRAW runs effectively, i.e.,
the highest number of WRITEs is verified with minimal
impact on user performance. Our focus is on four key
issues:

• the available idle time for IRAW,

• the impact of IRAW on the performance of user re-
quests, because they arrive during a non-preemptive
WRITE verification,

• the cache requirements that would enable IRAW to
verify more than 90% of all WRITEs in the work-
load,

• the impact that retention of unverified WRITEs in
the cache has on READ cache hit ratio.

4 Trace Characterization

The traces that we use to drive our analysis are mea-
sured in various enterprise systems. These systems run
dedicated servers that are identified by the name of the
trace. Specifically, we use five traces in our evaluation;
the “Web” trace measured in a web server, the “E-mail”
trace measured in an e-mail server, the “Code Dev.” trace
measured in a code development server, the “User Acc.”
trace measured in a server that manages the home direc-
tory with the accounts of the users in the system, and the

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 45

Trace Length Idle Avg. Idle R/W
(hrs) % Int. (ms) Ratio

Web 7 96 274 44/56
E-mail 25 92 119 99/1
User Acc. 12 98 625 87/13
Code Dev. 12 94 183 88/12
SAS 24 99 88 40/60

Table 1: General characteristics for disk-level traces used
in our analysis.

“SAS” trace measured in a server running the SAS sta-
tistical package. Several of the measured storage subsys-
tems consist of multiple disks, but throughout this paper,
we focus on traces corresponding to the activity of single
disks. Traces record several hours of disk-level activ-
ity (see Table 1) which make them representative for the
purpose of this evaluation.

Traces record for each request the disk arrival time (in
ms), disk departure time (in ms), request length (in
bytes), request location (LBA), and request type (READ
or WRITE). Here, we focus mostly on characteristics
that are relevant to IRAW. General characterization of the
traces as well as how they were collected can be found
in [17, 18]. The only information we have on the archi-
tecture of the measured systems is the dedicated service
they provide and the number of disks hosted by the stor-
age subsystem.

Several trace characteristics such as arrival rate,
READ/WRITE ratio, idle and busy time distributions are
directly related to the ability of the disk drive to verify
WRITEs during idle intervals. In Table 1, we give the
general characteristics (i.e., trace length, disk idleness,
average length of idle intervals, and READ/WRITE ra-
tio) of the traces under evaluation. While READ/WRITE
ratio is derived using only the information on the request
type column of each trace, the idleness and idle interval
lengths are calculated from the information available in
the arrival time and departure time columns. The calcu-
lation of system idleness as well as the length of idle and
busy periods from the traces is exact (not approximate),
and facilitates accurate evaluation of IRAW.

Table 1 indicates that disk drives are mostly idle, which
represents a good opportunity for IRAW to complete suc-
cessfully during idle times. The average length of idle
intervals indicates that several WRITEs may be veri-
fied during each idle interval. The READ/WRITE ratio
in the incoming user traffic indicates the portion of the
workload that needs verification in idle times and deter-
mines the IRAW load. Because the READ/WRITE ratio
varies in the traces of Table 1, the IRAW performance
will be evaluated under different load levels. Although

the application is the main determining factor of the
READ/WRITE ratio of disk-level workloads, the stor-
age system architecture plays an important role as well.
For the systems where the Web and the SAS traces were
measured, the IO path has less resources and, conse-
quently, intelligence than the other three traces. We came
to this conclusion because the Web and SAS traces are
measured on storage subsystems with single disks while
the other traces are measured on storage subsystems with
multiple disks. This leads us to believe that, except the
Web and the SAS systems, the measured storage subsys-
tems are organized in RAID arrays. Also from the traces,
we can extract information on the WRITE optimization
that takes place above the disk level. WRITE optimiza-
tion consists of coalescing, usage of non-volatile caches,
and other features, which reduce overall WRITE traffic.
An indication, at the disk level, of the presence of non-
volatile caches or other WRITE optimization features in
the IO path, (see [17] for longer discussion), is the fre-
quency of re-writes on a recently written location. While
for the E-mail, User Acc. and Code Dev. traces the writ-
ten locations are not re-written for the duration of each
trace, for the Web and SAS traces this is not the case.

Figure 1 gives the arrival rate (i.e., the number of re-
quests per second) as a function of time for several en-
terprise traces from Table 1. The disk-level workload is
characterized by bursts in the arrival process. The arrival
bursts are sometimes sustained for long (i.e., several min-
utes) periods of time. Arrival bursts represent periods
of time when resources available for IRAW (i.e., cache
and idle time) are limited. Consecutively, it is expected
that IRAW will not have enough resources to verify all
WRITEs in an environment with bursty workloads.

In Figure 2, we present the distribution of idle periods
for the traces of Table 1. In the plot, the x-axis is in
log-scale to emphasize the body of the distribution that
indicates the common length of the idle intervals. Almost
40% of the idle intervals in the traces are longer than 100
ms and only one in every three idle intervals is less than
a couple of milliseconds. Such idle time characteristics
favor IRAW and indicate that in each idle interval, the
drive will be able to verify at least several WRITEs.

The minimum length of the idle intervals, as well as their
frequency is a useful indicator in deciding the idle wait-
ing period, i.e., the period of time during which the drive
remains idle although IRAW can be performed. Idle
waiting is a common technique to avoid utilizing very
short idle intervals with background features like IRAW
and to minimize the effect disk-level background fea-
tures have on user performance [4]. The case when a
new user request arrives while a WRITE is being veri-
fied represents the case when IRAW degrades the perfor-
mance of user requests. Figure 2 clearly indicates that

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association46

Code Dev.

0

50

100

150

200

250

300

0 2 4 6 8 10 12

N
um

be
r

of
R

eq
ue

st
s

/s
ec

Time in hours

E-Mail

0

50

100

150

200

250

300

0 5 10 15 20 25

N
um

be
r

of
R

eq
ue

st
s

/s
ec

Time in hours

User Acc.

0

50

100

150

200

250

300

0 2 4 6 8 10 12

N
um

be
r

of
R

eq
ue

st
s

/s
ec

Time in hours

Figure 1: Arrival rate, measured in number of requests
per second, as a function of time for several traces from
Table 1. The arrivals are bursty in enterprise systems.

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty
P(

x<
X

)

Idle Period (ms)

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000 10000

Web
E−mail

Code Dev.
User Acc.

SAS

Figure 2: Distribution of idle periods for the traces of
Table 1. X-axis is in log scale. The higher the line the
shorter the idle periods are for the specific trace.

Busy Period (ms)

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty
P(

x
<

X
)

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000 10000

Web
E−mail

Code Dev.
User Acc.

SAS

Figure 3: Distribution of busy periods for the traces of
Table 1. The x-axis is in log-scale. The higher the line
the shorter the busy periods are for the specific trace.

more than 90% of all idle intervals in all evaluated traces
are longer than 10 ms, which leads us to optimistically
state that by waiting a couple of milliseconds in an idle
drive before a WRITE verification starts, the impact on
the user requests performance will be contained to mini-
mum.

IRAW effectiveness depends not only on the available
idleness and length of idle periods, but also on the length
of the busy periods at the disk drive level. The longer the
busy period the larger the number of unverified WRITEs
waiting for the next idle period and occupying cache
space. In Figure 3, we present the distributions of busy
periods for the traces of Table 1. Similarly to Figure 2,
the x-axis of the plots is in log-scale. The distribution of
the length of busy periods indicates that disk busy times
are relatively short. Across all traces only 1% of busy
periods are larger than 100 ms. The shape of the busy
period distribution suggests that most WRITEs will get
the chance to be verified during the idle period that im-
mediately follows a busy period. Moreover, short busy
intervals (Figure 3) and long idle intervals (Figure 2) in-
dicate that IRAW will only use a fraction of the available
idle time leaving room for additional background activi-
ties to be carried out too.

5 Evaluation of IRAW

The evaluation of IRAW is driven by the traces intro-
duced in the previous section. Initially, we define a sim-
plified version of IRAW, where (1) each WRITE verifi-
cation takes the same amount of time, i.e., 5 ms, (2) there
is dedicated cache available to store unverified WRITEs,
and (3) the length of the idle interval is known, which
means that WRITE verification will not affect the incom-
ing user requests. With these assumptions, we can eval-
uate the effectiveness of IRAW directly from the traces
and obtain an approximate estimation of the resource re-

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 47

quirements for IRAW. We refer to this part of the evalu-
ation as trace-based and discuss it in Section 5.1.

We further develop a simulation model for IRAW un-
der the DiskSim 2.0 [6] disk-level simulator to relax the
above assumptions and take into consideration the cache
management aspect of IRAW. The simulation model is
driven by the same set of traces. Because the simula-
tion model represents an open model, we do not use the
departure time field from the traces. As a result, the sim-
ulation model does not follow the idle and busy periods
of the traces. The idle and busy periods in the simula-
tion model are determined by the simulated disk, cache
management policy, and the available cache size. We re-
fer to this part of the evaluation as simulation-based and
discuss it in Section 5.2.

In our evaluation, the efficiency of IRAW is measured
by the IRAW validation rate, which represents the por-
tion of WRITE requests verified during idle times. Any
IRAW validation rate less than 100% indicates that not
all WRITEs are verified. A WRITE is left unverified if it
is evicted from the cache before idle time becomes avail-
able to verify it. Limited cache and/or limited idle time
cause the IRAW validation rate to be less than 100%.

5.1 Trace-based Analysis

In the trace-based analysis, we assume full knowledge
of the idle time duration, which means that IRAW will
have no impact on the user performance for this type of
analysis. We assume the validation of each WRITE takes
the same amount of time to complete, i.e., 5 ms - the av-
erage time to complete a request at the disk drive. An
unverified WRITE corresponds to the same WRITE re-
quest originally received by the drive, i.e., no coalescing
or other techniques are used to reduce the number of un-
verified WRITEs. Verification is done in FCFS fashion.

Initially, we pose no restriction on the amount of avail-
able cache at the disk drive level. This assumption, al-
though unrealistic, helps with the estimation of the max-
imum amount of cache required by IRAW to verify all
WRITEs in the user workload. However, we do limit the
amount of time an unverified WRITE waits in the cache
for verification. We refer to this threshold as IRAWAge

and measure it in number of idle intervals. An unver-
ified WRITE waits through at most IRAWAge idle in-
tervals before it is evicted from the cache. The thresh-
old IRAWAge measures, indirectly, idle time availabil-
ity at the disk drive level. That is, if a WRITE remains
unverified through IRAWAge idle intervals, then, most
probably, it will remained unverified in a more realis-
tic scenario with limited cache space. The larger the
IRAWAge, the larger the maximum cache space require-

Trace IRAW IRAWAge Max
Rate Cache

Web 97 % 512 22 MB
E-mail 100 % 32 0.4 MB
User Acc. 100 % 64 1.7 MB
Code Dev. 100 % 256 8 MB
SAS 95 % 512 50 MB

Table 2: IRAW Verification Rate assuming unlimited
cache and average verification time of 5 ms.

ments and the higher the IRAW validation rate.

We set IRAWAge threshold to be 512, which means
that the disk will retain an unverified WRITE through
no more than 512 idle intervals. We measure the IRAW
verification rate as a function of the IRAWAge and es-
timate the maximum amount of cache required to retain
the unverified WRITEs until verification. We present our
findings in Table 2.

Table 2 indicates that IRAW validation rate for 60% of
the traces is 100%, with only moderate cache require-
ments, i.e., up to 8 MB of cache. For the traces that
achieve 100% IRAW validation rate (i.e., E-mail, User
Acc. and Code Dev.), the IRAWAge value is below
the threshold of 512. This shows that, for these traces,
there is idle time available to verify all WRITEs in the
workload. From Table 1, we notice that the three traces
that achieve 100% validation rate with moderate cache
requirements have the lowest number of WRITEs in the
workload. The other two traces, namely Web and SAS,
have many more WRITEs in their workload mix. As a
result, the verification rate is not 100%. Nevertheless,
the Web and SAS traces achieve at least 95% IRAW val-
idation rate. For these two traces, the amount of required
cache space is high, i.e., more than 20 MB, which is un-
realistic for a disk drive today. Following the discussion
in Section 4 about the READ/WRITE ratio of traces in
Table 1, recall that the high READ/WRITE ratio for Web
and SAS may be associated with the IO path hierarchy in
the systems where these traces were collected.

The results in Table 2, give a high level indication that
the IRAW may be an effective feature, which will re-
strict performance degradation for user requests while
maintaining high level of WRITE verification. However,
because IRAW requires both cache and idle time to com-
plete the verifications, the ratio of verified WRITEs, is
not expected to be 100% in all cases.

The assumption of having unlimited cache is unrealis-
tic. Hence, in the next experiment, we assume that the
dedicated cache to IRAW is only 8 MB. By limiting the
available cache size the IRAWAge threshold is elimi-
nated, because now the reason for a WRITE to remain

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association48

Trace Web E-mail User Code SAS
Acc. Dev.

IRAW Rate 91% 100% 100% 100% 91%

Table 3: IRAW Verification Rate assuming 8 MB of
available cache and average verification time of 5 ms.

unverified is the lack of cache to store it rather than the
lack of idle time.

The corresponding results are presented in Table 3. As
expected from the results in Table 2, IRAW verification
rate for the E-mail, User Acc. and Code Dev. traces is
still 100%. The other two traces, i.e., Web and SAS, per-
form slightly worse than in the case of unlimited cache
(see Table 2). The Web and SAS traces require more
than 20MB of cache space to achieve at least 95% IRAW
verification rate. With only 8MB, i.e., almost three times
less cache, IRAW validation rate is at least 91%. This re-
sult indicates that the maximum cache space requirement
is related to bursty periods in the trace that reduce the
availability of idle time for IRAW. Consequently, even in
bursty environments where resources may be limited at
time, there are opportunities to achieve high IRAW veri-
fication rates, i.e., above 90%.

5.2 Simulation-based Analysis

We use DiskSim 2.0 disk-level simulation environ-
ment [6] to evaluate in more detail the cache manage-
ment strategies that work for IRAW. The simulation is
driven by the same set of traces that are described in Sec-
tion 4. The trace-based analysis provided an approximate
estimation of IRAW cache space requirements, idleness
requirements, as well as the overall IRAW validation
rate. Section 5.1 concluded that in the enterprise environ-
ment, IRAW verifies at least 90% of WRITEs with mod-
erate resource requirements (i.e., 8MB of cache) dedi-
cated to IRAW.

The following simulation-based analysis intends to eval-
uate in more detail the cache management policies and
how they effect IRAW performance and user request per-
formance in presence of IRAW. The simulated environ-
ment is more realistic than the trace-based one, where
several assumptions were in place. For example, in the
simulation-based analysis, the idle interval length is not
known beforehand and the verification time for WRITEs
is not deterministic. Consequently, during the verifica-
tion of a WRITE a user request may arrive and be de-
layed because the WRITE verification cannot be pre-
empted instantaneously.

We simulate two disks, one with 15K RPM and 73GB of
space and the second one with 10K RPM and 146GB of

Trace Max IRAW IRAW
Cache Rate Response Time

Web 60 MB 100% 283 ms
E-mail 0.7 MB 100% 8 ms
User Acc. 2 MB 100% 10 ms
Code Dev. 60 MB 100% 5435 ms
SAS 48 MB 100% 1120 ms

Table 4: IRAW maximum cache requirements, verifica-
tion rate, and verification response time, in our simu-
lation model with unlimited cache space for unverified
WRITEs.

space, which model accurately the disks where the traces
were measured. The latter disk is used to simulate only
the Code Dev. trace from Table 1. Both disks are set
to have an average seek time of 5.4 ms. The requests
in both foreground and background queue are scheduled
using the Shortest Positioning Time First (SPTF) algo-
rithm. The IRAW simulation model is based on the exist-
ing components of the disk simulation model in DiskSim
2.0. The queue module in DiskSim 2.0 is used to man-
age and schedule the unverified WRITEs, and the cache
module is used to manage the available cache segments
between the user READs and WRITEs and the unverified
WRITEs.

As previously discussed, the trace-driven simulation re-
sults would reflect the modeling of scheduling, caching,
and serving of user requests and will not fully comply
with the results obtained from a trace-based evaluation
only approach. Consequently, we do not expect exact
agreement between the results in the trace-based evalua-
tion of Subsection 5.1 and the simulation-based evalua-
tion in this subsection.

Once the disk becomes idle, the WRITE verification pro-
cess starts after 1 ms of idle time has elapsed. WRITE
verifications are scheduled after some idle time has
elapsed at the disk level to avoid utilizing the very short
idle intervals and, consequently, limit the negative ef-
fect WRITE verification may have on user request per-
formance. The benefit of idle waiting in scheduling
low-priority requests such as WRITE verifications under
IRAW are discussed in [4, 11]).

Initially, we estimate the maximum cache requirement
for each of the traces under the simulation model. For
this the simulation is run with no limitation on cache
availability. The goal is to estimate how much cache is
necessary to achieve 100% WRITE verification rate. Re-
call that the longer the unverified WRITEs are allowed
to wait for validation the larger the required cache space
to store them. The simulation results are presented in
Table 4.

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 49

The results in Table 4 show that only for two traces (40%
of all evaluated traces), IRAW achieves 100% validation
rate by requiring a maximum of 2MB cache space. These
two traces are characterized by low disk utilization (i.e.,
99% idleness) or READ dominated workload (i.e., the E-
mail trace has only 1.3% WRITEs). The other subset of
traces (60% of them) requires more than 48MB of cache
space, in the worst case, to achieve 100% IRAW verifi-
cation rate. The worst WRITE verification response time
in these traces is 5.4 sec, which explains the large cache
requirements. The results of Table 4 are qualitatively the
same as the one Table 2. IRAW verification rate of 100%
comes with impractical cache requirements for half of
the traces.

In an enterprise environment, IRAW is expected to re-
quire large cache space in order to achieve 100% IRAW
validation rate, because the workload, as indicated in
Section 4, is characterized by bursts. The bursts accu-
mulate significant amount of unverified WRITEs in short
periods of time. These WRITEs need to be stored until
the burst passes and the idleness facilitates the verifica-
tion.

Table 4 shows also the average IRAW response time, i.e.,
the time unverified WRITEs are retained in the cache.
For the traces that capture light load, i.e., E-mail and
User Acc. traces, the WRITEs are verified without wait-
ing too long, similar to how RAW would perform. For
the traces that capture medium to high load, i.e., Code
Dev. and SAS traces, the IRAW response time is up
to several seconds, which indicates that the unverified
WRITEs will occupy the available cache for relatively
long periods of time.

Although IRAW is designed to run in background, it will,
unavoidably, impact at some level the performance of the
user requests, i.e., foreground work. There are two ways
that IRAW degrades foreground performance

• Upon arrival, a new request finds the disk busy ver-
ifying a WRITE when otherwise the disk would
have been idle. Because the WRITE validation can-
not be interrupted once started, the response time
of the newly arrived user request and of any other
user requests in the incoming foreground busy pe-
riod will be longer by the amount of time between
the first user requests arrival and the completion of
WRITE verification. The WRITE verification as
any other disk-level service is non-instantaneously
preemptable because seeking in the disk drive is
non-preemptable.

• Unverified WRITEs are stored in the disk cache to
wait for an idle period when they can be verified.
As a result, the unverified WRITEs occupy cache

Trace Idle- R/W Max. Avg. IOPS
ness Ratio diff diff.

Web 96 % 44/56% 0.53% 0.02%
E-mail 92 % 99/1 % 0.11% 0.00%
User Acc. 98 % 87/13% 0.02% 0.00%
Code Dev. 94 % 88/12% 2.37% 0.08%
SAS 99 % 40/60% 0.12% 0.00%

Table 5: IRAW impact on system throughput measured
by IOPS.

space, which otherwise would have been used by
the user READ requests. As a consequence, IRAW
may reduces READ performance by reducing the
READ cache hit ratio.

We analyze the impact of IRAW on the user performance
by quantifying the reduction in the user throughput (mea-
sured by IOs per second - IOPS) and the additional wait
experienced by the user requests because of the non-
preemptability of WRITE verifications. We present our
findings regarding the system throughput in Table 5 and
the IRAW-caused delays in the user requests response
time in Figure 4.

The trace-driven simulation model represents an open
system. As a result the arrival times are fixed and will
not change if the model simulates a disk slowed down by
the presence of IRAW. This means that independent of
the response time of requests, all requests will be served
by the disk drive more or less within the same time pe-
riod overall. This holds, particularly, because the traces
represent cases with low and moderate utilization. As a
result, to estimate the impact IRAW has on IOPS, we es-
timate the metric over short periods of time rather over
the entire trace (long period of time) and focus on dif-
ferences between the IOPS when IRAW is present and
when IRAW is not present at the disk-level. We follow
two approaches to estimate the IRAW caused degrada-
tion in IOPS. First we calculate the IOPS over 5 min
intervals and report the worst case, i.e., the maximum
IRAW-caused degradation in the IOPS over a 5 minutes
interval. Second we calculate the IOPS for each second
and report the average on the observed degradation. In
both estimation methods, the impact that IRAW has on
IOPS is low. We conclude that IRAW has minimal ef-
fect on system throughput for the evaluated traces from
Table 5.

Results of Table 5 are confirmed by the distribution of
the IRAW caused delays in the response time of user re-
quests. The majority of user requests are not delayed by
IRAW, as clearly indicated in Figure 4. For all traces,
only less than 10% of user requests are delayed a few
milliseconds, because they find the disk busy verifying

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association50

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 1 2 3 4 5

D
is

tr
ib

ut
io

n
−

Pr
ob

(I
R

A
W

D
el

ay
<

T
)

IRAW Effect on user Response Time (ms)

User Acc.

Code Dev.

E−mail

SAS

Web

Figure 4: Distribution of IRAW caused delays.

WRITEs. For some traces such as the E-mail one, the
delays are virtually non-existent. Since the average ver-
ification time is only a few milliseconds, the maximum
IRAW-caused delays are also a couple of milliseconds as
indicated by the x-axis of Figure 4.

In order to minimize the impact IRAW has on user per-
formance, it is critical for IRAW to start WRITE verifi-
cation only after some idle time has elapsed, called idle
wait. In Figure 5, we show the IRAW validation rate
for three different traces, as a function of cache size and
length of the idle wait. The results suggest that an idle
wait of up to 5 ms does not reduce the IRAW verification
rate and does not affect the user requests performance.
In our simulation model, we use the idle IRAW wait of 1
ms, but anything close to the average WRITE verification
time of 3 ms yields similar performance.

5.3 Cache management policies

Disk drives today have approximately 16 MBytes of
cache available. Disk caches are used to reduce the disk
traffic by serving some of requests from the cache. The
disk cache is volatile memory and because of data reli-
ability concerns it is used to improve READ rather than
WRITE performance by aggressive prefetching and data
retention.

As a result, for background features like IRAW, which
require some amount of cache for their operation, ef-
ficient management of the available cache is critical.
While in the previous sections, we focused on evaluating
IRAW and its maximum cache requirements, in this sub-
section, we evaluate IRAW performance under various
cache management policies. We also estimate the impact
that IRAW has on the READ cache hit ratio, which is
directly related to the user performance.

Web

����
����

��������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
��
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

 0

 0.5

 1

 1.5

 2

 2.5

 3

5 MB 12 MB 26 MB 54 MB

(1
00

 −
 I

R
A

W
 V

al
id

at
io

n
R

at
e)

%

Effective Cache

IRAW Wait 2 ms
IRAW Wait 3 ms
IRAW Wait 4 ms
IRAW Wait 5 ms

IRAW Wait 1 ms

Code Dev.

�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

����

����

����

��
��
��
��

���
�
�
�

�
�
�
��
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

��
��
�
�
�
�

 0

 5

 10

 15

 20

 25

5 MB 12 MB 26 MB 54 MB

(1
00

 −
 I

R
A

W
 V

al
id

at
io

n
R

at
e)

 %

Effective Cache

IRAW Wait 2 ms
IRAW Wait 3 ms
IRAW Wait 4 ms
IRAW Wait 5 ms

IRAW Wait 1 ms

SAS

����

����

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
��� ��

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

IRAW Wait 2 ms
IRAW Wait 3 ms
IRAW Wait 4 ms
IRAW Wait 5 ms

IRAW Wait 1 ms

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

5 MB 12 MB 26 MB 54 MB

(1
00

 −
 I

R
A

W
 V

al
id

at
io

n
R

at
e)

%

Effective Cache

Figure 5: Impact of idle wait and cache space on IRAW
performance.

There are two ways that IRAW uses the available cache
space. First, IRAW shares the cache with the user READ
traffic. In this case, READs and unverified WRITEs con-
tend for the cache, with READs having more or at least
the same priority as the unverified WRITEs. Second,
IRAW uses dedicated cache space to store the unverified
WRITEs. The IRAW dedicated cache space should en-
hance IRAW performance by minimally affecting READ
cache hit ratio.

If IRAW and the READ user traffic share the cache, by
default, IRAW has a “best-effort” priority, i.e., the lowest
possible priority, because this is the priority of completed
user WRITEs in the disk cache. This priority scheme
gives no guarantees on IRAW verification rate. If some
amount of dedicated cache space is allocated only for un-
verified WRITEs, then the IRAW priority is higher than
just “best-effort”. Under this scheme, user READ re-

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 51

quests will have less cache space available and, conse-
quently, READ cache hit ratio will be lower. Overall, the
IRAW validation rate is expected to be higher when ded-
icated cache space is allocated for unverified WRITEs
than when IRAW contends for the available cache space
with the READ user traffic.

The cache space in a disk drive is organized as a list of
segments (schematically depicted in Figure 6). The head
of the list of segments is the position from where the data
is evicted from the cache. The head position is called the
Least Recently Used - LRU segment and it has the lowest
priority among all the cache segments. The further down
a segment is from the LRU position, the higher its pri-
ority is and the further in the future its eviction time is.
The tail of the segment list represents the segment with
the highest priority and the furthest in the future eviction
time. The tail position is referred to as the Most Recently
Used - MRU position.

Commonly in disk drives, a READ is placed at the MRU
position once the data is read from the disk to the cache,
and a recently completed WRITE is placed at the LRU
position. This policy indicates that for caching purposes,
READs have the highest priority and WRITEs have the
lowest priority. This is because a recently completed
WRITE is not highly probable to be read in the near fu-
ture. When a new READ occupies the MRU position, the
previous holder of the MRU position is pushed up one
position reducing its priority and the time it will be re-
tained in the cache. All other segment holders are pushed
up with one position as well, resulting in the eviction of
the data from the LRU position. If there is a cache hit
and a new READ request is accessing data found in the
cache, the segment holding the data is placed in the MRU
position and there is no eviction from the cache.

WRITE READ

READ Move Direction

...

Cache Segments List

LRU

Lowest
Priority

MRU

Priority
Highest

Figure 6: The model of the disk cache organized as a list
of cache segments (each represented by a rectangle). The
LRU position is the segment with the lowest retention
priority and the MRU position is the segment with the
highest retention priority. Upon completion, WRITES
are placed at the LRU position and READS are placed at
the MRU position.

The default cache retention policy does not favor the re-
tention of unverified WRITEs. As a result, in the fol-
lowing, we investigate how the available cache may be
shared between the READ user traffic and the unverified
WRITEs such that both set of requests benefit from the
available cache.

Initially, we evaluate the IRAW performance when it
shares the cache space with the user READ traffic. We
evaluate variations of the above default cache retention
policy. A variation from the default cache retention pol-
icy is obtained by changing the default positions in cache
for READs and unverified WRITEs upon the user request
completion. The following cache retention schemes are
evaluated:

• the default; READs are placed in the MRU position
and unverified WRITEs in the LRU position (abbre-
viation: MRU/LRU),

• READs and unverified WRITES are both placed in
the MRU position in a first-come-first-serve basis
(abbreviation: MRU/MRU),

• READs and WRITEs are left in their current seg-
ments upon completion, i.e., a WRITE is not moved
to the LRU position, a READ cache hit is not moved
to the MRU position, a READ miss is placed in the
MRU position (abbreviation: -/-).

Note that any cache retention algorithm other than those
which place WRITEs in the LRU position upon com-
pletion, retain WRITEs longer in the cache and occupy
space otherwise used by READs, which consecutively
reduces the READ cache hit ratio, even though mini-
mally. This is the reason why in our evaluation, the
READ cache hit ratio and the IRAW validation rate are
the metrics of interest. We analyze them as a function of
the available data cache size.

In Figure 7, we present the cache hit ratio as a function
of the cache size for several traces and cache retention
policies. The plots of Figure 7 suggest that it is impera-
tive for the READ cache hit ratio to place READs in the
MRU position once the data is brought from the disk to
the cache (observe the poor cache hit ratio for the “-/-”
cache retention policy which does not change the posi-
tion of a READ upon a cache hit). The fact that WRITEs
are treated with higher priority by placing them into the
MRU position too, leaves the READ cache hit ratio vir-
tually unaffected. Another critical observation is that
beyond some amount of available cache space, i.e., in
all experiments approximately 12MB, the READ cache
hit ratio does not increase indicating that adding extra
cache space in a disk drive does not improve the READ
cache hit ratio significantly, but can be used effectively
for background features such as IRAW.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association52

Code Dev. Web SAS

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35 40 45 50

R
ea

d
C

ac
he

 H
it

R
at

io
 −

 %

Cache size − MB

MRU/MRU
MRU/LRU

 ~ / ~
MRU/MRU − Adaptive

MRU/MRU
MRU/LRU

 ~ / ~
MRU/MRU − Adaptive

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35 40 45 50

R
ea

d
C

ac
he

 H
it

R
at

io
 −

 %

Cache size − MB

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35 40 45 50

R
ea

d
C

ac
he

 H
it

R
at

io
 −

 %

Cache size − MB

MRU/MRU
MRU/LRU

 ~ / ~
MRU/MRU − Adaptive

Figure 7: READ cache hit ratio as a function of cache size. Results are shown for various cache retention policies. A
cache retention policy is identified by the placement of a READ (MRU, or no change) and the placement of unverified
WRITEs (MRU, LRU, or no change).

Code Dev. Web SAS

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35 40 45 50

IR
A

W
 V

al
id

at
io

n
R

at
e

−
 %

Cache size − MB

MRU/MRU
MRU/LRU

 ~ / ~
MRU/MRU − Adaptive

MRU/MRU
MRU/LRU

 ~ / ~
MRU/MRU − Adaptive

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35 40 45 50

IR
A

W
 V

al
id

at
io

n
R

at
e

−
 %

Cache size − MB

MRU/MRU
MRU/LRU

 ~ / ~
MRU/MRU − Adaptive

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35 40 45 50

IR
A

W
 V

al
id

at
io

n
R

at
e

−
 %

Cache size − MB

Figure 8: WRITE verification rate as a function of the cache size. Results are shown for various cache retention
policies. A cache retention policy is identified by the placement of a READ (MRU, or no change) and the placement
of unverified WRITEs (MRU, LRU, or no change).

In Figure 8, we present the IRAW validation rate as a
function of the available cache, under various cache re-
tention policies for several traces. IRAW is more sensi-
tive to the cache retention policy than the READ cache
hit ratio (see Figure 7). Placing unverified WRITEs
in the MRU position is critical for the IRAW perfor-
mance, in particular for the bursty case of the Code Dev.
trace (recall that the simulated disk for the Code Dev.
trace is a slower disk than for the rest of the enterprise
traces). Figure 8 indicates that for most cases, i.e, 85%
of them, shared cache retention algorithms work just fine
and IRAW verification rate is above 90%.

In Figures 7 and 8, we also present results for an adaptive
cache retention algorithm, where the READ/WRITE ra-
tio of the workload is reflected on the amount of cache
space used by READs and WRITEs. For example, a
READ/WRITE ratio of 70%/30% would cause 70% of
the cache space to be used by READs and 30% by the
unverified WRITEs. As the ratio changes so does the
usage of the cache. The adaptive policy improves the
IRAW validation rate for most traces with almost no im-
pact on READ cache hit ratio. However the gains are
not substantial enough to justify the added complexity in

the implementation of the adaptive cache retention algo-
rithm.

Figure 7 suggests that READ cache hit ratio does not in-
crease significantly as the available cache size increases
beyond a certain point, i.e., in our analysis it is 10-
12 MB. Consequently, we evaluate the effectiveness of
IRAW when some amount of dedicated cache is allo-
cated for the retention of the unverified WRITEs. In our
evaluation, the user requests have the same amount of
available cache for their use as well. For example, if
IRAW will use 8MB of dedicated cache then so will the
user READ requests. We present our results in Figure 9.
Note that the plots in Figure 9 are the same as the respec-
tive ones in Figure 7 and Figure 8, but the “MRU/MRU
- Adaptive” line is substituted with the “MRU/MRU -
Dedicated” line. The results in Figure 7 indicate that the
dedicated cache substantially improves the IRAW vali-
dation rate. This holds in particular for the heavy load
cases such as the Code Dev. trace.

In conclusion, we emphasize that in order to maintain
high READ cache hit ratio and high IRAW validation
rate, it is critical for the available cache to be managed
efficiently. Both READs and WRITEs need to be placed

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 53

Code Dev. Web SAS

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

R
ea

d
C

ac
he

 H
it

R
at

io
 −

 %

Cache size − MB

MRU/MRU
MRU/LRU

 ~ / ~
MRU/MRU − Dedicated

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

R
ea

d
C

ac
he

 H
it

R
at

io
 −

 %

Cache size − MB

MRU/MRU
MRU/LRU

 ~ / ~
MRU/MRU − Dedicated

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

R
ea

d
C

ac
he

 H
it

R
at

io
 −

 %

Cache size − MB

MRU/MRU
MRU/LRU

~ / ~
MRU/MRU − Dedicated

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

IR
A

W
 V

al
id

at
io

n
R

at
e

−
 %

Cache size − MB

MRU/MRU
MRU/LRU

 ~ / ~
MRU/MRU − Dedicated

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

IR
A

W
 V

al
id

at
io

n
R

at
e

−
 %

Cache size − MB

MRU/MRU
MRU/LRU

 ~ / ~
MRU/MRU − Dedicated

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

IR
A

W
 V

al
id

at
io

n
R

at
e

−
 %

Cache size − MB

MRU/MRU
MRU/LRU

 ~ / ~
MRU/MRU − Dedicated

Figure 9: Read Cache hit ratio (first row) and IRAW validation rate (second row) as a function of the available
dedicated cache.

in the MRU position upon completion. This cache re-
tention policy yields the best performing IRAW for most
environments, but not for the critical (very bursty) ones.
The latter cases benefit enormously even if only a few
MB of cache (i.e., 2 MB) are dedicated to store unverified
WRITEs. Additional dedicated cache space for IRAW
(i.e., 4-12MB) yields the best IRAW validation rate in
the evaluated environments.

6 Related Work

Although disk drive quality improves from one gener-
ation to the next, they represent complex devices that
are susceptible to a variety of failures [23, 24]. Because
drive failures may lead to data loss, storage systems have
widely accepted the RAID architecture [13, 10], which
protects the data from one or two simultaneous failures.
In theory storage systems can be designed to protect
from n simultaneous disk drive failures, if m > n disks
are available [16]. Contemporary storage systems have
adopted a distributed architecture with multiple copies
of any piece of data [7] for added reliability, while using
inexpensive disk drives.

As the amount of digitally stored data increases, so does
the significance of storage and drive failures [20, 14]. In
particular, rare failure events have become more preva-
lent. For example, in recent years significant effort has
been devoted to better understand the effect of latent

sector errors on overall data availability in storage sys-
tems [3, 5, 1]. Latent sector errors may happen at any
time in a disk drive, but they may cause data loss (even
of only a few sectors) if they remain undetected until an-
other failure in the system (now with reduced data re-
dundancy) triggers the entire data set to be accessed for
reconstruction. To address such undesirable events, fea-
tures like background media scans are added in storage
system and disk drives [21, 1].

Traditionally, it has been the file system’s task to en-
sure data consistency and integrity, assuming that the
causes were related to power failure or system crashes
during non-atomic WRITE operations. Legacy file sys-
tems address data consistency by implementing features
like journaling and soft updates [22, 19]. Contemporary
file systems [12, 15, 8] deploy more complex and ag-
gressive features that involve forms of checksumming,
versioning, identification for any piece of data stored in
the system.

Today, storage system designers are concerned by silent
data corruption. The growing complexity of systems en-
abling software, firmware, and hardware may cause data
corruption and affect overall data integrity. Similar to
disk latent sector errors, data corruption may happen at
any time, but it can be detected only later on when the
data is accessed. Such events may cause data loss, or,
even worse, may deliver incorrect data to the user. Silent
data corruption may occur in any component of the IO

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association54

path.

Recent results from a large field population of storage
systems [2] indicate that the probability that a disk de-
velops silent data corruption is low, i.e., only 0.06% for
enterprise-level disks and 0.8% for near-line disks. This
occurrence rate is one order of magnitude less than the
rate of a disk developing latent sector errors. Detection
of silent data corruption as well as the identification of
its source is not trivial and various aggressive features
are put in place throughout the IO path to protect against
silent data corruption [9].

Silent data corruption is associated with WRITEs and oc-
curs when a WRITE, although acknowledged as success-
ful, is not written in the media at all (i.e., lost WRITE),
is written only partially (i.e., torn WRITE), or written
in another location (i.e. misdirected WRITEs). The disk
drive may cause some of the above WRITE errors. Read-
After-Write (RAW) detects and corrects some WRITE
errors by verifying the written content with the cached
content. RAW may be deployed at the disk drive level or
array controller level. RAW degrades significantly user
performance and this paper focuses on effective ways to
conduct WRITE verification.

7 Conclusions

In this paper, we proposed Idle Read After Write
(IRAW), which verifies WRITEs at the disk drive level
during idle time. IRAW aims at detecting and correct-
ing any inconsistencies during the WRITE process that
may cause silent data corruption and eventually data loss.
Traditionally WRITE verification is conducted immedi-
ately after a WRITE completes via a process known as
Read After Write. RAW verifies the content on the disk
with the WRITE request in the disk cache. Because a
WRITE is followed by an additional READ, RAW sig-
nificantly degrades user’s performance. IRAW addresses
RAW’s drawbacks by conducting the additional READs
associated with a WRITE verification during idle time
and minimizing the effect that WRITE verification has
on user performance.

Unlike RAW, IRAW requires resources (i.e., cache and
idle time) for its operation. Cache is required to store
unverified WRITEs until idle time becomes available to
perform the WRITE verifications. Nevertheless, in-disk
caches of 16MB and underutilized disks (as indicated by
disk-level traces) enable the effective operation of a fea-
ture like IRAW. Although IRAW utilizes only idle times,
it effects user request performance, because it contends
for cache with the user traffic and it delays user requests
if they arrive during the non-preemptable WRITE veri-
fication. Consequently, we measure the IRAW perfor-

mance by the ratio of verified WRITEs and the effect it
has on user request performance.

We used several disk-level traces to evaluate IRAW’s
feasibility. The traces confirm the availability of idle-
ness at the disk-level and indicate that disk’s operation
is characterized by short busy periods and long idle peri-
ods, which favor IRAW. Via trace-driven simulations, we
concluded that IRAW has minimal impact on the disk
throughput. The maximal impact on disk throughput
measured over 5 minutes intervals is less than 1% for the
majority of the traces. The worst estimated disk through-
put degradation among the evaluated traces is only 2%.

Our evaluation showed that the cache hit ratio for the
user traffic (and consequently user performance) is main-
tained if both READs and WRITEs are placed at the
MRU (Most Recently Used) position in the cache upon
completion. Because the READ cache hit ratio plateaus
as the cache size increases, it is possible to use some ded-
icated cache space for IRAW without effecting READ
cache hit ratio and improving considerably IRAW veri-
fication rate. Dedicated cache of 2MB seems to be suf-
ficient to achieve as high as 100% IRAW validation rate
for the majority of the evaluated traces. We conclude that
IRAW is a feature that with a priority similar to “best-
effort” enhances data integrity at the disk drive level, be-
cause it validates more than 90% of all the written con-
tent even in the burstiest environments.

References

[1] L. N. Bairavasundaram, G. R. Goodson, S. Pasupa-
thy, and J. Schindler. An analysis of latent sector
errors in disk drives. In Proceeding of the ACM
SIGMETRICS, pages 289–300, 2007.

[2] L. N. Bairavasundaram, G. R. Goodson,
B. Schroeder, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. An analysis of data corruption in
the storage stack. In to appear in Proceeding of the
USENIX Annual Conference in File and Storage
Systems, 2008.

[3] M. Baker, M. Shah, D. S. H. Rosenthal, M. Rous-
sopoulos, P. Maniatis, T. J. Giuli, and P. P. Bungale.
A fresh look at the reliability of long-term digital
storage. In EuroSys, pages 221–234, 2006.

[4] L. Eggert and J. D. Touch. Idletime scheduling
with preemption intervals. In Proceedings of the
20th ACM Symposium on Operating Systems Prin-
ciples (SOSP’05), pages 249–262, Brighton, UK,
Oct. 2005. ACM Press.

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 55

[5] J. G. Elerath and M. Pecht. Enhanced reliability
modeling of raid storage systems. In DSN, pages
175–184, 2007.

[6] G. R. Ganger, B. L. Worthington, and Y. N. Patt.
The DiskSim simulation environment, Version 2.0,
Reference manual. Technical report, Electrical and
Computer Engineering Department, Cannegie Mel-
lon University, 1999.

[7] S. Ghemawat, H.Gobioff, and S. Leung. The
Google file system. In Proceedings of ACM Sympo-
siom on Operating Systems Principles, pages 29–
43, 2003.

[8] H. S. Gunawi, V. Prabhakaran, S. Krishnan, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Im-
proving File System Reliability with I/O Shepherd-
ing. In Proceedings of the 21st ACM Symposium
on Operating Systems Principles (SOSP ’07), pages
283–296, Stevenson, Washington, October 2007.

[9] A. Krioukov, L. N. Bairavasundaram, G. Goodson,
K. Srinivasan, R. Thelen, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Parity lost and parity
regained. In FAST, 2008.

[10] C. Lueth. RAID-DP: Network appliance imple-
mentation of RAID double parity for data protec-
tion. Technical report, Technical Report No. 3298,
Network Appliance Inc, 2004.

[11] N. Mi, A. Riska, Q. Zhang, E. Smirni, and
E. Riedel. Efficient utilization of idle times. In
Proceedings of the ACM SIGMETRICS, pages 371–
372, 2007.

[12] S. Mirosystems. Zfs: the last word in file sys-
tems. Technical report, http://www.sun.com/2004-
0914/feature, 2004.

[13] D. A. Patterson, G. Gibson, and R. Katz. A case
for redundant arrays of inexpensive disks (RAID).
In Proceedings of the 1988 ACM SIGMOD Confer-
ence, pages 109–116. ACM Press, 1988.

[14] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Fail-
ure trends in a large disk drive population. In FAST,
pages 17–28, 2007.

[15] V. Prabhakaran, L. N. Bairavasundaram,
N. Agrawal, H. S. Gunawi, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. IRON File Systems.
In Proceedings of the 20th ACM Symposium on
Operating Systems Principles (SOSP ’05), pages
206–220, Brighton, United Kingdom, October
2005.

[16] M. . Rabin. Efficient dispersal of information for
security, load balancing, and fault tolerance. Jour-
nal of ACM, 36(2):335–348, 1989.

[17] A. Riska and E. Riedel. Disk drive level workload
characterization. In Proceedings of the USENIX
Annual Technical Conference, pages 97–103, May
2006.

[18] A. Riska and E. Riedel. Long-range dependence at
the disk drive level. In Proceedings of the Inter-
natinal Conference on the Quantitative Evaluation
of Systems (QEST), pages 41–50, 2006.

[19] M. Rosenblum and J. Ousterhout. The design
and implementation of a log-structured file system.
ACM Transaction on Computer Systems, 10(1):26–
52, 1992.

[20] B. Schroeder and G. A. Gibson. Understanding
disk failure rates: What does an mttf of 1,000,000
hours mean to you? ACM Transactions on Storage,
3(3), 2007.

[21] T. J. E. Schwarz, Q. Xin, E. L. Miller, D. D. E.
Long, A. Hospodor, and S. Ng. Disk scrubbing in
large archival storage systems. In Proceedings of
the International Symposium on Modeling and Sim-
ulation of Computer and Communications Systems
(MASCOTS). IEEE Press, 2004.

[22] M. I. Seltzer, G. R. Ganger, M. K. McKusick, K. A.
Smith, C. .A.Soules, and C. . Stein. Journaling
versus soft updates: Asynchronous meta-data pro-
tection in file systems. In Procceding of the 2000
USENIX Annual Technical Conference, 2000.

[23] S. Shah and J. G. Elerath. Reliability analysis of
disk drive failure mechanism. In Proceedings of
2005 Annual Reliability and Maintainability Sym-
posium, pages 226–231. IEEE, January 2005.

[24] J. Yang and F. Sun. A comprehensive review of
hard-disk drive reliability. In Procceding of the
IEEE Annual Reliability and Maintainability Sym-
posium, pages 403–409, 1999.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association56

