
ConfiDNS: Leveraging Scale and History to Detect Compromise

Lindsey Poole, Vivek S. Pai
Princeton University

Abstract

While cooperative DNS resolver systems, such as Co-
DNS, have demonstrated improved reliability and perfor-
mance over standard approaches, their security has been
weaker, since any corruption or misbehavior of a single
resolver can easily propagate throughout the system.

We address this weakness in a new system called Confi-
DNS, which augments the cooperative lookup process
with configurable policies that utilize multi-site agree-
ment and per-site lookup histories. Not only does Confi-
DNS provide better security than cooperative approaches,
but for up to 99.8% of unique lookups, ConfiDNS exceeds
the security of standard DNS resolvers. ConfiDNS pro-
vides these benefits while retaining the other benefits of
CoDNS, such as incremental deployability, higher reli-
ability, and improved performance, in some cases faster
than CoDNS.

1 Introduction
The use of distributed computing to address performance
and reliability problems in the Domain Name System
(DNS) [18] has recently received much research attention,
and has spawned two widely-deployed distributed sys-
tems, CoDNS [19] and CoDoNS [22]. Both of these sys-
tems provide clients with improved reliability when per-
forming DNS lookups by distributing the queries across
nodes in the system. These systems fetch name-to-IP
translations from the existing legacy DNS infrastructure
as needed to provide an upgrade path for users.

Due to their interaction with vulnerable legacy DNS
infrastructure, these systems can be less secure than tra-
ditional local DNS resolvers, even if these DNS replace-
ments are written securely and use secure inter-node com-
munication. If any node performs a DNS resolution and
receives an incorrect answer, that answer can be propa-
gated to other nodes. The incorrect answer can occur be-
cause of a failure or compromise at a local DNS resolver,
or from UDP packet spoofing when the node tries to com-
municate with an external DNS server. Ironically, the use
of aggressive caching and multi-hop request forwarding
to improve resilience under flooding attacks can actually
cause polluted responses to be kept longer and spread fur-
ther, magnifying the scope of the problem when compared
to traditional DNS configurations.

Rather than being a fundamental trade-off in trying
to support legacy DNS while achieving better reliability,

we show that worse security is not an unavoidable by-
product of cooperative DNS systems. For most DNS de-
ployment scenarios, the greater scale of cooperative DNS
systems can be leveraged to provide better security than
legacy DNS resolvers for the vast majority of queries.
Where scale cannot be used, observing the history of DNS
queries can provide some assurance that DNS replies have
not been modified. Between these two options, only a
small fraction of DNS queries need to trade security for
reliability or performance.

In this paper, we present ConfiDNS, a cooperative DNS
system that provides improved DNS reliability while al-
lowing customizable security policies. These policies
can be tailored by administrators, on a per-domain basis,
allowing for very strict security at important sites (e.g.
banks and online payment sites), while allowing lower-
overhead policies for casual browsing. We also make the
following contributions:

• We analyze a running cooperative global DNS sys-
tem, CoDNS, to understand what kind of traffic
these resolvers experience. We find that DNS traf-
fic changed qualitatively in the recent past, and that
cooperative DNS systems exhibit traffic patterns un-
like that reported for individual DNS resolvers.

• We continuously monitor domains around the world
from multiple vantage points, allowing us to reverse-
engineer routing decisions for their content distribu-
tion networks (CDNs) and data centers. We also ob-
serve how the DNS mappings used by these domains
change over time.

• We present a range of security policies for Confi-
DNS, show what fraction of domains can be handled
by each policy, and show the performance and traffic
overhead of each policy.

Even in its weakest configuration, ConfiDNS provides
better security than local DNS for 99.8% of queries, while
stronger security requirements can be met in over 99.2%
of queries. On a practical level, ConfiDNS is incremen-
tally deployable, and requires no change to the existing
global DNS infrastructure to reap its benefits. At the same
time, it also provides benefits even if the DNS infras-
tructure changes to support authentication, using schemes
such as DNSSEC [6, 4, 5].

The rest of this paper is organized as follows: in Sec-
tion 2, we describe ConfiDNS, describe how it operates,
and what kinds of protection it provides. We then describe

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 99

the workload observed on an existing cooperative DNS
system, CoDNS, in Section 3, and the studies of the DNS
hierarchy performed using the CoDNS workload in Sec-
tion 4. We discuss our implementation in Section 5, and
evaluate some sample ConfiDNS policies in Section 6.
We then discuss related work in Section 7 and conclude.

2 Overview
Before describing the workings of ConfiDNS, we describe
the Domain Name System (DNS) and the terminology we
use for its components. DNS maps human-readable ma-
chine names to numeric IP addresses using a globally dis-
tributed hierarchy of servers, each of which is responsi-
ble for a portion of the global namespace. This system,
which we call the server-side DNS infrastructure, is oper-
ated by the owners of domain names (e.g. example.com)
and their surrogates, and by organizations that are respon-
sible for the top-level servers (e.g. com) that point to the
per-domain servers. Clients rarely query these machines
directly, but instead send DNS lookups to machines within
their own organization, called local (client-side) DNS re-
solvers. These resolvers perform the queries and cache
the results, sharing lookup overhead across many clients.
The CoDNS system observed that many DNS problems
were due to failures at the local DNS resolvers. CoDNS
achieves better performance and reliability by brokering
queries to peer DNS resolvers at remote sites when the lo-
cal resolvers are failing, since resolver failures at different
sites were largely uncorrelated.

ConfiDNS attempts to increase confidence in DNS
lookups by using peer sites at all times in order to provide
protection against certain attacks and failures. Addition-
ally, ConfiDNS also uses lookup history to detect changes
in name-to-IP mappings. The basic idea is simple – users
run a ConfiDNS agent which contains configurable DNS
lookup policies. This agent is ideally run on the user’s
own machine, but can be run on a (possibly shared) ma-
chine near the user (with some increased risk). This agent
receives DNS lookup requests from the user, and sends
the request to both the local DNS resolver as well as some
number of peer ConfiDNS agents located at remote sites.

Using the response from the local DNS resolver, the
peer ConfiDNS agents, and the agent’s recorded history
of previous lookups for the name, the agent provides the
client with a response, or indicates a failure if no response
could be provided that met the specified security policy.
Response lookups are also logged to determine lookup
history. Sample policies for ConfiDNS include the fol-
lowing: (a) the local resolver and at least one peer must
agree on the result, (b) at least three sites must agree, (c)
if no peers agree with the local resolver, the IP address
must not have changed in the past week, (d) if no peers
agree within 5 seconds, use any result. Some questions
that naturally arise are

1. What attacks or failures do these policies handle?

2. What sites are amenable to various policies, and what
kinds of overheads are incurred in using ConfiDNS?

3. How do these policies interact with content distribution
networks or load-balancing schemes, which route traffic
using active DNS-to-IP mappings?

2.1 Threat Model & Attacks Handled
ConfiDNS is designed to protect against attacks or fail-
ures at the client-side DNS infrastructure, including forms
of cache poisoning, compromise, non-failstop failure, and
spoofing [16]. These failure modes are real – as re-
cently as several months ago, a new spoofing attack was
discovered against the most recent BIND. By protecting
the client-side DNS infrastructure, ConfiDNS reduces av-
enues for polluting global lookups in cooperative DNS
systems. While ConfiDNS is not designed to detect
server-side DNS spoofing, if the spoofing is selective or
intermittent, ConfiDNS may still provide some protection.

The decision to focus on client-side problems is prag-
matic – we believe that client-side problems are harder
to manually detect, and easier to automatically defend.
For example, if an attacker compromises a bank’s DNS
servers and redirects all traffic to a spoofed Web site, the
bank’s Web site will see a sharp and easily-detectable drop
in activity. However, an attacker who wants to draw less
attention could compromise an ISP’s resolver, and redi-
rect only lookups for one bank – the resulting drop in traf-
fic may go unnoticed. We have seen several client-side
resolver behaviors that could pollute a cooperative DNS
service. In one scenario, we saw a site administrator pol-
lute CoDNS by configuring a resolver to reply instantly to
all requests with the IP address of a local webserver that
served a page saying that the resolver was being replaced.
Unfortunately, if the browser expected an image and re-
ceived this error message, the web page displayed broken
image icons, causing problems. We also measured three
other instances of pollution, which are further described
in Section 4.3. In all of these cases, the results were re-
turned quickly, so any peer using the resolvers at these
sites could find its own lookups poisoned in the process.

ConfiDNS’s protection does not extend to arbitrary col-
lusion among peers in the system. We present different
policies that show how many peers need to agree on a re-
sult before ConfiDNS accepts it, and these policies are
designed to tolerate different numbers of failing DNS re-
solvers. However, if an attacker controls all of the re-
solvers, or even the local ConfiDNS agent itself, we can-
not determine the validity of IP addresses.

Although some techniques for strengthening DNS se-
curity have been proposed or deployed, they do not
solve all of the problems mentioned above. For exam-
ple, DNSSEC, which can prevent DNS spoofing by au-
thentication, does not provide any support for distribut-
ing service (and distributing authentication), leaving the

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association100

infrastructure with the same reliability problems as the
legacy DNS systems. Adding Byzantine fault tolerance
to DNSSEC can further strengthen security while help-
ing reliability, but requires much more dramatic changes
to the infrastructure, and is unlikely to occur in the near
future given the slow adoption of DNSSEC to date.

2.2 Applicability
ConfiDNS’s ability to provide protection depends on how
DNS is used (and abused). While we take a pragmatic
view and try to accommodate the greatest range of DNS
use, the extreme ends of the spectrum are worth con-
sidering, because they also provide interesting perspec-
tives. DNS was originally designed so that the same name
would resolve to the same IP address everywhere, and
that this behavior could be exploited to provide distributed
caching. In this model, ConfiDNS’s agreement mecha-
nisms are trivially satisfiable, since all sites should get the
same answers when performing DNS lookups. The num-
ber of faults that ConfiDNS can handle is therefore limited
by the number of ConfiDNS peers. The only question for
ConfiDNS, then, is how stable the name-to-IP mappings
are over time, since a site can seamlessly migrate servers
by running both machines at different IP addresses and
then waiting until old cached translations expire.

However, since the mid-1990’s, intelligent DNS redi-
rectors have been used for geographic load balancing,
such as redirecting clients to nearby data centers [14, 23].
Content distribution networks such as Akamai [3] use
very short DNS response TTLs to more aggressively bal-
ance load and locality. The number of possible IPs per
domain name can number in the hundreds in these sys-
tems, since they will try to place servers at most large
ISPs. These systems are potentially more problematic for
ConfiDNS, since peers at separate ISPs may not agree
on any domain names served by CDNs. In the extreme,
if all sites used CDNs with servers at every large ISP,
ConfiDNS would become much less useful. Realistically,
though, we believe that the Web will continue to have a
mix of sites hosted at single locations, a small number
of data centers, and commercial large-scale CDNs. Our
measurements later in this paper gives some indication of
the breakdowns among the different approaches.

In this paper, we take a pragmatic approach to design-
ing and evaluating ConfiDNS and assume that while some
sites will adopt one style of delivery over another, the ba-
sic options available will remain qualitatively similar go-
ing forward. For each approach, we will try to provide the
most protection possible, while realizing that some uses
of DNS will simply be more amenable to our style of pro-
tection than others. Our interest is in determining what is
the best we can possibly do given an imperfect situation,
rather than trying to fight the same uphill battle of trying
to replace the infrastructure that DNSSEC and others have
tried. In the process, we hope to also gain insight into

how DNS is actually used in practice, since the benefits
of ConfiDNS will depend on actual DNS usage patterns,
rather than on extreme models of possible usage.

3 Trace Analysis
To study how DNS is actually used and what sorts of
workloads need to be considered for ConfiDNS, we per-
form an analysis of the operating CoDNS system, both in
terms of how the DNS hierarchy is being used and what
implications it has for caching strategies.

3.1 Building a Global DNS Trace

The CoDNS cooperative DNS system has been opera-
tional on PlanetLab [20] since October 2003, and has
grown from handling 2 million requests per day on 95
nodes to now handling 5-7 million requests per day across
PlanetLab (generally 430-450 live nodes). Its most heavy
use comes from the CoDeeN [26] content distribution net-
work, which handles over 25 million requests per day
from over 50,000 daily users, but is also used by other
PlanetLab researchers as well as members of the public
who have installed the CoDNS agent on their personal
machines.

To produce a global CoDNS trace, we combine log files
from all CoDNS nodes over a 34 day period, producing a
log with 1.05 million unique successfully queried names.
To mimic a global cache, we reduce this log file by com-
bining multiple lookups of the same domain name on each
day. From this global cache, we then create a representa-
tive daily log by associating each name with a probability
determined by how many days it appears in the global log.
So, a name that appears every day in the global log will
always be included in the daily log, whereas a name that
only appears 17 out of 34 days in the global log would
only have a 50% chance of appearing in the daily log. Us-
ing this methodology, the daily log is reduced to 132K
entries, and is used in place of any particular day’s log in
the remainder of this paper. Creating the daily log in this
manner allows us to build a representative day’s traffic for
a combined global DNS resolver. It also allows us to un-
derstand the limits of how much agreement is possible in
ConfiDNS without being bound by a priori constraints on
how many nodes can resolve each name.

This process intentionally creates a daily log where do-
main names appear only once. Although a local DNS re-
solver would see the same requests from multiple clients,
we are interested in understanding the cacheability of
names, and monitoring them over long periods, so we gen-
erate traffic patterns within the day as we desire. This be-
havior is also more like second-level caches rather than
local DNS resolvers, since first-level on-box DNS caches
are already commonly used for services like CDNs, mail
transfer agents, etc. The on-box caches reduce the load

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 101

on the site’s DNS resolvers, and isolate any performance
impact from these high-demand services.

3.2 Domain Frequency Analysis
We can analyze the frequency and usage of domain names
to understand how DNS domains and sub-domains are be-
ing used by their owners. Aggregating information across
CoDNS is useful for several purposes – (1) it provides a
snapshot of the state of the DNS system, (2) it gives some
insight into global DNS behavior, whereas most previous
studies examined only one or two client sites, and (3) it
provides some guidance for designing caching strategies.

Note, however, that these statistics are only for the
names themselves, and not for the amount of traffic sent
to the site. CoDeeN’s traffic is generally similar to the
Alexa Top 100 list, but the name lookups and their statis-
tics are more important for DNS caches that are interested
in only the names. To give an example, google.com is a
very popular site by traffic, but it requires very little space
in a DNS cache since is has relatively few subdomains.

From these logs, we can see that domain name pop-
ularity, measured by how many days a name appears in
the trace, is very bimodal. Figure 1 shows counts of how
many names appear for a specified number of days in the
34-day trace, while Figure 2 gives the same counts only
for the subset of names that appear in the daily trace.
In the 34-day trace, most names (53.5%) appear exactly
once, while a small set (12.9%) appear on at least 75%
of the days, and a very small fraction (1.4%) appear ev-
ery day. The trend is similar for the daily trace – 14334
names from the one-day trace appear every day in the 34-
day trace, and 16559 names in the one-day trace appear
only once each in the 34-day trace. The strong bimodality
from the 34-day trace is diluted, since pruning reduces the
relative weight of the singletons by a factor of 34.

The implications of this distribution are that aggressive
caching of DNS names, particularly for global DNS re-
solvers, may be wasteful. As we see later, most name
translations have relatively short TTL values, so caching
infrequently-used names provides no benefit. The traffic
to cache and find them, only to discover the mapping is
stale, may exceed the traffic to simply re-fetch them from
the server-side DNS infrastructure.

To understand why relatively recent studies of DNS
traffic did not reveal this kind of bimodal distribution, and
actually indicated a Zipf-like behavior [12], we examine
the most-requested and most-populated domains, shown
in Table 1. The counts indicate how many unique names
appear under each domain, and the list shows many van-
ity sites (web logs) and hosting sites, often used to up-
load images and videos. Most of these sites are younger
than the previous DNS studies (performed in 2001), and
use DNS very differently, placing the user’s name in the
DNS name itself rather than as a subcomponent of the
URL. This change causes a change in DNS name usage

as millions of people create vanity sites. Since CoDNS
is globally deployed, these logs also capture vanity sites
in France (free.fr), Russia (narod.ru), and the Arab world
(jeeran.com), something not captured in previous studies
that only study traffic from one or two sites. The appear-
ance of portals such as Yahoo and QQ (a Chinese portal)
on these lists is because they expose cluster names via
DNS – these names may map to actual machines, or may
just be used for load balancing, but in either case, this par-
titioning is DNS-visible.

3.3 Caching Implications
We mine this data for implications on caching, since the
two existing global DNS systems, CoDNS and CoDoNS,
take very different approaches to caching. CoDNS re-
lies on the caches of local DNS resolvers, and performs
no caching itself, since it found that paging delays in the
virtual memory system were one of BIND’s [11] biggest
performance and reliability problems. [19] CoDoNS, in
contrast, aggressively caches lookup data on each node,
in order to reduce the amount of communication needed
to return lookup responses.

We query the origin DNS servers to obtain the TTL
value for each domain name in the one-day trace, and find
that the most common values cluster around 5 minutes,
30 minutes, 1 hour, 4 hours, 8 hours, 12 hours, and 24
hours. We show the breakdown of names in the one-day
trace by their TTL groupings in Figure 3. We further se-
lect the 2.6% of names that appear every day in the 34-
day trace and show their breakdown in Figure 4. In both
cases, we add an extra category for those names that had
a TTL greater than 24 hours. We observe three important
features in this data:

1. Very few translations are cacheable for more than one
day, so one day’s storage will avoid almost all capacity
misses – even if each record requires 64 bytes, all 132K
entries in the one-day trace require less than 9MB per
node. In practice, nodes will require even less memory,
since the one-day trace represents a combined trace from
all nodes.

2. Most TTLs are four hours or less, so the most popular
names will be re-fetched at least six times per day. Predic-
tively refreshing these entries may avoid lookup delays.

3. Many names have TTLs near five minutes, suggesting
the use of commercial content distribution networks. The
TTL breakdown for the names that appear daily show a
greater fraction having a 5-minute TTL than names in the
one-day trace. This shift is not surprising, since the most
popular sites are prime customers for CDNs.

4 Continuous Monitoring
To obtain a more comprehensive view of how the global
DNS hierarchy is used, we perform lookups from multi-
ple vantage points. From this data, we can then analyze

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association102

0 10 20 30
0

200

400

600

of days name appears

Ho
stn

am
es

(in
tho

us
an

ds
)

Figure 1: The number of days that each hostname appears
in our 34 day survey of CoDNS.

0 10 20 30
0

5

10

15

20

of days name appears in 34−day trace

Ho
stn

am
es

(in
tho

us
an

ds
)

Figure 2: How often hostnames in our one-day trace ap-
pear in the monthly trace

34-day (1.05M names) Daily (132K names)
top-level domain top-level domain

592032 com 6642 blogspot.com (V) 82588 com 880 llnwd.net (H)
97948 net 4225 free.fr (H) 12909 net 854 yahoo.com (P)
49343 de 3898 camarades.com (V) 4810 de 494 imageshack.us (H)
44367 org 3775 jeeran.com (V) 4265 org 418 camarades.com (V)
40271 ru 3623 spylog.com (T) 4109 ru 390 blogspot.com (V)
19273 uk 3116 yahoo.com (P) 1848 uk 329 spylog.com (T)
17758 cn 2621 narod.ru (H) 1808 jp 296 free.fr (H)
16750 info 2351 infoseek.co.jp (P/V) 1780 cn 223 jeeran.com (V)
14847 jp 2255 tripod.com (H) 1458 info 220 2o7.net (T)
12054 nl 1413 fastturning.com (T) 1194 nl 200 qq.com (P)

Table 1: Statistics on the most-requested (from the daily trace) and most-populated (from the 34-day trace) top-level domains and
regular domains. The count near each name indicates how often it occurs in the set. The indicators near each name indicate the
type of site, with V for vanity/weblog, H for hosting, T for tracking, and P for portal. The unique names in the 34-day trace are not
always related to aggregated request frequency, as in the case of fastturning.com, which now appears to be non-operational. Also,
since this data was gathered, camarades.com has been purchased by another site.

how different usages of DNS affect potential ConfiDNS
policies. This approach can give us more insight into the
DNS operations of CDNs, as well as the rate of change of
name-to-IP mappings.

4.1 Monitoring Setup
To obtain a more comprehensive view, we perform
lookups in many distinct locations by using every site in
PlanetLab that has its own local DNS resolver. A Plan-
etLab site consists of two or more co-located nodes; we
refer to sites instead of nodes because our choice of node
is made dynamically, dependent on which nodes are alive
at each site during the trace initialization. After remov-
ing dead sites and sites that share DNS resolvers, we
are left with approximately 180 accessible sites on most
days. Over a period of 30 days, we have each site perform
lookups from the one-day trace we described earlier.

To reduce the chances of causing problems for Planet-
Lab sites, we take a number of steps to make this process

more manageable. To reduce local DNS resolver load,
we query only one new hostname per second, and allow
only 10 outstanding requests. At that rate, resolving 132K
names would require over 36 hours, so we randomly se-
lect a 40K name subset, but ensure that all of the Alexa
Top 100 are included. With this reduced list, we expect
to perform all lookups in less than 12 hours at most sites,
and no more than 24 hours at the slowest sites. We take
two steps to avoid tripping overly-sensitive intrusion de-
tection systems and overloading DNS servers with syn-
chronized lookups. First, we randomize the list to reduce
the chances of querying long bursts of names to the same
domain. Second, we have each Planetlab site pick a ran-
dom starting position in the list. This same starting posi-
tion is used each day so that the same name is resolved at
approximately the same time on a per-site basis.

We performed the monitoring using all available sites
for 30 days, and collected information such as the elapsed
time per lookup, the IP addresses returned, and the canon-

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 103

5m 30m 1h 4h 8h 12h 24h >24
0

5

10

15

20

25

TTL Value Regions

%
of

Ho
stn

am
es

Figure 3: TTL values of hostnames that appear in the one-
day trace

5m 30m 1h 4h 8h 12h 24h >24
0

5

10

15

20

25

TTL Value Regions

%
of

Ho
stn

am
es

Figure 4: The TTL values of hostnames that appear daily
in the 34-day trace

0 20 40 60 80 100
0

10

20

30

Normalized Hostname Number

Lo
ok

up
Tim

e(
se

c)

Figure 5: Comparison of Local DNS response times at
four sites.

0 20 40 60 80 100
0

20

40

60

%
of

Si
tes

% of lookups > 4s

Figure 6: Breakdown of node retry percentages, where
DNS lookup times over 4 seconds implies retry.

ical name returned. We also had each node ping its neigh-
bors, and collected round-trip ping times between the
PlanetLab nodes. This information is used as the input
for the analysis in the rest of this section.

4.2 Query Response Time Breakdowns
These tests give some insight into what range of DNS
response times most clients experience when using their
local DNS resolver. This measure is important because
it provides a baseline comparison for the policies imple-
mented in ConfiDNS. Figure 5 shows the query response
times for our set of names at just a few sites, with the
values sorted by time to illustrate some common query
response behaviors.

We observe three plateaus near zero, five, and ten sec-
onds, and a sharp rise near the end of each line. The
plateaus are the timeout values used by the resolver li-
braries to reissue DNS requests. The plateau shape is due
to the fact that most lookups require less than one second
when successful, so the response time can be dominated
by the retry delay. A larger plateau near zero seconds is
desirable, because it indicates that the resolver is either

caching very well, and/or is having no problems in the
paths between it and the server-side DNS infrastructure.

To obtain a broader perspective of DNS query perfor-
mance, we can reduce the results from each site to a sin-
gle statistic – what fraction of sites require more than a
given amount of time to complete their query. We choose
4 seconds as the threshold because it conservatively sep-
arates retries from non-retries. We calculate the break-
down for each node, and show a histogram of node failure
rates in Figure 6. While most sites (almost 100 out of
180) perform reasonably well, a surprisingly large num-
ber (approximately 30) have problems with nearly half of
their queries. An additional 7 sites appear to have primary
resolvers that are almost entirely non-responsive, where
more than 90% of queries take longer then 4 seconds.

Notice that this breakdown is worse than the local DNS
resolver health measured in the earlier CoDNS work. The
explanation for this difference is that CoDNS monitoring
measured the failure rate of cached queries only, to sep-
arate resolver failures from cache capacity and replace-
ment policies. Once these extra factors are included in

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association104

the end-to-end measurements, many local DNS resolvers
perform much worse. However, some servers still per-
form quite well, with failure rates in the low single digit
percentages. Given that a sizable fraction of the Confi-
DNS queries are for unpopular names, and we can expect
these to be evicted from cache regularly, we can see that
the DNS server-side infrastructure is not the major source
of problems in the system. If it were, few nodes would
be able to achieve low retry rates given the fact that our
querying process takes 12 hours and that it queries a num-
ber of names unlikely to be cached.

4.3 CDNs and Data Centers

The amount of protection-by-agreement that ConfiDNS
can provide is a function of how many clients receive the
same IP address for each name. For a content provider
that has only one server and one connection to the Inter-
net, all clients should receive the same information when
resolving its DNS name. However, providers will often
use some form of geographic replication, with multiple
data centers or a content distribution network. In these
cases, the total number of IP addresses that map to the
same name can be much larger, especially if the CDN at-
tempts to have a point-of-presence at every major ISP.

The precise number of IP addresses returned per host-
name is less important than the pattern of how they are
returned. A domain may have two data centers with ad-
dresses IP1 and IP2. If it selectively returns one IP ad-
dress based on load or locality, we say that the hostname
has two regions, but if it returns both addresses for every
query, we say that it has a single region because all queries
see the same set of addresses. At this level of analysis,
a single data center with two connections to the Internet
(commonly called a multi-homed site) is equivalent to a
domain with two data centers but which returns both IPs
to every query. Of the roughly 40K domains we query, we
find that roughly 90.8% return the same single IP address
to all queries. Another 4.2% return multiple IP addresses,
but return the same set of IP addresses to all queries.

These statistics are very positive for ConfiDNS because
95% of domain names in the one-day trace can have
agreement bounded only by the total number of nodes
participating in ConfiDNS. The remaining 5% of domain
names (2002 out of 40154) are not automatically out of
reach for ConfiDNS – for small numbers of regions, they
should be satisfiable for a number of policies.

The exact breakdown of the 2002 hostnames with two
or more regions in our one-day trace is shown in Fig-
ure 7(a), with hostnames further differentiated into names
served by Akamai (354 hostnames) and names either op-
erating on their own or served by other CDNs (1648
hostnames). Akamai-served hostnames are determined
using the canonical name returned in the DNS query –
any names on akamai.net, akamaiedge.net, speedera.net,

IP Prefix # sites Region Sample Sites
74.125.47.x 2 Southeast US Georgia Tech
74.125.45.x 3 Kentucky UKY (Lexington)
74.125.19.x 9 Southwest UCSD (San Diego)

US & ASU (Arizona)
72.14.253.x 2 Wash, Oregon U Oregon, WSU
72.14.215.x 1 Switzerland U Zurich
72.14.205.x 4 NYC, Conn U Conn
66.249.93.x 6 Europe Vrije U
66.249.91.x 7 Northern Europe U Helsinki
66.249.89.x 8 Japan,TW JAIST, Osaka U
66.102.9.x 4 Portugal U Lisboa

64.233.189.x 5 HK, Korea CUHK (Hong Kong)
& China & Southeast U (Nanjing)

64.233.183.x 9 Western Europe Cambridge,
& UPM (Madrid)

64.233.169.x 25 Eastern US CMU, Duke
64.233.167.x 35 Great Lakes U Toronto,

& Midwest & Indiana
64.233.161.x 9 Northeast US NEC Labs (Princeton),

& MIT
209.85.193.x 1 Brazil RNP (Brazil)
209.85.175.x 2 Asia NTU, SNU
209.85.173.x 15 Western US U Washington

& Canada Intel Res. Berkeley
209.85.135.x 8 Europe Fraunhofer, LIP6
209.85.137.x 35 Germany, U Austria,

& Austria & TU Darmstadt

Table 2: Breakdown of regions observed for
www.google.com with representative sites belonging
to each region set

akastream.net, akareal.net, or yimg.com (Yahoo’s images
served by Akamai) are grouped together as Akamai.

Of the non-Akamai hostnames, 1019 have only two
regions, 1429 have ten or fewer regions, and 219 have
more than 10 regions. In contrast, most Akamai-served
hostnames have 80-90 regions, with Akamai’s servers for
America Online showing the largest number of regions.
Akamai also offers a DNS redirector that resolves to the
customers own data centers. These hostnames are handled
by akadns.net, and we count these as non-Akamai CDNs
since the customer is ultimately handling the actual data
centers.

In Table 2 we show a reasonably popular domain -
www.google.com, where we find 21 distinct regions vis-
ible. The wide range of region sizes implies that dif-
ferent policies will be effective in different parts of the
world. Multi-site agreement may work well in the West-
ern United States where there are a sufficient number of
available peer sites, but is unlikely to be effective along,
for instance, Brazil where there are relatively few avail-
able peers.

By comparing the number of sites in each region versus
how many would appear in perfectly-balanced regions,
we calculate a region imbalance factor for each multi-
regioned name in our trace. Given the set of regions with

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 105

0 50 100 150
0

500

1000

1500

2000

Region Size

#
Ho

stn
am

es
w/

<=
X

Re
gio

ns All
Non−Akamai
Akamai

(a) Region Sizes

<2 4 6 8 10 12 >12
0

200

400

600

800

1000

Imbalance Ratio

Ho
stn

am
es

(b) Region Imbalances

1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

Top Sites by # Hostnames

Av
g

Da
ily

Co
un

t

(c) Site Poisoning

Figure 7: Region information for names mapping to multiple disjoint IP addresses

the number of nodes per region, we calculate a geomet-
ric mean of a series of terms, where each term is either
the ratio of actual region size to average region size, or its
inverse, whichever is larger. For example, if a hostname
has three regions with 15, 55, and 80 sites, its imbalance

ratio is 3

√

50

15
×

55

50
×

80

50
. This calculation is designed to

identify names that have gross imbalances in the sizes of
their regions. While most names have region sizes that
are within a factor of 2-4 of being fully balanced, we see
a spike where the imbalance ratio exceeds 12 – in these
cases, only one site disagrees over the IP address, and all
of the other sites form a second region.

To get a sense of the origins of these heavily-
imbalanced regions, we counted how often a site dis-
agreed with all others, and show the daily average for the
top ten sites in Figure 7(c). The worst site has an average
of 469 hostnames per day whose lookups differ from all
others. This set of names is fairly stable, and an exam-
ination of their contents suggests that it is policy-driven
censorship, since they are resolved to IP addresses that
provide no responses. Users will be able to seemingly re-
solve the name, but will be unable to contact any machine
at the address, and may conclude the server does not ex-
ist. The second-worst site appears to have a traffic-sniffing
virus checker working in conjunction with the local DNS
resolver. When it activates, all lookups from the client
are directed to a local Webserver with a message warning
that your client is infected. Unfortunately, the virus snif-
fer returns false positives, and indicated that our Linux-
based boxes were infected with Windows viruses. The
third-worst site appeared to be having sporadic failures,
and was randomly returning the IP address of the school’s
main Web server for queries, with no discernible pattern
to its behavior. The remaining sites show no strong pat-
terns of poisoning, with most of the imbalances stemming
from slowly-deployed changes in name-to-IP mappings.
In all of these cases, any multi-site agreement policy in
ConfiDNS would automatically prevent these sites from
poisoning the lookup results.

4.4 IP Address Changes
By monitoring for 30 days, we gain some insight into how
often name-to-IP mappings actually change, rather than
just relying on the advertised TTLs as an estimate. While
it might be inadvisable to use past history to serve stale
mappings, the fact that a mapping has been the same for
an extended period of time may give users more confi-
dence in it. Conversely, a mapping that suddenly changes
when it had previously been stable may be cause for con-
cern – it may be as simple as a server being replaced or
migrated, or it may be that an attacker has spoofed a re-
sponse and is trying to divert traffic.

From the monitoring data, we calculate the observed
rate of change of name-to-IP mappings during our test pe-
riod. For each site, we examine the results of the lookup
for each name across 30 days, and count the number
of times the returned IP differs from the previous day’s
value. For names that map to multiple IPs, we conserva-
tively consider the result to have changed if any member
of the set of IPs change. However, we do not consider set
ordering important. Since we monitor the mappings only
once per day, our approach should be considered a reason-
able estimate of the rate of change rather than the precise
answer. A domain with a short TTL could presumably
change and then revert its mappings between our measure-
ments, and we would miss the change. However, since the
probe order differs at each of our measuring sites, such a
change would likely trigger our system to detect a change
in the number of regions for the domain. If both changes
occurred during the 12 hours we do not monitor, the like-
lihood of our observing it decreases. Given the patterns
we observe and our intended uses for the data, we do not
believe these corner cases are much of a concern.

The rate of change for all names across all sites is
shown in Figure 8(a). For each site, we group names by
the number of changes observed, and then report the size
of these groups. We see that at every site, more than 85%
of names do not change over the 30 day period, despite
having TTL values less than 30 days. The remaining bars

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association106

0 50 100 150
80

85

90

95

100

Sites Sorted by 0−Change Category

%
of

Ho
stn

am
es

pe
rC

ate
go

ry

(a) All names

0 50 100 150
0

20

40

60

80

100

Sites Sorted by 0−Change Category

%
of

Ho
stn

am
es

pe
rC

ate
go

ry

(b) Names with 2-10 regions

0 50 100 150
0

20

40

60

80

100

Sites Sorted by 0−Change Category

%
of

Ho
stn

am
es

pe
rC

ate
go

ry

(c) Names with 10+ regions

Figure 8: Rate of change for name-to-IP mappings. The bars, from bottom to top, are for zero changes, 1 change, 2-3
changes, 4-14 changes, and 15+ changes (in white). Note: Y axis truncated to improve detail in first graph.

group the number of changes and are intended to show
that while some names change on virtually every lookup,
most change much more slowly. If these rates of change
are typical, then we see that most names are stable for a
month at a time, and more than half of the names that do
change are in fact, stable for two weeks. The set of names
that change more frequently than once per week ranges
from 1-3% in this study.

The data in Figure 8(b) breaks out the names with a
small number of regions (2-10), so that we can determine
how often most multi-regioned sites send clients to dif-
ferent regions. We see that even here, a large number of
names have long periods of stability – decisions to send
clients to nearby data centers are likely to be stable over
time, unless the closest data center becomes unavailable
for maintenance, link outages, etc. The names that show
high rates of change in these measurements may indicate
that in addition to (or instead of) geographic proximity,
the DNS server is also being used to load balance traffic
across multiple data centers.

Finally, the data in Figure 8(c) shows the same statis-
tics, but only for those names that map to more than 10 re-
gions. Included in this set are most of the Akamai-served
domains, some domains served by LimeLight Networks
(another CDN) as well others that seem to be using a fairly
large number of their own data centers (or hosting cen-
ters). The increase in the size of the zero change category
beginning near node 100 is largely a function of the size
and deployment of Akamai clusters – these do not appear
to use hardware load balancers, so the larger the cluster,
the more IP addresses that are exposed and rotated, caus-
ing high rates of IP address changes. In contrast, Google
clusters, despite having thousands of nodes, advertise only
a small number of IP addresses as entry points.

As can be seen from this data, IP result history can be
used profitably to provide an indication of stability, and
this pattern holds true across domains served using a va-
riety of different strategies. This observation bodes well

particularly for those parts of the world where sparse cov-
erage may preclude certain clients from finding enough
peers in agreement to use only agreement-based policies.
In these cases, the stability of a name-to-IP mapping can
provide some reassurance greater than just the local DNS
resolver alone provides.

The stability data we have gathered may also be useful
in shaping decisions about when to use stale DNS data,
as has been proposed in another system [10]. If the DNS
infrastructure and the actual content servers do not share
fate, it may be the case that a domain has functioning
servers but is not accessible to users because their existing
DNS entries have become stale. Note that this fate-sharing
requirement is not completely unrealistic – several com-
panies perform outsourced DNS service, so a failure at a
third-party DNS provider could have no correlation to the
domain’s own content servers failing. In these cases, a
DNS resolver could potentially be configured to provide
stale data if it met some predefined criteria. We do not
explore this idea further in this paper, but leave it as a
possible avenue for future work.

5 Implementation
ConfiDNS is implemented as a service running on Plan-
etLab, with an architecture similar to the CoDNS sys-
tem. Each PlanetLab node runs a ConfiDNS agent,
which can also be run on the user’s local machine. The
agents accept DNS queries using TCP and UDP, and when
run on a local machine, can automatically modify the
/etc/resolv.conf file to automatically handle all
locally-generated DNS traffic.

The policy differences between CoDNS and ConfiDNS
focus on when to contact peers. In CoDNS, requests are
first forwarded to the local DNS infrastructure, and only
sent remotely if the local resolver does not respond within
an adaptive time-out period. The exception to this pol-
icy is if the local resolver is deemed dead, in which case
all requests are immediately forwarded to a peer. In ei-

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 107

ther case, CoDNS contacts successive peers only when
the previous peers fail to respond in an exponentially-
increasing timeout period. Peer selection in CoDNS is
performed from a set of nearby nodes using the Highest
Random Weight (HRW) hashing scheme [25][19], in or-
der to preserve cache locality.

In ConfiDNS, all locally-generated queries are imme-
diately forwarded to a specified number of peers, chosen
purely based on proximity using a heartbeat ping. The de-
cision to use proximity alone was motivated by the hope
that peers that are closer are more likely to be in the same
CDN region. Additional queries are sent only when the
agreement policy has not been met within a give timeout.
As with CoDNS, queries that are received from remote
nodes are not re-forwarded, both to prevent forwarding
loops, and to limit the damage that any compromised peer
can cause.

In keeping with the desire to prevent any pollution from
spreading within ConfiDNS, only locally-resolved lookup
results are stored for keeping history and satisfying query
requests. Both locally-generated and remote queries can
be satisfied from the cache, but only locally-generated re-
sults are entered into the cache to avoid pollution.

ConfiDNS uses a configuration file that specifies do-
main name suffixes and policies, so that policies can be
customized as needed. Possible policies include the first
response, agreement of N out of M peers, and histor-
ical agreement. Multiple policy lines can be provided
with different start times, so that one can opt for differ-
ent decisions if a previous policy is taking too long to
satisfy. Canonical names and IP addresses can also be
specified, allowing the whitelisting of any Akamai-served
name, or just Akamai-served names from a given set of
IP addresses. ConfiDNS is responsible for determining
when the specified lookup policy has been satisfied. If no
agreement is reached between the set of remote peers, the
ConfiDNS agent sends a failure response to the client, but
does not cache the result. We have thought of having the
failure response direct the client to a locally-configured
Web server that can explain why the lookup failed (us-
ing out-of-band information), but have not implemented
this approach. The benefit of this scheme is that the user
would then be able to see why a given policy could not
be satisfied, and could then choose a different action, in-
cluding possibly choosing a new policy or reporting any
anomaly to a system administrator.

6 Evaluation
In this section, we evaluate a number of ConfiDNS poli-
cies, first examining policies that relate only to agreement,
and then combining agreement and history. Our primary
focus in this evaluation will be coverage (applicability)
and latency – we choose policies that are designed to have
reasonable network overheads, so our initial analysis will
focus on how many domains and how many sites bene-

fit from the various types of security the different policies
provide. Given the observations in CoDNS about trading
latency for network overhead, we believe that all of these
policies can be tuned as required.

We evaluate four agreement policies for ConfiDNS, re-
quiring agreement among varying numbers of peers from
various maximum peer-set sizes. In one sample policy,
we require that the set of agreeing peers include the local
DNS resolver. In the rest, the local DNS is just one of
several peers that may participate in the agreement pro-
cess. Each peer consists of a single node at any particu-
lar PlanetLab site that possesses a locally managed (non-
shared) DNS resolver. In each case, we place a restric-
tion on the number of peers that can be queried in order
to reach agreement. Peers are ranked using their round-
trip times, and we choose the set of peer nodes with the
lowest RTTs. We use this ranking method to choose our
peer sites both for the obvious reason, to minimize query
response time, but also to reduce spurious results being re-
turned for multi-region address mappings. For example,
if we require five peer agreement on a response to a DNS
query without a locality restriction on peering, nearly ev-
ery domain name can meet the agreement requirement so
long as we choose a reasonably well localized set of peers.
These peers are not necessarily within our own region, in-
deed they may be anywhere in the globe. Directing all
traffic to that potentially far flung region is unlikely to be a
desirable property, both from the point of view of the end-
user, who may see a degradation in service performance at
a particular host, and also from the point of view of a ser-
vice operator, who will find DNS-based load-balancing to
be less effective with potentially many users circumvent-
ing the redirection.

All policies are evaluated at every site, and per-site av-
erage latencies are reported in Figures 9– 14. The baseline
policy, using only the local DNS resolver, suffers from
the problem of retries that we described in Section 4.2.
Likewise, the policy of requiring that at least one other
site (out of the five closest peers) agree with the local re-
solver shows similar performance because the local DNS
response time is the bottleneck. A simplified form of the
CoDNS policy is shown in Figure 11, and takes the first
response of the local resolver and the three nearest peers.
The dispatch of queries to the peer sites are staggered us-
ing the same delay values that CoDNS uses in deploy-
ment. This policy (as does CoDNS) shows a significant
response time improvement over the local DNS resolver,
precisely because we do not have to wait for the local re-
solver’s response when it is slow.

The more aggressive agreement policies for ConfiDNS
require 3 of the 10 closest sites agreeing (Figure 12), 5
sites out of 20 agreeing (Figure 13), or 7 sites out of 30
agreeing (Figure 14). Though we are primarily concerned
with the level of agreement possible, we stagger the dis-

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association108

0 50 100 150
0

2000

4000

6000

8000

Sites Sorted by Local DNS Lookup Time

Av
er

ag
e

Re
sp

on
se

Ti
m

e
(m

s)

Figure 9: Local DNS resolver only.
Note 8000ms Y axis

0 50 100 150
0

2000

4000

6000

8000

Sites Sorted by Local DNS Lookup Time

Av
er

ag
e

Re
sp

on
se

Ti
m

e
(m

s)

Figure 10: Local + 1 site from 5
peers. Note 8000ms Y axis

0 50 100 150
0

200

400

600

800

1000

Sites Sorted by Local DNS Lookup Time

Av
er

ag
e

Re
sp

on
se

Ti
m

e
(m

s)

Figure 11: CoDNS

0 50 100 150
0

200

400

600

800

1000

Sites Sorted by Local DNS Lookup Time

Av
er

ag
e

Re
sp

on
se

Ti
m

e
(m

s)

Figure 12: 3 sites from 10 peers

0 50 100 150
0

200

400

600

800

1000

Sites Sorted by Local DNS Lookup Time

Av
er

ag
e

Re
sp

on
se

Ti
m

e
(m

s)

Figure 13: 5 sites from 20 peers

0 50 100 150
0

200

400

600

800

1000

Sites Sorted by Local DNS Lookup Time

Av
er

ag
e

Re
sp

on
se

Ti
m

e
(m

s)

Figure 14: 7 sites from 30 peers

patch of queries in these policies at the rate of 1000ms
every 10 lookups for fairness. A practical, low-overhead
policy of taking either the local DNS resolver and one
peer, or 3 other peers, is not shown because its latency
characteristics are identical to Figure 12.

To evaluate our sample implementation of ConfiDNS
we once again sampled traffic from CoDNS, and replayed
a previous day of CoDNS lookups using the same request
timing as in the original trace, but with the previous days
names reduced to a single unique lookup per name. This
resulted in approximately 20,000 unique names resolved
at a frequency determined by the original pattern of traffic.
Figure 15 shows the per-site average response time, com-
pared to the same trace resolved at the same sites using
CoDNS. We can see that the actual performance is similar
to that predicted from our trace-based analysis.

The most important latency observation for these more
secure policies is that they perform much better than local
DNS resolvers, and are in fact generally better than Co-
DNS. The 3-agreement policy performs surprisingly well
compared to CoDNS, with an average latency almost half
of CoDNS’s. This is partly due to the fact that CoDNS
initially waits 200ms before dispatching peer queries (on
nodes with healthy local resolvers) while ConfiDNS dis-
patches these queries immediately. The 5-agreement pol-
icy performs roughly 25% worse than 3-agreement across
all sites, but is still better than CoDNS. The 7-agreement
policy performs another 60% worse in general, but is oth-
erwise comparable in latency to CoDNS. These results
show that the ConfiDNS policies can produce good laten-

0 50 100 150 200
0

200

400

600

800

1000 CoDNS
ConfiDNS

Sites Sorted by Response Time

Av
er

ag
eR

es
po

ns
eT

im
e(

ms
)

Figure 15: ConfiDNS implementation 3 sites from 10
peers vs. CoDNS

cies, even for relatively high levels of agreement. If the
accompanying network overheads are unacceptable, then
the queries to the peers can be staggered even more so that
network overhead is reduced at the cost of some latency.

Since ConfiDNS query latency is clearly improved over
non-cooperative schemes, the other concern is what frac-
tion of domain names can be satisfied using each of the
policies, where satisfiability refers to the ability of a par-
ticular client to resolve a name with the given policy set-
ting. Since the agreement policies are tied to how multi-
region domains behave, the satisfiability concerns are re-
lated to the location of the site, the distance to nearby
peers, and the granularity of CDN redirection processes

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 109

0 50 100 150
0

0.5

1

1.5

2

2.5

Sites Sorted by Resolution Failures

%
Un

sa
tis

fie
dH

os
tna

me
s 1 peer / 5 + Local

7 peer / 30
5 peer / 20
3 peer / 10

Figure 16: Percentage of names that cannot be satisfied
at each site given the particular agreement policy. Data is
sorted on a per-policy basis for ease of viewing.

0 50 100 150
0

1

2

3

4

Sites Sorted by Resolution Failures

%
Un

sa
tis

fie
dH

os
tna

me
s

Figure 17: Percentage of names that cannot be satisfied at
each site by our ConfiDNS implementation given a 3 peer
agreement policy.

in the local area. Rather than reducing these numbers to
averages, we present the percentage of domain names that
each policy fails to satisfy at each site. This data is shown
in Figure 16 for the trace-based analysis, and in Figure 17
for the live implementation on a 3-agreement policy using
10 peers. Again, the live implementation agrees closely
with our trace-based analysis.

In general, we see that only about 1% of the domains
fail to be satisfied under the various agreement policies,
and at one-third of the sites, the rate is even lower, in the
range of 0.3%. These results are in-line with what we
had observed about the number of regions used by names
that had more than one region. Despite multi-regioned
names accounting for 5% of the trace, the fact that most
of these names have fewer than 10 regions makes them
amenable to our agreement policies. The names that are
not amenable are the cause of the unsatisfiability rates ob-
served. The plateaus in these graphs are worth mentioning
– the lower plateau occurs because of CDN nodes out-

Days IP is Stable
none 2-3 7 15 30

local DNS only 1 2 3 3 4
3 peers 2 3 3 4 4

local DNS + 1 3 3 4 4 5
5 peers 3 4 4 5 5
7 peers 4 4 5 5 6

Table 3: For ease of analysis, we linearize and collapse
the range of protection policies in to single value labels, as
shown above. Higher numbers indicate better protection
than lower numbers.

side of the Unites States and Europe. In these areas, the
smaller ISPs may not have enough bandwidth for CDN
companies to place nodes inside their networks. As a re-
sult, it appears that the CDN nodes are in regional net-
works, and are used by many ISPs, leading to higher
agreement rates than within the US and Europe. The other
interesting result worth discussing is why the weaker pol-
icy of “local DNS + 1 peer” performs poorly – it dis-
patches queries to only 5 peers, whereas the 3-agreement
tries 10 peers, thus creating greater potential for success-
ful agreement. Additionally, forcing the peers to agree
with the local DNS is more restrictive.

6.1 Putting It All Together
We can now combine the policy agreement data and the
rate-of-change monitoring data to determine the spectrum
of protection policies that are possible, and how many
hostnames can be satisfied with each. Rather than try to
combine the aggregated data we have gathered, we per-
form the analysis for each hostname on each domain. We
have two dimensions, agreement and history, so to sim-
plify the analysis, we linearize the range of possibilities,
as shown in Table 3. The process is assigning values to
policies is subjective, but our main goal was to give an
idea of the strength of combinations, with higher numbers
indicating better protection. To get a sense of how often
the policies are satisfied, the per-site breakdown for each
label is shown in Figure 18.

The average breakdown of labels across sites is shown
in Table 4. We can see that the percentage of hostnames
that can only be satisfied by label 1, the weakest secu-
rity policy, averages 0.18%. As label 1 is equivalent to
local resolver lookup with no query history, this result in-
dicates that ConfiDNS improves the security of 99.82% of
queries. Even if we pick a stronger security requirement,
such as label 4, which indicates seven peers agreeing, or
30 days of stability, or some intermediate combinations,
ConfiDNS is able to satisfy 99.64% (the sum of labels 4 -
6) of the queries. Even the strongest policy, with 7 peers
agreeing and the hostname resolution being stable for 30

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association110

0 50 100 150
85

90

95

100

PlanetLab Nodes

%
Sa

tis
fia

ble
Ho

stn
am

es

Figure 18: Breakdown of linearized policy labels by site.
The bottom bar is linearized label 6, and the top bar
(white) is label 1. Note: Y axis truncated to show detail

days, still works for over 92% of queries. As previously
shown, this extra security does not come at a high cost –
latency is better than local DNS alone, and is comparable
to CoDNS (which has much weaker security than local
DNS only).

7 Related Work
The idea of using some form of replication to achieve
fault-tolerance is older than the authors of this pa-
per. In the OS community, this approach has re-
cently seen a revival of interest, especially since protect-
ing geographically-distributed systems against Byzantine
failures has become a focus of concern. Examples of such
include performance-conscious Byzantine fault tolerance
for NFS [8], including Byzantine agreement for quorum
systems [17], and scaling cooperative services when fac-
ing Byzantine and selfish users [2]. These techniques have
also been proposed to secure DNS [1, 27], when used in
conjunction with DNSSEC.

These approaches provide strong protection, at the cost
of relatively high requirements, such as having heteroge-
neous systems and components. In practice, for widely-
deployed services such as DNS, the number of differ-
ent configurations (including different components) is low
enough that Byzantine requirements may be difficult to
meet with the current infrastructure [13].

The research community has recently renewed its fo-
cus on improving server-side infrastructure. Cox et al. in-
vestigate the possibility of transforming DNS into a peer-
to-peer system [9] using a distributed hash table [24].
This replaces the hierarchical DNS name resolving pro-
cess with a flat peer-to-peer query style in pursuit of load
balancing and robustness. With this design, misconfig-
urations from administrator mistakes can be eliminated
and the traffic bottleneck on the root servers is removed
so that load is distributed over the entities joining the sys-
tem. In CoDoNS, Ramasubramanian et al. improve the

Policy label Mean % Std Dev
1 0.18 0.17
2 0.07 0.12
3 0.12 0.13
4 2.59 0.54
5 4.49 2.08
6 92.56 2.16

Table 4: Mean percentage of hostnames satisfied by a par-
ticular policy label with corresponding Std Dev. Most
lookups can be satisfied by one of the stronger policies
(4,5,6) instead of the weaker ones (1,2,3).

latency performance of this approach by using proactive
replication of DNS records [22]. They exploit the Zipf-
like distribution of domain names in web browsing [7]
to reduce the replicating overhead while providing O(1)
proximity [21]. Our previous work on this subject in-
cludes a workshop paper [15] where we sketch the ideas
presented here. We expand this work with an in-depth
analysis of our global DNS trace including a discussion
of name-popularity its caching implications, as well as an
investigation of query response-times. Finally, we outline
an implementation that is a base for our future work.

8 Conclusion
Cooperative DNS resolvers have proven their utility in
improving reliability and performance when compared to
local DNS resolvers, but at the cost of weakened secu-
rity. In this work, we show that by using peer agree-
ment and storing some past history, our new coopera-
tive resolver ConfiDNS, can provide better security than
both traditional DNS resolvers and previous cooperative
approaches, for the majority of domain names. Using
a month-long world-wide survey of DNS behavior on a
realistic global DNS trace, we are able to determine the
applicability of various agreement policies and quantify
their effect on latency. This paper also provides some raw
data about global DNS behavior that should be useful to
the broader research community. In addition to providing
some insight into DNS behavior at scale, we also demon-
strate that new uses of DNS by the increasingly popular
vanity sites is qualitatively changing the patterns of DNS
namespace usage. This study also provides us with infor-
mation on the real usage of DNS mappings at a variety of
domains ranging from small, singly-hosted sites to sophis-
ticated, replicated data centers with DNS redirection, and
finally to commercial third-party content distribution net-
works. In all cases, we find that it is possible to leverage
scale, history, or both, and provide a much more secure
result than local DNS alone.

These benefits are obtained without changing any

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 111

server-side DNS infrastructure, and with a tolerable and
tunable network overhead. As a result of our design,
ConfiDNS is incrementally deployable, requiring only a
minimal agent running on either client machines or on
client-side resolvers. Performance and network overhead
can be improved by adding a small amount of caching to
ConfiDNS, and we quantify the cost impact of a reason-
able caching scheme. Finally, our approach is compatible
with server-side approaches to improving DNS security
such as DNSSEC, and together can provide reliability and
performance benefits in addition to improved security.

Acknowledgments
We would like to thank our shepherd, David Presotto, and
the anonymous reviewers for their useful feedback on the
paper. This work was supported in part by NSF Grants
ANI-0335214, CNS-0439842, and CNS-0520053.

References
[1] S. Ahmed. A scalable Byzantine fault tolerant secure do-

main name system, 2001. Massachusetts Institute of Tech-
nology Technical Report MIT-LCS-TR-849.

[2] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin,
and C. Porth. Bar fault tolerance for cooperative services.
In SOSP ’05: Proceedings of the twentieth ACM sympo-
sium on Operating systems principles, Brighton, United
Kingdom, October 2005.

[3] Akamai. Content Delivery Network.
http://www.akamai.com/.

[4] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.
Dns security introduction and requirements. Request for
Comments 4034, March 2005.

[5] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.
Resource records for the dns security extensions. Request
for Comments 4035, March 2005.

[6] R. Arends, R. Austein, M.Larson, D. Massey, and S. Rose.
Protocol modifications for the dns security extensions. Re-
quest for Comments 4033, March 2005.

[7] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.
Web Caching and Zipf-like Distributions: Evidence and
Implications. In In Proceedings of IEEE INFOCOM, New
York, NY, March 1999.

[8] M. Castro and B. Liskov. Practical byzantine fault tol-
erance. In In Proceedings of the Symposium on Operat-
ing Systems Design and Implementation (OSDI), New Or-
leans, LA, February 1999.

[9] R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS
Using Chord. In Proceedings of the 1st International
Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[10] H. Ballani and P. Francis. A Simple Approach to DNS DoS
Mitigation. In Proceedings of the 5th ACM Workshop on
Hot Topics in Networks (HotNets ’06), Irvine, CA, Novem-
ber 2006.

[11] Internet Systems Consortium (ISC). ISC BIND.
http://www.isc.org/.

[12] H. B. Jaeyeon Jung, Emil Sit and R. Morris. DNS Perfor-
mance and the Effectiveness of Caching. In Proceedings

of the ACM SIGCOMM Internet Measurement Workshop
’01, San Francisco, California, November 2001.

[13] B. Knowles. Domain Name Server Comparison: BIND
8 vs. BIND 9 vs. djbdns vs. ??? In Proceedings of
the USENIX LISA Conference 2002 - Technical Program,
Berkeley, CA, November 2002.

[14] B. Krishnamurthy, C. Wills, and Y. Zhang. On the use and
performance of content distribution networks. In Proceed-
ings of SIGCOMM Internet Measurement Workshop, San
Francisco, CA, November 2001.

[15] L. Poole and V. S. Pai. ConfiDNS: Leveraging Scale
and History to Improve DNS Security. In Proceedings of
the Third Workshop in Real, Large, Distributed Systems
(WORLDS ’06), Seattle, WA, November 2006.

[16] A. Lioy, F. Maino, M. Marian, and D. Mazzocchi. Dns
security. In Proceedings of the TERENA Networking Con-
ference, Lisbon, Portugal, May 2000.

[17] D. Malkhi and M. Reiter. Byzantine quorum systems. In
Proceedings of the 29th ACM Symposium on Theory of
Computing (STOC), El Paso, TX, May 1997.

[18] P. Mockapetris and K. Dunlap. Development of the Do-
main Name System. In In Proceedings of the ACM SIG-
COMM Conference, Stanford, CA, August 1988.

[19] K. Park, V. S. Pai, L. Peterson, and Z. Wang. CoDNS: Im-
proving DNS Performance and Reliability via Cooperative
Lookups. In Proceedings of the Sixth Symposium on Op-
erating Systems Design and Implementation (OSDI), San
Franscisco, CA, December 2004.

[20] PlanetLab. An open testbed for developing, deploying
and accessing planetary-scale services, September 2002.
http://www.planet-lab.org/.

[21] V. Ramasubramanian and E. G. Sirer. Beehive: O(1)
Lookup Performance for Power-Law Query Distributions
in Peer-to-Peer Overlays. In Proceedings of the 1st Sym-
posium on Networked Systems Design and Implementation
(NSDI), San Francisco, CA, March 2004.

[22] V. Ramasubramanian and E. G. Sirer. The Design and Im-
plementation of a Next Generation Name Service for the
Internet. In In Proceedings of the ACM SIGCOMM Con-
ference, Portland, OR, August 2004.

[23] A. Shaikh, R. Tewari, and M. Agrawal. On the effective-
ness of dns-based server selection. In Proceedings of IN-
FOCOM 2001. Twentieth Annual Joint Conference of the
IEEE Computer and Communications Societies, Anchor-
age, AK, April 2001.

[24] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Bal-
akrishnan. Chord: A Scalable Peer-to-peer Lookup Ser-
vice for Internet Applications. In Proceedings of ACM
SIGCOMM, San Diego, California, August 2001.

[25] D. Thaler and C. Ravishankar. Using Name-based Map-
pings to Increase Hit Rates. In IEEE/ACM Transactions
on Networking, volume 6, 1, 1998.

[26] L. Wang, K. Park, R. Pang, V. Pai, and L. Peterson. Re-
liability and Security in the CoDeeN Content Distribution
Network. In In Proceedings of the USENIX Annual Tech-
nical Conference, Boston, MA, June 2004.

[27] Z. Yang. Using a byzantine fault tolerant algorithm to pro-
vide a secure dns, June 1999. Massachusetts Institute of
Technology Masters Thesis.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association112

