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Abstract
The performance of receive side TCP processing has

traditionally been dominated by the cost of the ‘per-byte’
operations, such as data copying and checksumming. We
show that architectural trends in modern processors, in
particular aggressive prefetching, have resulted in a fun-
damental shift in the relative overheads of per-byte and
per-packet operations in TCP receive processing, making
per-packet operations the dominant source of overhead.

Motivated by this architectural trend, we present two
optimizations, receive aggregation and acknowledgment
offload, that improve the receive side TCP performance
by reducing the number of packets that need to be pro-
cessed by the TCP/IP stack. Our optimizations are sim-
ilar in spirit to the use of TCP Segment Offload (TSO)
for improving transmit side performance, but without
need for hardware support. With these optimizations, we
demonstrate performance improvements of 45-67% for
receive processing in native Linux, and of 86% for re-
ceive processing in a Linux guest operating system run-
ning on Xen.

1 Introduction

There is a large body of research on techniques to im-
prove the performance of the TCP stack. Although a
number of techniques have been proposed for improv-
ing the performance of the transmit side in TCP, such as
zero-copy transmit and segmentation offload, there has
been relatively little work on improving the receive side
performance. New applications, such as storage area net-
works, make receive performance a possible concern. In
this paper we analyze the receive side performance of
TCP on modern machine architectures, and we present
new mechanisms to improve it.

Conventionally, the dominant source of overhead in
TCP receive processing has been the cost of the ‘per-
byte’ operations, those operations that touch all bytes

of input data, such as data copying and checksumming
[3, 9, 6, 12]. In contrast, the ‘per-packet’ operations,
that are proportional to the number of packets processed,
such as header processing and buffer management, were
shown to be relatively cheap. Thus, unlike in TCP trans-
mit processing, in TCP receive processing, there has
been little emphasis on reducing the per-packet over-
heads.

The high cost of the per-byte operations, at least in
older architectures, resulted in part from the fact that
the network interface card (NIC) places newly arrived
packets in main memory. All operations that touch the
data of the packet thus incur compulsory cache misses.
Modern processors, however, use aggressive prefetching
to reduce the cost of sequential main memory access.
Prefetching has a significant impact on the relative over-
heads of the per-byte and per-packet operations of TCP
receive processing. Since the per-byte operations, such
as data copying and checksumming, access the packet
data in a sequential manner, their cost is much reduced
by prefetching. In contrast, the per-packet operations,
which access main memory in a non-sequential, random
access pattern, do not benefit much. Thus, as the per-byte
operations become cheaper, the per-packet overheads of
receive side TCP processing become the dominant per-
formance component.

Motivated by these architectural trends in modern pro-
cessors, we present two optimizations to the TCP re-
ceive stack that focus on reducing the per-packet over-
heads. Our optimizations are similar in spirit to the TCP
Segment Offload (TSO) optimization used for improv-
ing TCP transmit side performance. Unlike TSO, how-
ever, which requires support from the NIC, our optimiza-
tions can be implemented completely in software, and
are therefore independent of the NIC hardware.

The first optimization is to perform packet ‘aggrega-
tion’: Multiple incoming network packets for the same
TCP connection are aggregated into a single large packet,
before being processed by the TCP stack. The cost of
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packet aggregation is much lower than the gain achieved
as a result of the TCP stack having to process fewer pack-
ets. TCP header processing is still done on a per-packet
basis, because it is necessary for aggregation, but this is
only a small part of the per-packet overhead. The more
expensive components, in particular the buffer manage-
ment, are executed once per aggregated packet rather
than once per network packet, hence leading to a con-
siderable overall reduction in cost.

In addition to aggregating received packets, we present
a second optimization, TCP acknowledgment offload:
Instead of generating a sequence of acknowledgment
packets, the TCP stack instead generates a single TCP
acknowledgement packet template, which is then turned
into multiple TCP acknowledgment packets below the
TCP stack. The gain in performance comes from the re-
duction in the number of acknowledgment packets to the
processed by the transmit side of the TCP stack.

While the two optimizations are logically indepen-
dent, receive aggregation creates the necessary condi-
tion for TCP acknowledgement offload to be effective,
namely the need to send in short succession a substantial
number of near-identical TCP acknowledgment packets.

We have implemented these optimizations for two dif-
ferent systems, a native Linux operating system, and a
Linux guest operating system running on the Xen virtual
machine monitor. We demonstrate significant perfor-
mance gains for data-intensive TCP receive workloads.
We achieve performance improvement of 45-67% in na-
tive Linux, and 86% in a Linux guest operating system
running on Xen. Our optimizations also scale well with
the number of concurrent receive connections, perform-
ing at least 40% better than the baseline system. Our op-
timizations have no significant impact on latency-critical
workloads, or on workloads with small receive message
sizes.

The organization of the rest of the paper is as follows.
In section 2, we analyze the receive side processing over-
head of TCP in native Linux and in a Linux guest oper-
ating system running on Xen, and show the significance
of per-packet overheads in both settings. We present our
optimizations to the TCP receive stack in sections 3 and
4 We evaluate our optimized TCP stack in section 5, and
discuss related work in section 6. We conclude in section
7.

2 Background

We start by studying the impact of aggressive prefetching
used by modern processors on the relative overheads of
per-packet and per-byte operations in TCP receive pro-
cessing. We profile the execution of the TCP receive
stack in three different systems, a Linux uniprocessor
system, a Linux SMP system, and a Linux guest operat-

ing system running on the Xen virtual machine monitor
(VMM). We show that in all three systems the per-packet
overheads have become the dominant performance com-
ponent.

We next analyze the per-packet overheads on the re-
ceive path in more detail. We show that TCP/IP header
processing is only a small fraction of the overall per-
packet overhead. The bulk of the per-packet overhead
stems from other operations such as buffer management.
This observation is significant because TCP/IP header
processing is the only component of the per-packet over-
head that must, by necessity, be executed for each incom-
ing network packet. The other operations are currently
implemented on a per-packet basis, but need not be. The
bulk of the per-packet overhead can therefore be elimi-
nated by aggregating network packets before they incur
the expensive operations in the TCP stack.

In the experiments in this section, we focus on ana-
lyzing bulk data receive workloads, in which all network
packets received are of MTU size (1500 bytes for Ether-
net). We use a simple netperf [1] like microbenchmark,
which receives data continuously over a single TCP con-
nection at Gigabit rate. Profiling provides us with the
breakdown of the execution time across the different sub-
systems and routines.

The experiments are run on a 3.80 GHz Intel Xeon
dual-core machine, with an Intel e1000 Gigabit NIC.
The native Linux kernel version used is Linux 2.6.16.34,
and for the virtual machine experiments we use Linux
2.6.16.38 running on Xen-3.0.4. Profile statistics are col-
lected and reported using the OProfile [2] tool.

2.1 Impact of Prefetching

To counter the growing gap between processor and
main memory speeds, modern processors use aggressive
prefetching. The impact of this architectural trend on
TCP receive processing is that per-packet overheads be-
come dominant, while the per-byte overheads become
less important. This can be seen from figure 1, which
shows the breakdown of TCP receive processing over-
head in a native Linux system, as a function of the extent
of prefetching enabled in the CPU.

The total processing overhead is divided into three cat-
egories: the per-byte data copying routines, per-byte,
the per-packet routines, per-packet, and other mis-
cellaneous routines, misc. The misc routines are those
that are not really related to receive processing, or cannot
be classified as either per-packet or per-byte, for example
scheduling routines. The per-packet routines include the
device driver routines along with the TCP stack opera-
tions.

The three groups of histograms in figure 1 show the
breakdown of the receive processing overhead for dif-
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ferent CPU configurations: The None configuration
uses no prefetching, Partial uses adjacent cache-line
prefetching, and Full uses adjacent cache-line prefetch-
ing and stride-based prefetching.
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Figure 1: Impact of Prefetching on the Relative Cost of
Per-Byte and Per-Packet Operations in TCP Receive Pro-
cessing on a Uniprocessor as a Function of the Degree of
Prefetching

As the CPU is configured to prefetch more aggres-
sively, the contribution of the per-byte operations to the
overall overhead declines from 52% to 14%. The propor-
tion of the per-packet operations in the overall overhead
increases correspondingly from 37% to nearly 70%, and
becomes more important than the per-byte overheads.

The increase in importance of the per-packet costs is a
consequence of the architectural evolution of micropro-
cessors to cope with the increasing gap between memory
and CPU speeds. This evolution is present across differ-
ent architectures and operating systems, and is likely to
further increase with future processors.

Figure 2 shows the relative overhead of per-packet and
per-byte operations for three different systems, all with
aggressive prefetching enabled: a Linux uniprocessor
system (UP), a Linux SMP system (SMP), and a Linux
guest operating system running on the Xen VMM (Xen).
As can be clearly seen, in all three systems, per-packet
overheads far outweigh the per-byte overheads.

2.2 Per-Packet Overhead

We now look in more detail into the per-packet over-
heads of receive processing. The key objective here is
to distinguish between the operations that are a neces-
sary part of TCP receive processing and have to be done
on a per-packet basis, such as TCP/IP header processing,
and operations that are not central to receive processing
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Figure 2: Per-byte vs. Per-packet Overhead in Unipro-
cessor, Multiprocessor and Virtualized Systems (with
Full Prefetching Enabled)

or do not need to be executed on a per-packet basis, al-
though for historical or architectural reasons they are im-
plemented that way.

Figure 3 shows the breakdown of the TCP receive
processing overhead into different kernel categories on
Linux version 2.6.26.34, running on a uniprocessor 3
Ghz Xeon, with full prefetching enabled. The Y axis
shows the number of busy CPU cycles per packet spent
in the different routines. The X axis shows the different
categories of overhead during receive processing.

The per-byte routines correspond to the per-byte
operations in the receive path. The misc routines are
those which are unrelated to receive processing, and are
not strictly per-packet or per-byte. The per-packet over-
heads are split into five subgroups, rx, tx, buffer,
non-proto, and driver, defined as follows:

1. rx: TCP/IP protocol processing routines on the re-
ceive path of the TCP stack.

2. tx: TCP/IP protocol processing routines on the
transmit path of the TCP stack for transmission of
ACKs.

3. buffer: Buffer management routines for network
packets, ACK packets, and sk buffs, the buffer
metadata structure used in Linux.

4. non-proto: Other kernel routines which operate
on per-packet basis, but are not part of the core
TCP/IP protocol processing. Some of these are
Linux-specific, such as routines for packet move-
ment between softirq and interrupt context,
whereas others are more generic, such as the packet
filtering and network bridging routines.
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5. driver: Device driver routines and routines running
in interrupt mode.
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Figure 3: Breakdown of Receive Processing Overheads
in a Uniprocessor system

The overhead of the device driver routines, driver,
is roughly 21%. This overhead is per-packet, but that
cannot be changed without modifications to the NIC.
Thus, we henceforth distinguish between the driver
routines and the other per-packet routines in the network
stack, namely rx, tx, buffer and non-proto. Even
excluding the driver, the overhead of these per-packet
routines is 46%, which is much higher than the per-byte
overhead of copying, 17%.

The overhead of the TCP/IP protocol processing it-
self, consisting of rx and tx, is only around 21% of the
total overhead. The larger part of the per-packet over-
head, around 25%, comes from the buffer management
(buffer) and non-protocol processing related routines
(non-proto) involved in handling of packets within
the TCP/IP stack. Detailed profiling shows that most of
the buffer management overhead is incurred in the mem-
ory management of sk buffs, and not in the manage-
ment of the network packet buffer itself. In conclusion,
the bulk of the per-packet overhead in the network stack
is incurred in routines which are not related to the proto-
col processing.

2.3 SMP Overheads

We now look in more detail at the per-packet overheads
in an SMP environment. The system used is a Linux
2.6.16.34 SMP kernel running on dual-core Intel 3.0
GHz Xeon machine. Figure 4 shows the breakdown of
the receive processing overheads in the SMP environ-
ment. Since the profile of the processing overhead on the

SMP is very similar to that observed on the uniproces-
sor system, we present both profiles in the same figure to
illustrate the impact of multiprocessing on the different
components of the TCP stack.
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Figure 4: Breakdown of Receive Processing Overheads
in an SMP vs. a UP environment

First, as for the uniprocessor system, the overhead
of the per-packet routines (rx, tx, buffer and
non-proto) is much higher (48%) than the per-byte
copy overhead (16%). Second, in going from the unipro-
cessor to the SMP configuration, the per-byte copying
overheads remain roughly the same, but there is a non-
trivial increase in the overhead of some per-packet oper-
ations. In particular, in the SMP configuration the TCP
receive routines (rx) incur 62%, and the TCP transmit
routines (tx) incur 40% more overhead compared to the
uniprocessor configuration. The buffer management rou-
tines, buffer, do not show significant difference in the
two configurations.

The main reason for the increase in the overhead of
the per-packet network stack routines is that in an SMP
environment the TCP stack uses locking primitives to en-
sure safe concurrent execution. On the x86 architec-
ture, locking is implemented through the use of lock-
prefixed atomic read-modify-write instructions, which
are known to suffer from poor performance on the Intel
x86 CPUs.

In contrast, the per-byte data copy operations in the
TCP stack can be implemented in a lock-free manner,
and thus do not suffer from SMP scaling overheads. The
buffer management routines do not suffer synchroniza-
tion overheads because they are implemented in a mostly
lock-free manner in Linux.

Thus, the locking and synchronization overheads of
the TCP stack in an SMP environment are primarily in-
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curred in the per-packet operations, and they grow in pro-
portion to the number of packets that the TCP stack has
to process. In conclusion, here again, mechanisms that
reduce the number of packets handled by the TCP stack
reduce these overheads.

2.4 Virtualization Overheads

We now analyze the receive processing overheads of the
TCP stack in a virtual machine environment. In a virtual
machine environment, device virtualization is an impor-
tant part of the network I/O stack. We therefore analyze
the extended network stack, including the virtualization
stack.

Figure 5 shows a high level picture of the network vir-
tualization architecture in Xen. Guest operating systems
(guest domains in Xen) make use of a virtual network
interface for network I/O, and do not access the physical
network interface (NIC) directly. The Driver domain is
a privileged domain that manages the physical network
interface and multiplexes access to it among the guest
domains. The virtual interface of the guest domain is
connected to the physical NIC through a pair of backend-
frontend paravirtualized drivers, and a network bridge in
the driver domain. A more detailed description of the
Xen networking architecture can be found in [7].

NIC Driver

Physical NIC

Bridge

Backend Interface Virtual Interface

Driver Domain Guest Domain

I/O Channel

Xen VMM

Figure 5: Xen I/O Architecture

Figure 6 shows the breakdown of the receive process-
ing overhead for a Linux 2.6.16.38 guest domain running
on Xen 3.0.4. The processing overheads in the guest do-
main, driver domain and Xen are split into the following
categories:

1. per-byte: Data copy routines. This includes the two
data copies on the receive path: the first from the
driver domain into the guest domain, and second
copy from the guest kernel into the guest applica-
tion.

2. non-proto: This includes the bridge and netfil-
ter routines in the driver domain, and similar non-
protocol processing related routines in the guest do-
main. The bridge transfers packets received from
the physical NIC to the backend interface. The
overhead in this category is essentially a per-packet
overhead.

3. netback: The netback driver initializes transfer of
packets from the driver to the guest domain. Its
overhead is mostly per-packet, and is proportional
to the number of packet fragments it transfers.

4. netfront: The netfront driver receives packets from
the driver domain and passes it onto the TCP stack.
Its overhead is similar to the netback driver, and is
proportional to the number of packet fragments it
accepts.

5. tcp rx and tx: The transmit and receive TCP rou-
tines in the guest domain. These are per-packet
overheads.

6. buffer: Buffer management routines, in both the
driver domain and the guest domain. This is per-
packet overhead.

7. driver: Device driver running in the Driver domain.
This is a per-packet overhead.

8. xen: Xen manages domain scheduling, inter-
domain interrupts, validation of packet transfer
rights, etc. Its overhead cannot be classified strictly
as either per-packet or per-byte.

9. misc: Other routines. These cannot be classified as
either per-packet or per-byte.

The overall overhead of the per-packet routines
in the receive path, comprising of the non-proto,
netback, netfront, tcp rx, tcp tx and
buffer routines, adds up to roughly 56% of the total
overhead, and is significantly higher than the per-byte
copy overhead, 14%. This is inspite of the fact that
there are two data copies involved, one from the driver
domain to the guest domain, and the second from the
guest kernel to the guest application.

The major part of the per-packet overhead is incurred
in the routines of the network virtualization stack, and
only a small part of the per-packet overhead is in-
curred in the TCP protocol processing in the guest do-
main. Thus, the non-proto routines, the netback
and netfront drivers, and the buffer management
routines add up to 46% of the total overhead, whereas
TCP/IP processing incurs only 10% of the total overhead.

Thus, here also, mechanisms that reduce the number
of packets that need to be processed by the network stack
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Figure 6: Breakdown of Receive Processing Overheads
in Xen

can significantly reduce the overhead on the network vir-
tualization path of guest domains.

2.5 Summary

First, architectural trends in microprocessors have re-
sulted in a fundamental shift in the relative overheads
of sequential and non-sequential memory access. Se-
quential memory access can be optimized by prefetching,
while non-sequential access cannot. This has resulted
in a fundamental shift in the relative overheads of per-
byte and per-packet operations in TCP receive process-
ing. While previously data copying was the primary per-
formance bottleneck, in current systems the per-packet
operations in the TCP receive path are the dominant over-
head component. We have validated this trend for three
different systems.

Second, reducing the number of packets to be pro-
cessed by the TCP receive path holds promise as a so-
lution for reducing the overhead of the per-packet opera-
tions. TCP/IP processing is the only overhead that needs
to be incurred on a per-packet basis, but it is only a small
component of the total overhead. The larger components
of the overhead (system, virtualization, and SMP scal-
ing) currently are incurred on a per-packet basis, but need
not be.

We next present two optimizations to the TCP/IP stack
that exploit these observations, Receive Aggregation and
Acknowledgment Offload.

3 Receive Aggregation

The objective of Receive Aggregation is to reduce the
number of packets that the network stack has to process
on the receive path, while still ensuring that the TCP/IP
protocol processing of the packets is done correctly.

The basic idea of Receive Aggregation is that, instead
of allowing the network stack to process packets received
from the NIC directly, the packets are preprocessed and
coalesced into ‘aggregated’ TCP packets, which are then
passed on to the network stack for further processing.
Multiple ‘network’ TCP packets are aggregated into a
single ‘host’ TCP packet, thereby reducing the number
of packets that the network stack has to process.

Ideally, aggregation would be done entirely in a proxy
between the driver and the TCP stack, and without any
changes to the rest of the kernel code. For correct-
ness and performance, this complete separation cannot
be achieved, and small changes to the driver and the TCP
layer are necessary. No changes were made to the IP
layer or the layout of the kernel data structure for storing
packets, sk buff in Linux.

3.1 Which Packets are Aggregated

Receive Aggregation takes place at the entry point of the
network stack. Packet coalescing is done for network
TCP packets which arrive ”in-sequence” on the same
TCP connection. Thus, the incoming packets must have
the same source IP, destination IP, source port, and desti-
nation port fields. The packets must also be in sequence,
both by TCP sequence number and by TCP acknowledg-
ment number. Thus, the sum of the TCP sequence num-
ber of one packet and its length must be equal to the TCP
sequence number of the next packet. Also, a TCP packet
later in the aggregated sequence must have a TCP ac-
knowledgment number greater than or equal to that of a
previous packet in the sequence.

Packet aggregation is done only for valid TCP packets,
i.e., those with a valid TCP and IP checksum. We verify
only the IP checksum field of the network TCP packet
before it is used for aggregation. For the TCP check-
sum, we assume the common case that the NIC supports
checksum offloading, and has validated the TCP check-
sum. This is because verifying the TCP checksum in
software would make the aggregation expensive.

If the network card does not support receive checksum
offloading, we do not perform Receive Aggregation.

TCP packets of zero length, such as pure ACK pack-
ets, are not aggregated. This simplifies the handling of
duplicate ACKs in the TCP layer, and is discussed in sec-
tion 3.6.

Since the TCP and IP headers support a large num-
ber of option fields, it is not possible to aggregate two
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TCP packets if they contain different option fields. Also,
the aggregation function becomes quite complicated if it
has to support all possible TCP and IP options. Thus,
for simplicity, we only aggregate TCP packets whose IP
headers do not use any IP options or IP fragmentation,
and whose TCP headers use only the TCP timestamp op-
tion.

Packets which fail to match any of the conditions for
Receive Aggregation are passed unmodified to the net-
work stack. In doing so, we ensure that there is no packet
reordering between packets of the same TCP connection,
i.e., any partially aggregated packet belonging to a TCP
connection is delivered before any subsequent unaggre-
gated packet is delivered.

3.2 Aggregated Packet Structure

Once a valid set of network packets is identified for ag-
gregation, according to the conditions described above,
the aggregation function coalesces them into an aggre-
gated TCP packet for the network stack to process.

The aggregated TCP packet is created by ‘chaining’
together individual TCP packets to form the ‘fragments’
of the aggregated packet, and by rewriting the TCP/IP
header of the aggregated packet. The TCP/IP header of
the first TCP fragment in the chain retains its becomes
the header of the aggregated packet, while the subsequent
TCP fragments retain only their payload. The chaining
is done in an OS specific manner. In Linux, for instance,
chaining is done by setting the fragment pointers in the
sk buff structure to point to the payload of the TCP
fragments. Thus, there is no data copy involved in packet
aggregation.

The TCP/IP header of the aggregated packet is rewrit-
ten to reflect the packet coalescing. The IP packet length
field is set to the length of the total TCP payload (com-
prising all fragments) plus the length of the header. The
TCP sequence number field is set to the TCP sequence
number of the first TCP fragment, and the TCP acknowl-
edgment number field is set to the acknowledgment num-
ber of the last TCP fragment. The TCP advertised win-
dow size is set to the window size advertised in the last
TCP fragment. A new IP checksum is calculated for the
aggregated packet using its IP header and the new TCP
pseudo-header. The TCP checksum is not recomputed
(since this would be expensive), instead we indicate that
the packet checksum has been verified by the NIC.

The TCP timestamp in the aggregated packet is copied
from the timestamp in the last TCP fragment of the ag-
gregated packet. Theoretically, this results in the loss of
timestamp information, and may affect the precise esti-
mation of RTT values. However, in practice, since only
packets which arrive very close in time to each other are
aggregated, the timestamp values on all the TCP frag-

ments are expected to be the same, and there is no loss
of precision. We give a more rigorous argument for this
claim in section 3.6.

Finally, the aggregated TCP packet is augmented
with information about its constituent TCP fragments.
Specifically, the TCP acknowledgment number of each
TCP fragment is saved in the packet metadata structure
(sk buff, in the case of Linux). This information is
later used by the TCP layer for correct protocol process-
ing.

3.3 When Aggregation Stops

Network Packets are aggregated as they are received
from the NIC driver. The maximum number of network
TCP packets that get coalesced into an aggregated TCP
packet is called the Aggregation Limit. Once an aggre-
gated packet reaches the Aggregation Limit, it is passed
on to the network stack.

The actual number of network packets that get coa-
lesced into an aggregated packet may be smaller than the
Aggregation Limit, and depends on the network work-
load and the arrival rate of the packets. If an aggregated
packet contains less than the Aggregation Limit num-
ber of network packets, and no more network packets
are available for processing, then this semi-aggregated
packet is passed on to the network stack without further
delay. Thus, the network stack is never allowed to remain
idle while there are packets to process in the system. Re-
ceive Aggregation is thus work-conserving and does not
add to the delay of packet processing.

We expect the performance benefits of Receive Aggre-
gation to be proportional to the number of network pack-
ets coalesced into an aggregated packet. However, the
incremental performance benefits of aggregation are ex-
pected to be marginal beyond a certain number of pack-
ets. Thus, the Aggregation Limit serves as an upper
bound on the maximum number of packets to aggregate,
and should be set to a reasonable value at which most of
the benefits of aggregation are achieved. We determine a
good cut-off value for the Aggregation Limit experimen-
tally.

3.4 Modifications to the TCP layer

The aggregated TCP packet is received by the network
stack, and gets processed through the MAC and IP layers
in the same way as a regular TCP packet is processed.
However, at the TCP layer, modifications are required
in order to handle aggregated packets correctly. This is
because TCP protocol processing in the TCP layer is de-
pendent on the actual number of ‘network’ TCP packets,
and on the exact sequence of TCP acknowledgments re-
ceived. Since Receive Aggregation modifies both these
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values, changes are required to the TCP layer to do cor-
rect protocol processing for aggregated packets.

There are two specific situations for which the TCP
processing needs to be modified:

1. Congestion Control: The congestion window of a
TCP sender is updated based on the number of TCP
Acknowledgment packets received by the sender,
and not on the total number of bytes acknowledged
by the receiver. Since Receive Aggregation sets
the TCP ACK field in the aggregated packet to the
ACK field of the last TCP fragment, the conven-
tional TCP layer implementation would set the con-
gestion window differently from what is expected in
the absence of receive aggregation.

The modified TCP layer computes the congestion
window using the TCP acknowledgment numbers
of all the TCP fragments of the aggregated TCP
packet, instead of just using the final acknowl-
edgment number. As noted in section 3.1, the
acknowledgment numbers of the individual TCP
fragments are stored in the packet metadata struc-
ture (sk buff) when Receive Aggregation is per-
formed.

2. TCP Acknowledgments: The TCP protocol speci-
fies that an acknowledgment packet must be gener-
ated for every alternate full TCP segment received
by the receiver. Since Receive Aggregation coa-
lesces multiple network TCP packets into a sin-
gle aggregated packet, the conventional TCP layer
would concude that it has received only a single
TCP segment, and therefore generate the wrong
number of acknowledgment packets.

The modified TCP layer computes the correct num-
ber of acknowledgments by taking into account the
individual TCP fragments, instead of considering
the whole aggregated packet as one segment. This
information is also stored in the sk buff structure
during receive aggregation.

3.5 Implementation

Receive Aggregation is implemented at the entry point
of the network stack processing routines. For the Linux
network stack, this is the entry point of the softirq for
receive network processing.

The network card driver, which receives packets from
the NIC, is modified to enqueue the received packets
into a special producer-consumer ‘aggregation queue’.
The Receive Aggregation routine, running in softirq
context, ‘consumes’ the packets dropped into the queue
and processes them for aggregation. The ‘aggregation
queue’ is a per-CPU queue, and is implemented in a

lock-free manner. Thus, there is no locking overhead
incurred for accessing this queue concurrently between
different CPUs, or between the interrupt context and
the softirq context.

The packets dropped into the aggregation queue by
the NIC driver are ‘raw’ packets, i.e., they are not en-
capsulated in the Linux socket buffer metadata structure,
sk buff. The reason for this, as discussed in section
2.2, is that memory management of sk buffs is a sig-
nificant part of the buffer management overhead of net-
work packets. We avoid this overhead by allocating the
sk buff only for the final aggregated packet, in the Re-
ceive Aggregation routine. For Linux drivers, this also
allows us to avoid the MAC header processing of net-
work packets in the driver, which is moved to the Receive
Aggregation routine.

Packets are consumed from the aggregation queue
by the aggregation routine and are hashed into a small
lookup table, which maintains a set of partially aggre-
gated TCP packets. If the new network TCP packet
‘matches’ a previously hashed packet, i.e., it can be co-
alesced with this packet (based on the conditions de-
scribed in 3.1), then the two are aggregated. Otherwise,
the partially aggregated packet is delivered to the net-
work stack, and the new packet is saved in the lookup
table.

Packets delivered to the network stack are processed
synchronously, and thus control returns to the aggrega-
tion routine only when the network stack is idle. Thus, in
order to remain work-conserving, whenever the aggrega-
tion routine runs out of network packets to process (i.e,
the aggregation queue is empty), it immediately clears
out all partially aggregated packets in the lookup table,
and delivers them to the network stack. This ensures that
packets do not remain waiting for aggregation, while the
network stack is idle.

3.6 Correctness

Receive Aggregation is done only for a restricted set
of in-order TCP packets which the TCP layer ‘expects’
while it is in error-free mode of operation. Any TCP
packet requiring special handling by the TCP layer, off
the common path, is passed on to the stack without ag-
gregation, and thus is handled correctly by the TCP layer.
Thus, all the error-handling and special case handling of
packets in the TCP layer works correctly. We give a few
examples below:

1. Duplicate or Out-of-order packets: Since these
packets are not in correct sequence (by TCP se-
quence number), they are not aggregated and are
handled directly by the TCP layer.
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2. Selective TCP ACKs: Since TCP options other than
the timestamp option are not handled by aggrega-
tion, TCP packets with selective ACKs are passed
unmodified.

3. Duplicate ACKS: A duplicate ACK packet does not
contain data in its payload. Since pure ACKs are
never aggregated, these are handled correctly by the
TCP layer.

We now explain why using timestamps from only the
last TCP fragment in the aggregated packet does not re-
sult in lack of precision. At gigabit transmit rate, a single
TCP sender machine can transmit packets at the rate of
roughly 81,000 packets per second. The precision of the
timestamp value itself, however, is typically 10 ms (if the
system uses a 100 Hz clock), or 1 ms at best (with a 1000
HZ clock). Thus, roughly every 80 consecutive packets
transmitted by a sender are expected to have the same
timestamp to begin with. Since Receive Aggregation co-
alesces together packets which arrive very close to each
other in time, we expect these packets to already have the
same timestamp value.

4 Acknowledgment Offload

Our second optimization for reducing the per-packet
overhead of receive processing is Acknowledgment Of-
fload. Acknowledgment Offload reduces the number of
TCP ACK packets that need to be processed on the trans-
mit path of receive processing, and thus reduces the over-
all per-packet overhead.

TCP acknowledgment packets constitute a significant
part of the overhead of TCP receive processing. This
is because, in the TCP protocol, one TCP ACK packet
must be generated for every two full TCP packets re-
ceived from the network. Thus, TCP ACK packets con-
stitute at least a third of the total number of packets pro-
cessed by the network stack. Since the overhead of the
network stack is predominantly per-packet, reducing the
TCP ACK transmission overhead is essential for achiev-
ing good receive performance.

4.1 Basic Idea

Acknowledgment Offload allows the TCP layer to com-
bine together the transmission of consecutive TCP ACK
packets of the same TCP connection into a single ‘tem-
plate’ ACK packet.

To transmit the successive TCP ACK packets, the TCP
layer creates a ‘template’ TCP ACK packet representing
the individual ACK packets. The template ACK packet
is sent down the network stack like a regular TCP packet.
On reaching the NIC driver (or a proxy for the driver), the

individual TCP ACK packets are re-generated from the
template ACK packet, and are sent out on the network.

4.2 Template ACK packet

The template ACK packet for a sequence of consecutive
ACKs is represented by the first ACK packet in the se-
quence, along with the ACK sequence numbers for the
subsequent ACK packets, which is stored in the template
packet’s metadata structure (sk buff in Linux).

The TCP and IP headers of the successive ACK pack-
ets of a TCP connection share most of the fields of the
header. In particular, only the ACK sequence number
and the IP checksum field differ between the successive
packets. (This is assuming they are generated sufficiently
close in time, so that the TCP timestamps are identi-
cal). Thus, the information present in the template ACK
packet is sufficient to generate the individual ACK pack-
ets in the sequence.

The NIC driver is modified to handle the template
ACK packet differently. The template packet is not trans-
mitted on the network directly. Instead, the driver makes
the required number of copies for the network ACK
packets. It then rewrites the ACK sequence number for
the network packets, recomputes the TCP checksum, and
transmits the sequence of TCP ACK packets on the NIC.

4.3 When it is used

Acknowledgment Offload is preferably used in conjunc-
tion with the Receive Aggregation optimization. This is
because, in a conventional TCP stack, TCP ACK packets
are generated and transmitted synchronously in response
to received TCP packets (except for delayed TCP ACKs).
Since the received TCP packets are also processed by the
TCP stack synchronously, the TCP layer does not gener-
ate opportunities to batch together the generation of suc-
cessive ACK packets.

However, with Receive Aggregation, an aggregated
TCP packet effectively delivers multiple network TCP
packets to the TCP layer simultaneously. This provides
the TCP layer an opportunity to generate a sequence of
consecutive TCP ACK packets simultaneously, and at
this point, it can make use of Acknowledgment Offload
to transmit the ACK packets.

5 Evaluation

We have implemented Receive Aggregation and Ac-
knowledgment Offload in a stock 2.6.16.34 Linux ker-
nel, and in the Xen VMM version 3.0.4 running Linux
2.6.16.38 guest operating systems.

We first evaluate the performance benefits of the re-
ceive optimizations for three systems: a uniprocessor

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 93



Linux system, an SMP Linux system, and a Linux guest
operating system running on the Xen VMM. Next, we
experimentally determine a good cut-off value for the
Aggregation Limit. In the third set of experiments, we
demonstrate the scalability of our system as we increase
the number of concurrent receive processing connec-
tions. Finally, we demonstrate that our optimizations
do not affect the performance of latency-sensitive work-
loads.

5.1 Performance Benefits

We use a receive microbenchmark to evaluate the TCP
receive performance of the system under test. This mi-
crobenchmark is similar to the netperf [1] TCP stream-
ing benchmark and measures the maximum TCP receive
throughput which can be achieved over a single TCP con-
nection.

The server machine used for our experiments is a 3.0
GHz Intel Xeon machine, with 800 MHz FSB and 512
MB of DDR2-400 memory. The machine is equipped
with five Intel Pro1000 Gigabit Ethernet cards, fitted in
133 MHz, 64 bit PCI-X slots. We run one instance of the
microbenchmark for each network card. The ‘receiver’
end of each microbenchmark instance is run on the server
machine and the ‘sender’ end is run on another client ma-
chine, which is connected to the server machine through
one of the Gigabit NICs. The sender continuously sends
data to the receiver at the maximum possible rate, for
the duration of the experiment (60s). The final through-
put metric reported is the sum of the receive throughput
achieved by all receiver instances.

Overall Results

Figure 7 shows the overall performance benefit of us-
ing Receive Aggregation and Acknowledgment Offload
in the three systems. The figure compares the receive
performance of the three systems (throughput, in Mb/s)
with and without the use of the receive optimizations.
The ‘Linux UP’ histograms show the performance for the
uniprocessor Linux system, ‘Linux SMP’, for the SMP
Linux system, and ‘Xen’, for the Linux guest operating
system running on the Xen VMM.

The performance results for the three systems are as
follows.

For the uniprocessor Linux system, the unmodified
(Original) Linux TCP stack reaches full CPU saturation
at a throughput of 3452 Mb/s. With the use of the receive
optimizations, the system (Optimized) is able to saturate
all the five Gigabit network links, to reach a throughput
of 4660 Mb/s. The CPU is still not fully saturated at this
point and is at 93% utilization. The system is thus con-
strained by the number of NICs, and with more NICs,
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Figure 7: Overall Performance Improvement

it can theoretically reach a (CPU-scaled) throughput of
5050 Mb/s. The performance gain of the system is thus
35% in absolute units and 45% in CPU-scaled units.

For the SMP Linux system, the performance of the
Original system is 2988 Mb/s, whereas the optimized
system is able to saturate all five NICs to reach a through-
put of 4660 Mb/s. As in the uniprocessor case, the op-
timized SMP system is still not CPU saturated and is at
93% CPU utilization. Thus, the performance gain in the
SMP system is 55% in absolute terms and 67% in CPU-
scaled units.

For the Linux guest operating system running on Xen,
the unoptimized (Original) system reaches full CPU sat-
uration with a throughput of only 1088 Mb/s. With
the receive optimizations, the throughput is improved to
1877 Mb/s, which is 86% higher than the baseline per-
formance.

The contribution of Acknowledgment Offload to the
above performance improvements is non-trivial. Using
just Receive Aggregation without Acknowledgment Of-
fload, the performance improvement to the three config-
urations is, respectively, 26%, 36% and 45%, with CPU
utilization reaching 100% in all three cases.

Analysis of the Results

We can better understand the performance benefits of the
receive optimizations by comparing the overhead profiles
of the network stack in the three configurations, with and
without the use of the optimizations.

Figure 8 compares the performance overhead of the
network stack for the uniprocessor Linux configuration,
and shows the breakdown of the CPU cycles incurred per
packet on the receive path. In addition to the different
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per-packet and per-byte categories discussed in section
2, there is a new category aggr, which measures the
overhead of doing Receive Aggregation. The overhead
of Acknowledgment Offload itself is included as part of
the device driver overhead.
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Figure 8: Receive processing overheads (UP)

Receive Aggregation and Acknowledgment Offload
effectively reduce the number of packets processed in the
network stack by a factor of up to 20, which is the Ag-
gregation Limit on our system. This greatly reduces the
overhead of all the per-packet components in the network
stack. The total overhead of all per-packet components
(rx, tx, buffer and non-proto) is reduced by fac-
tor of 4.3.

The main increase in overhead for the optimized net-
work stack is the Receive Aggregation function itself
(aggr). We note that the bulk of the overhead incurred
for Receive Aggregation (789 cycles/packet) is due to the
compulsory cache miss which is incurred in the early
demultiplexing of the packet header. Since the device
driver itself does not perform any MAC header process-
ing in the optimized network stack, its overhead is re-
duced by 681 cycles/packet, since it avoids the compul-
sory cache miss.

Figure 9 shows the receive processing overhead for the
optimized and unoptimized network stack in the SMP
Linux configuration.

The overall trends in this figure are similar to those
for the uniprocessor configuration. As in the unipro-
cessor case, the overhead of the per-packet routines,
rx, tx, buffer and non-proto is greatly reduced.
With the receive optimizations, the total overhead of
all the per-packet components (rx, tx, buffer and
non-proto) in the network stack is reduced by a factor
of 5.5.
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Figure 9: Receive processing overheads (SMP)

In the original SMP configuration, there is an increase
in the overhead of the per-packet TCP routines relative
to the uniprocessor case, because of the locking and syn-
chronization overhead in the TCP stack. In the optimized
network stack, both Receive Aggregation and Acknowl-
edgment Offload are implemented in a CPU-local man-
ner, and thus do not incur any additional synchronization
overheads.

Finally, figure 10 shows the breakdown of the receive
processing overhead with receive optimizations in the
Linux guest operating system.
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Figure 10: Receive processing overheads (Xen)

In the guest Linux configuration, the total overhead
of the per-packet routines (non-proto, netback,
netfront, tcp rx, tcp tx and buffer) in the
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network virtualization stack is reduced by a factor of 3.7
with the use of the receive optimizations. The greatest
visible reduction is in the overhead of the non-proto
routines, which includes the bridging and netfilter rou-
tines in the driver domain and the guest domain. The
overheads of the netfront and netback paravir-
tual drivers are reduced to a lesser extent, primarily
because they incur a per-TCP fragment overhead in-
stead of a purely per-packet overhead. Other per-packet
components, such as the TCP receive and transmit rou-
tines (TCP rx and TCP rx) and buffer management
(buffer) show similar reduction in overhead as in the
native Linux configurations.

The overhead of Receive Aggregation (aggr) itself is
small compared to the other overheads.

5.2 Choosing the Aggregation Limit

The performance benefit of Receive Aggregation is pro-
portional to the number of TCP packets which are com-
bined to create the aggregated host TCP packet. A
greater degree of aggregation results in a greater reduc-
tion in the per-packet overhead. However, beyond a
limit, packet aggregation does not yield further benefits.
We determine a good cut-off value for this Aggregation
Limit experimentally.

Figure 11 shows the total CPU execution overhead (in
CPU cycles per packet) incurred for receive processing
in a uniprocessor Linux system, as a function of Aggre-
gation Limit.
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Figure 11: CPU overhead vs. Aggregation Limit

Increasing the Aggregation Limit initially yields a
sharp reduction in the CPU processing overhead of pack-
ets. The figure shows that most of the benefits of Receive
Aggregation can be achieved with a relatively small Ag-

gregation Limit. We choose a value of 20 for the Aggre-
gation Limit as it can be seen that additional aggregation
does not yield any substantial improvement.

The Aggregation Limit measured above can also be
derived analytically, since it only depends on the percent-
age overhead of the per-packet operations whose over-
head can be scaled down by aggregation. For instance, if
x% of the overhead is constant, and y% is the per-packet
overhead that can be reduced by aggregation (with x +
y = 100), then using an aggregation factor of k should
reduce the system CPU utilization from x + y to x +
y/k. Figure 11 appears to match the plot of x + y/k
as a function of k fairly well. This gives us confidence
that the Aggregation Limit chosen is quite robust and not
arbitrary, and it will hold across a number of different
systems.

5.3 Scalability

The previous sections demonstrate the performance ben-
efits of our optimizations when the workload consists of
a small number of high-volume TCP connections. We
now evaluate how the optimizations scale as we increase
the number of concurrent TCP connections receiving
data.

The benchmark we use is a multi-threaded version of
the receive microbenchmark. We create a number of re-
ceiver threads, each of the threads running the receiver
microbenchmark and connected to a different sender pro-
cess. We measure the cumulative receive throughput as a
function of the number of receive connections.

Figure 12 shows how the system scales as a function
of the number of connections, both in the original and
the optimized system. The figure compares a baseline
2.6.16.34 Linux SMP system (Original), with the opti-
mized Linux system (Optimized).

The figure shows that our optimizations scale very
well even as we increase the number of concurrent con-
nections to 400, with the optimized system performing
40% better than the baseline system, at 400 connections.
This demonstrates that Receive Aggregation is effective
in reducing the number of packets even in the presence
of concurrency.

5.4 Impact on Latency Sensitive Work-
loads

We use the netperf [1] TCP Request/Response bench-
mark to evaluate the impact of the receive optimizations
on the latency of packet processing.

This benchmark measures the interactive request-
response performance of a client and server program
connected by a TCP connection. The client sends the
server a one-byte ‘request’, and waits for a one-byte
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Requests/sec (Original) (Optimized)
Linux UP 7874 7894

Linux SMP 7970 7985
Xen 6965 6953

Table 1: Impact of Receive Optimizations on Latency

‘response’ from the server. On receiving the response,
the client immediately sends another request. The
benchmark measures the maximum request-response
rate achieved between the client and the server.

Table 1 compares the performance of the three sys-
tems on the TCP Request/Response benchmark. The ta-
ble shows that our receive optimizations have no notice-
able impact on the latency of packet processing in the
network stack.

This is because of the work-conserving nature of Re-
ceive Aggregation. Since there is only one network
packet to process at a time, no packet aggregation is
done, and the packet is passed on to the network stack
immediately to prevent it from being idle.

5.5 Discussion

The performance results presented in this section were
acheived in a LAN environment, where the low network
latencies and small inter-packet delays allow Receive
Aggregation to effectively coalesce multiple consecutive
TCP packets. The important condition for Receive Ag-
gregation to work effectively is to have a sufficient num-
ber of consecutive TCP packets received within short in-
terval of each other.

One example of a real-world situation where Receive
Aggregation is applicable is a Storage Area Network

(SAN) using iSCSI, where storage servers have high
bandwidth processing requirements for transferring (in-
cluding receiving) large files. In general, data intensive
workloads running in a LAN environment would gain the
most from these optimizations.

Under other network conditions, the performance ben-
efits of our optimizations may vary, depending on the de-
gree of aggregation possible. However, the overall per-
formance will never get worse than the original system.
We verified this by setting the Aggregation Limit to one
in our LAN experiments, which measures the overhead
of our system in the absence of any aggregation. We ob-
served no degradation in the performance relative to the
baseline.

6 Related Work

Initial analysis of TCP performance [3] identified the
per-byte data touching operations to be the major source
of overhead for TCP. This led to the development of a
number of techniques for avoiding data copy, both in
software [15] [10], and hardware [13, 11]. Techniques
such as zero-copy transmit and hardware checksum of-
fload have now become common in modern network
cards [12, 4, 6].

Later work [9] identified the per-packet overhead as
the dominant source of overhead for real-world work-
loads, which are dominated by small message sizes. This
led to the development of offloading techniques for re-
ducing per-packet overheads, such as TCP segmentation
offload.

Recently, some high end network cards have started
providing more complex offload support for TCP receive
processing, such as Large Receive Offload (LRO) in Ne-
terion NICs [8]. The idea of LRO is similar to that of
Receive Aggregation, except that it is performed in the
NIC, and thus it can reduce the per-packet overhead in-
curred in the network driver. However, a pure-software
approach such as Receive Aggregation is much more
generic, and can yield much of the benefit of packet ag-
gregation in a hardware independent manner. Addition-
ally, the Neterion NIC does not support Acknowledg-
ment Offload, and thus does not offer support for reduc-
ing the overhead on the ACK transmit path.

Jumbo frames, which allow the ethernet MTU size to
be set to 9000 bytes, can also effectively help reduce the
per-packet overheads for bulk data transfers. However,
they require the whole LAN network to be upgraded
to use the same MTU size. Receive Aggregation and
Acknowledgment Offload are effective at improving the
network stack performance irrespective of the network
MTU size or networking hardware used.

Receive Aggregation requires TCP packets to be de-
multiplexed early on in the network stack. Similar early
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demultiplexing mechanisms have been explored in the
context of resource accounting in Lazy Receive Process-
ing (LRP) [5]. LRP, however, does not yield any perfor-
mance improvements.

The idea of Receive Aggregation is also similar to the
idea of interrupt throttling supported by many network
cards. Since interrupt processing is expensive, interrupt
throttling prevents Operating Systems from spending too
much time in processing interrupts [14]. Similarly, Re-
ceive Aggregation reduces the CPU overhead of TCP re-
ceive processing by reducing the number of host TCP
packets that the network stack has to process.

7 Conclusions

In this paper, we showed that architectural trends in
the evolution of microprocessors have shifted the dom-
inant source of overhead in TCP receive processing from
per-byte operations, such as data copy and checksum-
ming, to the per-packet operations. Motivated by this
architectural trend, we presented two optimizations to
receive side TCP processing, Receive Aggregation and
Acknowledgment Offload, which reduce its per-packet
overhead. These optimizations result in significant im-
provements in the performance of TCP receive process-
ing in native Linux (by 45-67%), and in virtual Linux
guest operating systems running on the Xen VMM (by
86%).
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