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Abstract
Recent popularity of interactive AJAX-based Web 2.0
applications has given rise to a new breed of security
threats: JavaScript worms. In this paper we propose
Spectator, the first automatic detection and containment
solution for JavaScript worms. Spectator performs dis-
tributed data tainting by observing and tagging the traffic
between the browser and the Web application. When a
piece of data propagates too far, a worm is reported. To
prevent worm propagation, subsequent upload attempts
performed by the same worm are blocked. Spectator is
able to detect fast and slow moving, monomorphic and
polymorphic worms with a low rate of false positives.
In addition to our detection and containment solution,
we propose a range of deployment models for Specta-
tor, ranging from simple intranet-wide deployments to
a scalable load-balancing scheme appropriate for large
Web sites.

In this paper we demonstrate the effectiveness and effi-
ciency of Spectator through both large-scale simulations
as well as a case study that observes the behavior of a
real-life JavaScript worm propagating across a social net-
working site. Based on our case study, we believe that
Spectator is able to detect all JavaScript worms released
to date while maintaining a low detection overhead for a
range of workloads.

1 Introduction

Web applications have been a prime target for
application-level security attacks for several years. A
number of attack techniques, including SQL injections,
cross-site scripting, path traversal, cross-site request
forgery, HTTP splitting, etc. have emerged, and recent
surveys have shown that the majority of Web sites in
common use contain at least one Web application se-
curity vulnerability [38, 42]. In fact, in the last several
years, Web application vulnerabilities have become sig-
nificantly more common than vulnerabilities enabled by

unsafe programming languages such as buffer overruns
and format string violations [39].

While Web application vulnerabilities have been
around for some time and a range of solutions have been
developed [15, 17, 20, 22, 24, 29, 44], the recent popular-
ity of interactive AJAX-based Web 2.0 applications has
given rise to a new and considerably more destructive
breed of security threats: JavaScript worms [11, 13].
JavaScript worms are enabled by cross-site scripting vul-
nerabilities in Web applications. While cross-site script-
ing vulnerabilities have been a common problem in Web
based-applications for some time, their threat is now sig-
nificantly amplified with the advent of AJAX technol-
ogy. AJAX allows HTTP requests to be issued by the
browser on behalf of the user. It is no longer necessary
to trick the user into clicking on a link, as the appropriate
HTTP request to the server can just be manufactured by
the worm at runtime. This functionality can and has been
cleverly exploited by hackers to create self-propagating
JavaScript malware.

1.1 The Samy Worm
The first and probably the most infamous JavaScript
worm is the Samy worm released on MySpace.com, a
social networking site in 2005 [35]. By exploiting a
cross-site scripting vulnerability in the MySpace site, the
worm added close to a million users to the worm author’s
“friends” list. According to MySpace site maintainers,
the worm caused an explosion in the number of entries
in the friends list across the site, eventually leading to re-
source exhaustion. Two days after the attack the site was
still struggling to serve requests at a normal pace.

The Samy worm gets its name from the MySpace
login of its creator. Initially, the malicious piece of
JavaScript (referred to as the payload) was manually
placed in Samy’s own MySpace profile page, making it
infected. Each round of subsequent worm propagation
consists of the following two steps:
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1. Download: A visitor downloads an infected profile
and automatically executes the JavaScript payload.
This adds Samy as the viewer’s “friend” and also
adds the text but most of all, samy is my hero to
the viewer’s profile. Normally, this series of steps
would be done through GET and POST HTTP re-
quests manually performed by the user by clicking
on various links and buttons embedded in MySpace
pages. In this case, all of these steps are done in the
background without the viewer’s knowledge.

2. Propagation: The payload is extracted from the
contents of the profile being viewed and then added
to the viewer’s profile.

Note that the enabling characteristic of a JavaScript
worm is the AJAX propagation step: unlike “old-style”
Web applications, AJAX allows requests to the server
to be done in the background without user’s knowledge.
Without AJAX, a worm such as Samy would be nearly
impossible. Also observe that worm propagation hap-
pens among properly authenticated MySpace users be-
cause only authenticated users have the ability to save
the payload in their profiles.

1.2 Overview of the Problem

While Samy is a relatively benign proof-of-concept
worm, the impact of JavaScript worms is likely to grow
in the future. There are some signs pointing to that
already: another MySpace worm released in Decem-
ber 2006 steals user passwords by replacing links on
user’s profile site with spoofed HTML made to appear
like login forms [6]. The stolen credentials were subse-
quently hijacked for the purpose of sending spam. Simi-
larly, Yamanner, a recent Yahoo! Mail worm, propagated
through the Webmail system affecting close to 200,000
users by sending emails with embedded JavaScript to
everyone in the current user’s address book [4]. Har-
vested emails were then transmitted to a remote server
to be used for spamming. Additional information on
eight JavaScript worms detected in the wild so far is
summarized in our technical report [21]. Interested read-
ers are also referred to original vulnerability reports [4–
6, 26, 33–35].

The impact of JavaScript worms will likely increase if
attackers shift their attention to sites such as ebay.com,
epinions.com, buy.com, or amazon.com, all of which
provide community features such as submitting product
or retailer reviews. The financial impact of stolen cre-
dentials in such a case could be much greater than it was
for MySpace, especially if vulnerability identification is
done with the aid of cross-site scripting vulnerability cat-
aloging sites such as xssed.com [30]. Today cross-site
scripting vulnerabilities are routinely exploited to allow

the attacker to steal the credentials of a small group of
users for financial gain. Self-propagating code amplifies
this problem far beyond its current scale. It is therefore
important to develop a detection scheme for JavaScript
worms before they become commonplace.

A comprehensive detection solution for JavaScript
worms presents a tough challenge. The server-side Web
application has no way of distinguishing a benign HTTP
request performed by a user from one that is performed
by a worm using AJAX. An attractive alternative to
server-side detection would be to have an entirely client-
side solution. Similarly, however, the browser has no
way of distinguishing the origin of a piece of JavaScript:
benign JavaScript embedded in a page for reasons of
functionality is treated the same way as the payload of
a worm. Filtering solutions proposed so far that rely on
worm signatures to stop their propagation [37] are inef-
fective when it comes to polymorphic or obfuscated pay-
loads, which are easy to create in JavaScript; in fact many
worms detected so far are indeed obfuscated. Moreover,
overly strict filters may cause false positives, leading to
user frustration if they are unable to access their own data
on a popular Web site.

1.3 Paper Contributions
This paper describes Spectator, a system for detecting
and containing JavaScript worms, and makes the follow-
ing contributions:

• Spectator is the first practical solution to the prob-
lem of detecting and containment of JavaScript
worms. Spectator is also insensitive to the worm
propagation speed; it can deal with rapid zero-day
worm attacks as well as worms that disguise their
presence with slow propagation. Spectator is in-
sensitive of what the JavaScript code looks like and
does not rely on signatures of any sort; therefore it
is able to detect polymorphic worms or worms that
use other executable content such as VBScript or
JavaScript embedded in Flash or other executable
content.

• We propose a scalable detection solution that adds a
small constant-time overhead to the end-to-end la-
tency of an HTTP request no matter how many re-
quests have been considered by Spectator. With this
detection approach, Spectator is able to detect all
worms that have been found in the wild thus far.

• Our low-overhead approximate detection algorithm
is mostly conservative, meaning that for the major-
ity of practical workloads it will not miss a worm if
there is one, although false positives may be possi-
ble. However, simulations we have performed show
that false positives are unlikely with our detection
scheme.
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• We propose multiple deployment models for Spec-
tator: the Spectator proxy can be used as a server-
side proxy or as a browser proxy running in front of
a large client base such as a large Intranet site. For
large services such as MySpace, we describe how
Spectator can be deployed in a load-balanced set-
ting. Load balancing enables Spectator to store his-
torical data going far back without running out of
space and also improves the Spectator throughput.

• We evaluate Spectator is several settings, including
a large-scale simulation setup as well as a real-life
case study using a JavaScript worm that we devel-
oped for a popular open-source social networking
application deployed in a controlled environment.

1.4 Paper Organization
The rest of the paper is organized as follows. Section 2
describes the overall architecture of Spectator. We for-
mally describe our worm detection algorithm and Spec-
tator implementation in Sections 3 and 4, respectively.
Section 5 describes the experiments and case studies we
performed. Section 6 discusses Spectator design choices,
tradeoffs, and threats to the validity of our approach. Fi-
nally, Sections 7 and 8 summarize related work and pro-
vide our conclusions.

2 Spectator Design Overview

This section provides an overview of Spectator architec-
ture and design assumptions. Section 3 gives a formal
description of our worm detection algorithm.

2.1 Spectator Overview
A recent study concluded that over 90% of Web appli-
cations are vulnerable to some form of security attack,
including 80% vulnerable to cross-site scripting [42].
Cross-site scripting, which is at the root of JavaScript
worms, is commonly identified as the most prevalent
Web application vulnerability.

While it is widely recognized that secure program-
ming is the best defense against application-level vul-
nerabilities, developing fully secure applications remains
a difficult challenge in practice. For example, while
MySpace was doing a pretty good job filtering well-
formed JavaScript, it failed to filter out instances of
java\nscript, which are interpreted as legal script in
Internet Explorer and some versions of Safari. Despite
best intentions, insecure applications inevitably get de-
ployed on widely used Web sites.

The goal of Spectator is to protect Web site users from
the adverse effects of worm propagation after the server

has failed to discover or patch a vulnerability in a timely
manner. The essence of the Spectator approach is to tag
or mark HTTP requests and responses so that copying
of the content across a range of pages in a worm-like
manner can be detected. Note that JavaScript worms are
radically different from “regular” worms in that they are
centralized: they typically affect a single Web site or a
small group of sites (the same-origin policy of JavaScript
makes it difficult to develop worms that propagate across
multiple servers).

Spectator consists of an HTTP proxy inspecting the
traffic between the user’s browser and a Web server in or-
der to detect malicious patterns of JavaScript code prop-
agation. Our tagging scheme described in Section 4 is a
form of distributed tainting: whenever content that con-
tains HTML is uploaded to the server, Spectator modi-
fies it to attach a tag invisible to the end-user. The tag is
preserved on the server and is contained in the HTML
downloaded by subsequent requests. Spectator injects
client-side support so that tags are reliably propagated on
the client side and cannot be removed by worms aware of
our tagging scheme. Client-side support relies on HTTP-
only cookies and does not require specialized plug-ins
or browser modifications, thus removing the barrier to
client-side adoption.

Worm detection at the Spectator proxy works by look-
ing for long propagation chains. Our detection algorithm
is designed to scale to propagation graphs consisting of
thousands of nodes with minimal overhead on every re-
quest. Whenever a long propagation chain is detected,
Spectator disallows further uploads that are caused by
that chain, thereby containing further worm propagation.

The Spectator detection algorithm is designed to de-
tect propagation activity that affects multiple users. With
every HTML upload, we also record the IP address of
the user issuing the request. The IP address is used as
an approximation of user identity. We keep track of IP
addresses so that a user repeatedly updating their profile
is not flagged as worm. If multiple users share an IP ad-
dress, such as users within an intranet, this may cause
false negatives. If the same user connects from different
IP addresses, false positives might result. Worm detec-
tion relies on sufficiently many users adopting Spectator.
However, since Spectator relies on no additional client-
side support, it can be deployed almost instantaneously
to a multitude of users.

2.2 Spectator Architecture
To make the discussion above more concrete, a diagram
of Spectator’s architecture is shown in Figure 1. When-
ever a user attempts to download a page containing Spec-
tator tags previously injected there by Spectator, the fol-
lowing steps are taken, as shown in the figure:
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Figure 1: Spectator architecture

1. The tagged page is retrieved from the server.
2. The Spectator proxy examines the page. If the page

contains tags, a new session ID is created and as-
sociated with the list of tags in the page. The tags
are stripped from the page and are never seen by the
browser or any malicious content executing therein.

3. The modified page augmented with the session ID
stored in a cookie (referred to below as “Spectator
cookie”) is passed to the browser.

Whenever an upload containing HTML is observed, the
following steps are taken:

4. If a Spectator cookie is found on the client, it
is automatically sent to Spectator by the browser
(the cookie is the result of a previous download in
step 3).

5. If the request has HTTP content, a new tag—a num-
ber uniquely identifying the upload—is created by
the Spectator proxy. If the request has a valid ses-
sion ID contained in a Spectator cookie attached
to the request, the list of tags it corresponds to is
looked up and, for every tag, an edge between the
old and the new tags are added to the propagation
graph to represent tag causality. The request is not
propagated further if the detection algorithm de-
cides that the request is part of worm propagation.

6. Finally, the request augmented with the newly cre-
ated tag is uploaded and stored at the server.

The Spectator worm detection algorithm relies on the fol-
lowing properties that guarantee that we can observe and
record the propagation of a piece of data during its en-
tire “round trip”, captured by steps 1–6 above, thereby
enabling taint tracking. The properties described below
give the information required to formally reason about
the Spectator algorithm. A detailed discussion of how

Spectator ensures that these properties hold is delayed
until Section 4.

Property 1: Reliable HTML input detection. We can
detect user input that may contain HTML and mark
it as tainted. Additionally, we can mark suspicious
user input without disturbing server-side applica-
tion logic so that the mark propagates to the user.

Property 2: Reliable client-side tag propagation.
Browser can propagate taint tags from an HTTP
response to a subsequent request issued by the
browser.

3 Worm Detection Algorithm

This section describes our worm detection algorithm.
Section 3.1 formalizes the notion of a worm and Sec-
tion 3.2 talks about our detection algorithm. Finally, Sec-
tion 3.3 discusses worm containment.

3.1 Propagation Graph Representation
We introduce the notion of a propagation graph that is
updated whenever new tags are inserted. Each node
of the graph corresponds to a tag and edges represent
causality edges. Each node carries with it the IP address
of the client the tag originates from.

Definition 1. A tag is a long integer uniquely identifying
an HTML upload to Spectator.
Definition 2. A causality edge is a tuple of tag-IP ad-
dress pairs 〈(t1, ip1), (t2, ip2)〉 representing the fact that
t2 requested by ip2 originated from a page requested by
ip1 that has t1 associated with it.
Definition 3. Propagation graph G = 〈V, E〉,
where vertices V is a set of tag-IP pairs
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{(t1, ip1), (t2, ip2), . . . } and E is the set of causal-
ity edges between them.

Definition 4. The distance between two nodes N1 and
N2, denoted as |N1, N2|, in a propagation graph G is
the smallest number of unique IP addresses on any path
connecting N1 and N2.

Definition 5. Diameter of a propagation graph G, de-
noted as D(G), is the maximum distance between any
two nodes in G.

Definition 6. We say that G contains a worm if D(G)
exceeds a user-provided threshold d.

Note that the propagation graph is acyclic. While it
is possible to have node sharing, caused by a page with
two tags generating a new onehaving a cycle in the prop-
agation graph is impossible, as it would indicate a tag
caused by another one that was created chronologically
later. Ideally, we want to perform worm detection on the
fly, whenever a new upload request is observed by Spec-
tator. When a new edge is added to the propagation graph
G, we check to see if the diameter of updated graph G
now exceeds the user-defined threshold d.

The issue that complicates the design of an efficient al-
gorithm is that we need to keep track of the set of unique
IP addresses encountered on the current path from a root
of the DAG. Unfortunately, computing this set every time
an edge is added is exponential in the graph size in the
worst case. Storing the smallest set of unique IP ad-
dresses at every node requires O(n2) space in the worst
case: consider the case of a singly-linked list where ev-
ery node has a different IP address. Even if we store
these sets at every node, the computation of the IP ad-
dress list at a node that has more than one predecessor
still requires an exponential amount of work, as we need
to consider all ways to traverse the graph to find the path
with the smallest number of unique IP addresses. Our
goal is to have a worm detection algorithm that is as effi-
cient as possible. Since we want to be able to detect slow-
propagating worms, we cannot afford to remove old tags
from the propagation graph. Therefore, the algorithm has
to scale to hundreds of thousands of nodes, representing
tags inserted over a period of days or weeks.

3.2 Incremental Approximate Algorithm

In this section we describe an iterative algorithm for de-
tecting when a newly added propagation graph edge in-
dicates the propagation of a worm. As we will demon-
strate later, the approximation algorithm is mostly con-
servative, meaning that if there is a worm, in most cases,
the approximation approach will detect it no later than
the precise one.

3.2.1 Data Representation

The graph GA maintained by our algorithm is a for-
est approximating the propagation graph G. Whenever
node sharing is introduced, one of the predecessors is
removed to maintain the single-parent property. Fur-
thermore, to make the insertion algorithm more efficient,
some of the nodes of the graph are designated as storage
stations; storage stations accelerate the insertion opera-
tion in practice by allowing to “hop” towards a root of
the forest without visiting every node on the path.

We use the following representation for our approxi-
mate algorithm. PREV (N) points to the nearest storage
station on its path to the root or null if N is the root.
Every node N in GA has a set of IP addresses IPS (N)
associated with it. The number of IP addresses stored at a
node is at most c, where c is a user-configured parameter.
At every node N we maintain a depth value denoted as
DEPTH (N), which is an approximation of the number
of unique IP addresses on the path from N to the root.
Whenever the DEPTH value exceeds the user-defined
threshold d, we raise an alarm.

3.2.2 Worm Detection

For space reasons, detailed pseudo-code for the insertion
algorithm that describes the details of data structure ma-
nipulation is given in our technical report [21]. Here we
summarize the essence of the insertion algorithm. When-
ever a new causality edge from node parent to node
child is added to GA:

1. If parent is the only predecessor of child in GA,
we walk up the tree branch and find all storage
stations on the current tree branch. We copy
IPS (parent) into IPS (child) and then add child ’s
IP if it is not found by the search. In the latter case,
DEPTH (child) value is incremented. If the size of
IPS (child) reaches threshold c, we designate child
as a storage station.

2. If child has two predecessors in GA, we compare
DEPTH values stored at the two predecessors, se-
lect the larger one, and remove the other edge from
the graph, restoring non-sharing. After that we fol-
low step 1 above. Note that the predecessors do not
have to belong to the same tree. However, after the
insertion is complete, child will be a member of a
single tree.

Observe that the the maximum DEPTH value computed
by this algorithm is exactly D(GA) because the maxi-
mum distance in GA is that between a node and a root.

Notice that the approach described in this section is es-
sentially a greedy algorithm: in the presence of multiple
parents, it chooses the parent that it believes will result in
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IPS (N) =





IP addresses on the path from N to PREV (N) not contained in any
other IPS sets of nodes between N and the root

if PREV (N) 6= null

IP addresses on the path from N to the root if PREV (N) = null

Figure 2: Definition of IPS .

iip2 ip1ip3ip4

ip2ip1

Figure 3: Propagation graph for which the approximate algorithm
under-approximates the diameter value

higher overall diameter of the final approximation graph
GA. Of course, the advantage of the approximate algo-
rithm is that it avoids the worst case exponential blow-up.
However, without the benefit of knowing future insertion
operations, the greedy algorithm may yield a lower diam-
eter, potentially leading to false negatives. While this has
never happened in our experiments, one such example is
described below.

Example 1. Consider the propagation graph displayed
in Figure 3. Suppose we first insert the two nodes on
the bottom left with IPs ip1 and ip2 and then the node
with ip4. When we add ip3 to the graph, the approxima-
tion algorithm will decide to remove the newly created
edge (showed as dashed) because doing so will result in
a greater diameter. However, the greedy algorithm makes
a suboptimal decision: when nodes on the right with IPs
ip2 and ip1 are added, the resulting diameter will be 3,
not 4 as it would be with the precise approach. �

3.2.3 Incremental Algorithm Complexity

Maintaining an approximation allows us to obtain a very
modest time and space bounds on new edge insertion, as
shown below. Discussion of how our approximate de-
tection algorithm performs in practice is postponed until
Section 5.

Insertion Time Complexity. The complexity of the al-
gorithm at every insertion is as follows: for a graph GA

with n nodes, we consider d/c storage stations at the
most. Since storage stations having non-overlapping lists
of IP addresses, having more storage stations on a path
from a root of GA would mean that we have over d IPs
in total on that particular path, which should have been
detected as a worm. At every storage station, we perform
an O(1) average time containment check. So, as a result,
our approximate insertion algorithm takes O(1) time on
average.

Space Complexity. We store O(n) IP addresses at the
storage stations distributed throughout the propagation
graph GA. This is easy to see in the worst case of ev-
ery IP address in the graph being unique. The union of
all IP lists stored at all storage stations will be the set
of all graph nodes. Additionally, we store IP addresses
at the nodes between subsequent storage stations. In the
worst case, every storage station contains c nodes and
we store 1 + 2 + · · · + c − 1 = c · (c − 1)/2 IP ad-
dresses, which preserves the total space requirement of
O(n). More precisely, with at most n/c storage stations,
we store approximately

c2

2
× n

c
=

1
2
· c · n

IP addresses. Note that in practice storage stations allow
insertion operations to run faster because instead of visit-
ing every node on the path from the root, we can instead
“hop” to the next storage station, as demonstrated by the
d/c bound. However, using storage stations also results
in more storage space being taken up as shown by the
1/2 · c · n bound. Adjusting parameter c allows us to ex-
plore this space-time trade-off: bigger c results in faster
insertion times, but also requires more storage.

Worm Containment Complexity. When a worm is de-
tected, we walk the tree that the worm has infected and
mark all of its nodes as such. This takes O(n) time be-
cause in the worst case we have to visit and mark all
nodes in the tree. The same bound holds for when we
mark nodes in a tree as false positives.

3.3 Worm Containment
Whenever the depth of the newly added node exceeds
detection threshold d, we mark the entire tree containing
the new edge as infected. To do so, we maintain an ad-
ditional status at every leaf. Whenever a tree is deemed
infected by our algorithm, we propagate the infected sta-
tus to every tree node. Subsequently, all uploads that
are caused by nodes within that tree are disallowed until
there is a message from the server saying that it is safe to
do so.

When the server fixes the vulnerability that makes the
worm possible, it needs to notify the Spectator proxy, at
which point the proxy will remove the entire tree contain-
ing the new edge from the proxy. If the server deems the
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vulnerability reported by Spectator to be a false positive,
we never subsequently report activity caused by nodes
in this tree as a worm. To do so, we set the node status
for each tree node as a false positive and check the node
status before reporting a worm.

4 Spectator Implementation

Distributed tainting in Spectator is accomplished by aug-
menting both upload requests to insert tracking tags
and download requests to inject tracking cookies and
JavaScript.

4.1 Tag Propagation in the Browser
To track content propagation on the client side, the Spec-
tator proxy maintains a local session for every page that
passes through it. Ideally, this functionality would be
supported by the browser natively; in fact, if browsers
supported per-page cookies, that is, cookies that expire
once the current page is unloaded, this would be enough
to precisely track causality on the client side. Since such
cookies are not supported, we use a combination of stan-
dard per-session browser cookies and injected JavaScript
that runs whenever the current page is unloaded to ac-
complish the same goal.

4.1.1 Client-Side Causality Tracking

Whenever a new page is sent by the Spectator proxy to
the browser, a new session tuple 〈id1, id2〉 is generated,
consisting of two long integer values, which are ran-
domized 128-bit integers, whose values cannot be easily
guessed by the attacker. Our client-side support consists
of two parts:

HTTP-only Spectator cookie in the browser. We
augment every server response passing through Spec-
tator with an HTTP-only cookie containing id1. The
fact that the session ID is contained in an HTTP-only
cookie means that it cannot be snooped on by malicious
JavaScript running within the browser, assuming the
browser correctly implements the HTTP-only attribute.
For a page originating from server D, the domain of the
session ID cookie is set to D, so it is passed back to
Spectator on every request to D, allowing us to perform
causality tracking as described above.

Ideally, we would like to have a per-page cookie that
expires as soon as the page is unloaded. Unfortunately,
there is no support for such cookies. So, we use session
cookies that expire after the browser is closed, which
may not happen for a while. So, if the user visits site
D served by Spectator, then visits site E, and then re-
turns to D, the Spectator cookie would still be sent to
Spectator by the browser.

Malicious relay 
server E

Spectator proxy ClientServer D

Figure 4: Relaying user requests through a malicious server

Injected client-side JavaScript to signal page unloads.
In order to terminate a propagation link that would be
created between the two unrelated requests to server D,
we inject client-side JavaScript into every file that Spec-
tator sends to the browser. Furthermore, before passing
the page to the client, within Spectator we add an unload
event handler, which sends an XmlHttpRequest to the
special URL spectator to “close” or invalidate the
current session, so that subsequent requests with the
same id1 are ignored. The spectator URL does
not exist on server D: it is just a way to communicate
with Spectator while including id1 created for server D
(notice that it is not necessary to pass the session ID as a
parameter to Spectator, as the session ID cookie will be
included in the request as well).

Injected client-side code is shown in Figure 5. To
make it so that malicious JavaScript code cannot re-
move the unload handler, we mediate access to func-
tions window.attachEvent and window.detachEvent
as suggested in the BEEP system [16] by injecting the
JavaScript shown in Figure 6 at the very top of each page
served by Spectator. Furthermore, we also store id2 is a
private member of class handler [8]; this way it is not
part of the handler.unload function source code and
cannot be accessed with a call to toString. To pre-
vent id2 from being accessed through DOM traversal,
the original script blocks defining the unload han-
dler and containing the numerical value of id2 embed-
ded verbatim is subsequently removed through a call to
removeChild in the next script block, similar to what
is suggested by Meschkat [25].

4.1.2 Attacks Against Client-Side Tracking

While the basic client-side support is relatively simple
to implement, there are two types of potential attacks
against our client-side scheme to address, as described
below.

Worm Relaying. First, the attacker might attempt to
break a propagation chain by losing the session ID con-
tained in the browser, a technique we refer to as worm
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<script id="remove-me">

if (window.attachEvent) {

var handler = function(id) {

var id2 = id;

this.unload = function() {

var xhr = new ActiveXObject("MSXML2.XMLHTTP.3.0");

xhr.open("POST", "http://www.D.com/__spectator__&" + id2, true);

xhr.send(null); // send message to D just before unloading

}

};

// embed id_2 verbatim and create an unload handler

window.attachEvent("unload", (new handler(<id_2>)).unload);

}

</script>

<script>

// remove the previous script block from the DOM

var script_block = document.getElementById("remove-me");

script_block.getParentNode().removeChild(script_block);

</script>

Figure 5: Intercepting page unload events in JavaScript

relaying. Suppose we have a page in the browser loaded
from server D. The attacker may programmatically di-
rect the browser to a different server E, which would
in turn connect to D. Server E in this attack might be
set-up solely for the sole purpose of relaying requests to
server D, as shown in Figure 4. Notice that since the
session ID cookie will not be sent to E and its value can-
not be examined. We introduce a simple restriction to
make the Spectator proxy redirect all accesses to D that
do not contain a session ID cookie to the top-level D
URL such as www.D.com. In fact, it is quite common to
disallow access, especially programmatic access through
AJAX RPC calls, to an inside URL of large site such as
www.yahoo.com by clients that do not already have an
established cookie. With this restriction, E will be un-
able to relay requests on behalf of the user.

Tampering with unload events. To make it so that ma-
licious JavaScript code cannot remove the unload han-
dler or trigger its own unload handler after Spectator’s,
we mediate access to function window.detachEvent by
injecting the JavaScript shown in Figure 6 at the very
top of each page served by Spectator. If malicious script
attempts to send the unload event to Spectator prema-
turely in an effort to break the propagation chain, we will
receive more that one unload event per session. When
a sufficient number of duplicate unload events is seen,
we raise an alarm for the server, requiring a manual in-
spection. It is still possible for an attacker to try to cause
false positives by making sure that the unload event will
never be sent. This can be accomplished by crashing the
browser by exploring a browser bug or trying to exhaust
browser resources by opening new windows. However,
this behavior is sufficiently conspicuous to the end-user
to prompt a security investigation and is thus not a good

<script>

window.attachEvent = function(sEvent, fpNotify) {

if (sEvent == "unload") return;

window.attachEvent(sEvent, fpNotify);

}

window.detachEvent = function(sEvent, fpNotify) {

if (sEvent == "unload") return;

window.detachEvent(sEvent, fpNotify);

}

</script>

Figure 6: Disallow adding or removing unload event handlers

candidate for inclusion within a worm.

Opening a new window. Note that opening a new win-
dow will not help an attacker break causality chains. If
they try to perform a malicious upload before the unload
event in the original window is sent to the proxy, Spec-
tator will add a causality link for the upload. Fetching a
new page with no tags before the malicious upload will
not help an attacker evade Spectator because this clean
page and the original page share the same HTTP-only
cookie. As such, Spectator will think that the upload
is caused by either of the sessions corresponding to that
cookie. This is because Spectator’s approximation ap-
proach selects the parent node with a larger depth when
a node has multiple predecessors.

4.2 Tagging Upload Traffic and Server-
Side Support for Spectator

The primary goal of server-side support is to embed
Spectator tags into suspicious data uploaded to a pro-
tected Web server in a transparent and persistent man-
ner so that (1) the tags will not interfere with the Web
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server’s application logic; and (2) the embedded tags will
be propagated together with the data when the latter is re-
quested from the Web server. To achieve these goals of
transparency and persistence, we need to be able to reli-
ably detect suspicious data to embed Spectator tags into
uploaded input. Next, we discuss our solutions to the
challenges of transparency and persistence that do not
require any support on the part of the Web server.

Data uploads are suspicious if they may contain em-
bedded JavaScript. However, for a cross-site scripting
attack to be successful, this JavaScript is usually sur-
rounded with some HTML tags. The basic idea of detect-
ing suspicious data is to detect the presence of HTML-
style content in the uploaded data. Of course, such up-
loads represent a minority in most applications, which
means that Spectator only needs to tag and track a small
portion of all requests. Spectator detects suspicious
data by searching for opening matching pairs of HTML
tags <tag attribute1 = ... attribute2 = ...> and
</tag>. Since many servers may require the uploaded
data to be URL- or HTML-encoded, Spectator also at-
tempts to decode the uploaded data using these encod-
ings before attempting the pattern-matching.

Spectator embeds a tag immediately preceding the first
opening > for each matching pair of HTML tags. (Note
that if the original data is URL encoded, Spectator will
re-encode the tagged output as well.) To illustrate how
tag insertion works, consider an HTTP request contain-
ing parameter

<div><b onclick="javascript:alert(...)">...</b></div>

This parameter will be transformed by Spectator into a request
containing

<div spectator_tag=56><b

onclick="javascript:alert(...)"

spectator_tag=56>...</b>

</div>

We tested this scheme with several real-world web servers cho-
sen from a cross-site scripting vulnerability listing site xssed.
com. For vulnerable servers that reflect user input verbatim, this
scheme works well as expected. Our further investigations into
three popular Webmail sites, Hotmail, Yahoo Mail, and Gmail,
have shown this scheme did not work because the Spectator
tags were stripped by the Web servers. While this is difficult
to ascertain, our hypothesis is that these sites use a whitelist of
allowed HTML attributes.

To handle Web sites that may attempt to strip Spectator tags,
we propose an alternative approach. In this new scheme, Spec-
tator embeds tags directly into the actual content surrounded
by HTML tags. For example < b > hello world... < /b >
will be transformed by Spectator into a request contain-
ing < b > spectator tag = 56hello world... < /b > We
tested this scheme with the three Webmail sites above and
found that it works for all of them. However, there is a pos-
sibility that such tags may interfere with Web server’s applica-
tion logic. For example, if the length of the actual content is

explicitly specified in the data, this tagging scheme will affect
data consistency. Unfortunately, while our approach to decode
and augment the uploaded traffic works for the sites we have
experimented with, in the worst case, the server may choose an
entirely new way to encode uploaded parameters. In this case,
properly identifying and tagging HTML uploads will require
server-side cooperation.

5 Experimental Evaluation

An experimental evaluation of Spectator poses a formidable
challenge. Since we do not have access to Web sites on which
real-life worms have been released, worm outbreaks are virtu-
ally impossible to replicate. Even if we were able to capture a
set of server access logs, we still need to be able to replay the
user activity that caused them. Real-life access patterns leading
to worm propagation are, however, hard to capture and replay.
Therefore, our approach is to do a large-scale simulation as well
as a small-scale real-world study.

Large-scale simulations. We created OurSpace, a simple
Web application that conceptually mimics the functionality of
MySpace and similar social networking sites on which worms
have been detected, but without the complexity of real sites.
OurSpace is able to load and store data associated with a partic-
ular user given that user’s ID. For faster access, data associated
with the user is stored in an in-memory database with which
OurSpace communicates. With the help of OurSpace, we have
experimented with various access patterns that we feel reflect
access patterns of a real-life site under attack.

A real-life case study. It is difficult to experiment with real-
life released worms as we discussed earlier. Ideally, we want
to have the following features for our experimental setup: (1) a
real-life popular widely-deployed Web application or a popu-
lar Web site; (2) a running JavaScript worm; (3) users running
widely used browsers; and (4) multiple users observed over a
period of time. To make sure that our ideas work well in a prac-
tical setting, we performed a series of experiments against Site-
frame, an open-source content management system that sup-
ports blogging features [3]. On a high level, Siteframe is sim-
ilar to MySpace: a user can post to his own blog, respond to
other people’s posts, add other users as friends, etc. We used
Siteframe “Beaumont”, version 5.0.0B2, build 538, because it
allows HTML tags in blog posts and does not adequately filter
uploaded content for JavaScript.

For our experiments, both OurSpace and Siteface were de-
ployed on a Pentium 4 3.6 Ghz machine with 3 GB of memory
machine running Windows XP with Apache 2.2 Web server in-
stalled. We ran the Spectator proxy as an application listening
to HTTP traffic on a local host. The Spectator proxy is imple-
mented on top of AjaxScope, a flexible HTML and JavaScript
rewriting framework [18, 19]. The Spectator proxy implemen-
tation consists of 3,200 lines of C# code. For ease of deploy-
ment, we have configured our HTTP client to forward requests
to the port the Spectator proxy listens on; the proxy subse-
quently forwards requests to the appropriate server, although
other deployment strategies are possible, as discussed in Sec-
tion 6.1.
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5.1 OurSpace: Simulating User Behavior
In this section we describe access patterns that we believe to be
representative of normal use.

Scenario 1: Worm outbreak (random topology). We have a
pool of N users, each with a separate home page served by the
Web application. Initially, user 1 wakes up and introduces ma-
licious JavaScript into his profile page. At every step, a random
user wakes up and visits a random page. If the visited page
is infected, the user infects himself by embedding the content
of the visited page into his home page. This simplified prop-
agation model assumes worm traffic is the only HTML traffic
that gets tagged. Regular non-HTML uploads do not lead to
propagation edges being created. Note that this scenario can
be easily augmented so that a user may view pages of multiple
other users, thereby introducing sharing in the resulting propa-
gation graph.

Scenario 2: A single long blog entry. We have a pool of N
users that access the same blog page one after another. After
user k accesses the page, he reads the previous k − 1 posts
and then proceeds to create and uploads an HTML post that
contains the previous posts and a new HTML post; the total
diameter of the resulting graph is 2.

Scenario 3: A model of worm propagation (power law con-
nectivity). To reflect the fact that some users are much more
connected and active than others, in Scenario 3 we bias user
selection towards users with a smaller ID using the power law.
Most of the time, the user selection process heavily biases the
selection towards users with a small ID. This bias reduces the
set of users most actively participating in worm propagation,
leading to “taller” trees being created.

5.2 Overhead and Scalability
To estimate the overhead, we experimented with Scenario 1 to
determine how the approximate algorithm insertion time fluc-
tuates as more nodes are added to the graph. Figure 7 shows
insertion times for Scenario 1 with the detection threshold d set
to 20. The x-axis corresponds to the tag being inserted; the y-
axis shows the insertion time in milliseconds. The entire run
took about 15 minutes with a total of 1,543 nodes inserted.

The most important observation about this graph is that
the tag insertion latency is pretty much constant, hovering
around .01 to .02 ms for Scenario 1 and close to .002 ms for
Scenario 2. The insertion time for the second scenario is con-
siderably lower, since the resulting approximation graph GA
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is much simpler: it contains a root directly connected to every
other node and the maximum depth is 2. Since our proxy is im-
plemented in C#, a language that uses garbage collection, there
are few spikes in the graph due to garbage collection cycles.
Also, the initial insertions take longer since the data structures
are being established. Moreover, once the worm is detected at
d = 20 for tag 1,543, there is another peak when all the nodes
of the tree are traversed and marked.

5.3 Effectiveness of Detection
One observation that does not bode well for our detection ap-
proach with a random topology is that it takes a long time to
reach a non-trivial depth. This is because the forest constructed
with our approximation algorithm usually consists of set of
shallow trees. It is highly unlikely to have a long narrow trace
that would be detected as a worm before all the previous layers
of the tree are filled up. However, we feel that the topology of
worm propagation is hardly random. While researchers have
tried to model worm propagation in the past, we are not aware
of any work that models the propagation of JavaScript worms.
We believe that JavaScript worms are similar to email worms
in the way they spread. Propagation of JavaScript worms also
tends to parallel social connections, which follow a set of well-
studied patterns. Connectivity distribution is typically highly
non-uniform, with a small set of popular users with a long tail
of infrequent or defunct users. Similar observations have been
made with respect to World Wide Web [1] and social network
connectivity [2].

To properly assess the effectiveness of our approximation
approach, we use Scenario 3, which we believe to be more rep-
resentative of real-life topology. The simulation works as fol-
lows: initially, user 1’s page is tainted with a piece of malicious
JavaScript. At each step of the simulation, a user wakes up and
chooses a page to view. The ID of the user to wake up and
to view is chosen using the power law distribution. Viewing
this page will create an edge in the propagation graph from the
tag corresponding to the page selected for viewing to the newly
created tag of the user that was awoken.

In propagation graphs generated using Scenario 3, once
worm propagation reaches a well-connected node, it will tend
to create much longer propagation chains involving that node
and its friends. Figure 8 shows the diameter of GA on the y-
axis as more nodes are added up to 100,000 nodes for Scenar-
ios 1 and 3, as shown on the x-axis. Observe that the diameter
grows more rapidly in the case of selecting users from a biased
distribution, as fewer nodes will be actively involved in prop-
agation and shallow trees are less likely. This result indicates
that in a real-life large-scale setting, which is likely to be simi-
lar to Scenario 3, our worm detection scheme is effective.

5.4 Precision of the Detection Algorithm
Note that as discussed in Section 3.3, the approximate algo-
rithm detects the worm before the precise one in most cases. In
fact, we have not encountered instances of when the approxi-
mate algorithm produces false negatives. However, a legitimate
question is how much earlier is the worm detected with the ap-
proximate algorithm. If the approximate strategy is too eager
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to flag a worm, it will result in too many false positives to be
practical. Whether that happens depends on the structure of the
graph and the amount of sharing it has.

In order to gauge the detection speed obtained with the ap-
proximate scheme as opposed to the precise one we used sim-
ulations of Scenario 3 to generate a variety of random prop-
agation graphs. We measured the diameter of the resulting
propagation graph, as obtained from the precise and approxi-
mate methods. Figure 9 shows how D(G) and D(GA) values,
shown on the y-axis differ as more nodes are inserted, as shown
on the x-axis for one such simulation. The differences between
the two strategies are small, which means that we are not likely
to suffer from false alarms caused by premature detection in
practice, assuming a sufficiently high detection threshold. Fur-
thermore, the approximation algorithm is always conservative
in this simulation, over-approximating the diameter value.

5.5 Case Study: Siteframe Worm
For our experiments we have developed a proof-of-concept
worm that propagates across a locally installed Siteframe site
(The entire code of the Siteframe worm is presented in our tech-
nical report [21].). Conceptually our worm is very similar to
how the Adultspace worm [32] works: the JavaScript payload
is stored on an external server. At each propagation step, a new
blog page is created, with a link to the worm payload embed-
ded in it. This allows the worm to load the payload from the
server repeatedly on every access. Whenever somebody visits
the page, the worm executes and proceeds to create a new entry
on the viewer’s own blog that contains a link to the payload.
To make our experiment a little easier to control, infection is
triggered by the user clicking on an HTML <DIV> element. In
real-life infection would probably occur on every page load.

 

User responsible for 
the change 

Infected blog messages 
injected by the worm 

Figure 10: The main Siteframe site page after worm propagation
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The worm does not check if a particular user has already been
infected.

For our case study we created a total of five users on a fresh
Siteframe site. Each user performed various activity on the site,
leading to one or more worm propagation steps. The diameter
of the resulting propagation graph was 5. To give a sense of
the effects of worm propagation in this case, a screen shot of
the resulting top-level page of the Siteframe site is shown in
Figure 10. While small in scale, the Siteframe worm experi-
ment has significantly enhanced our trust in the effectiveness
of Spectator. Because the Siteframe worm was modeled after
worms previously released in the wild, we believe that Specta-
tor would have detected those worms.

6 Discussion

This section is organized as follows. Section 6.1 presents dif-
ferent deployment models for Spectator and Section 6.2 ad-
dresses threats to the validity of our approach.

6.1 Deployment Models for Spectator
Spectator works in both small-scale environments with servers
that do not have a lot of activity and also with servers that have
thousands of active users. We envision the following deploy-
ment models.

Server-side Deployment. Server-side deployment is the easi-
est way to protect an existing Web site from JavaScript worms
using Spectator. Deploying the Spectator proxy in front of
the server or servers that the site resides on allows the proxy
to monitor all client-server interaction for that site and detect
worms faster than it would in the case of being deployed else-
where on the network and seeing only a portion of the total
browser-server traffic. This model has the advantage of simpli-
fying worm reporting, since the server is responsible for Spec-
tator proxy maintenance.

Intranet-wide Deployment. Intranet deployment can be used
to protect users within an organization, such as a university or a
small enterprise against worm outbreaks. In many cases, these
environments are already protected by firewalls and the Spec-
tator proxy can be easily integrated within that infrastructure.
Of course, worm detection in this kind of deployment is only
possible if sufficiently many intranet users get infected. How-
ever, in the case of intranet deployment, the same proxy can be
used to prevent worms propagating on a wide variety of sites
without changes to our detection or tagging approaches.

A technical issue with client-side deployment is the use
of SSL connections, which are not handled by the Spectator
proxy. However, SSL sessions are frequently only used for
initial authentication in Web applications and it is easy to set
up one’s browser to redirect requests to the Spectator proxy for
non-SSL connections only. For server-side deployment though,
the proxy can be placed before the SSL connection.

Large-scale Deployment. For large-scale server-side deploy-
ment, we may implement Spectator as part of the site’s load
balancer. Load balancing is a strategy used by most large-scale
services such as MySpace or Live Spaces. When dealing with
multiple proxies, our approach is to distribute different trees

in the forest GA across the different proxy servers. The load
balancer considers the source node of the edge being added to
decide which proxy to redirect the request to. To avoid main-
taining explicit state at the load-balancer, such as a lookup map
that maps the parent tag to the proxy server containing that tree,
our strategy is to assign the tag number after node insertion,
based on which proxy it goes into. For instance, the last 5 bits
of the tag may encode the number of the proxy to pass the re-
quest to. In the case of a node having more than one parent,
we choose between two parents, based on the parent’s depth as
described in Section 3. When a proxy server is full and a new
edge, whose parent resides on that proxy server is inserted, we
migrate the newly inserted node to a different proxy server as a
new tree. However, instead of the initial depth of 1, the depth
of the root node for that tree is computed through our standard
computation strategy.

While this deployment strategy closely matches the setup of
large sites, an added advantage is the fact that we no longer
have to store the entire forest in memory of a single proxy. A
similar distributed strategy may be adopted for intranet-wide
client-side deployment. Distributed deployment has the follow-
ing important benefit: an attacker might try to avoid detection
by flooding Spectator with HTML uploads, leading to memory
exhaustion, and then unleashing a worm. Distributed deploy-
ment prevents this possibility.

6.2 Threats to Validity
The first and foremost concern for us when designing Spectator
was limiting the number of false positives, while not introduc-
ing any false negatives. Recall that we require reliable HTML
input detection and marking (see Property 1 in Section 2.2).
Violations of this required property will foil our attempt to tag
uploaded HTML and track its propagation, resulting in false
negatives. However, Property 1 holds for all worms detected in
the wild so far, as described in our technical report [21], and we
believe that Spectator would have successfully detected them
all. Still, potential for false positives remains, although with-
out long-term studies involving large-scale data collection it is
hard to say whether false positives will actually be reported in
practice. Furthermore, it is possible for a group of benign users
to perform the same activity a worm would run automatically.
With a low detection threshold, the following manual worm-
like activity is likely to be regarded as worm outbreaks.

Chain email in HTML format. As long as forwarding pre-
serves HTML formatting, including Spectator tags, this
activity will be flagged as a worm. Spectator has difficulty
distinguishing this manual process from an automatic one
such as the propagation of the Yamanner worm [4].

A long blog post. Similarly to a piece of chain mail, while a
precise detection algorithm will an not flag an excessively
long blog post as a worm, the approximate algorithm will.

To avoid false positives, site administrators can set the detection
thresholds higher. For instance, 500 is a reasonable detection
threshold for Webmail systems and 1,000 is very conservative
for blogging sites. As always, there is a trade-off between the
possibility of false positives and the promptness of real worm
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detection. However, a worm aware of our detection threshold
may attempt to stop its propagation short of it [23].

7 Related Work

While to the best of our knowledge there has not been a solution
proposed to JavaScript worms, there are several related areas of
security research as described below.

7.1 Worm Detection
Since 2001, Internet worm outbreaks have caused severe dam-
age that affected tens of millions of individuals and hundreds
of thousands of organizations. This prompted much research
on detecting and containing worms. However, most of the
effort thus far has focused on worms that exploit vulnerabili-
ties caused by unsafe programming languages, such as buffer
overruns. Many techniques have been developed, including
honeypots [9, 14, 41], dynamic analysis [7, 28], network traffic
analysis [27, 36, 43], and worm propagation behavior [10, 45].
Our work is primarily related to research in the latter category.
Xiong [45] proposes an attachment chain tracing scheme that
detects email worm propagation by identifying the existence
of transmission chains in the network. The requirement for
monitoring multiple email servers limits the practicality of this
scheme. Spectator, on the other hand, can observe all relevant
traffic if deployed on the serve side.

Ellis et al. [10] propose to detect unknown worms by recog-
nizing uncommon worm-like behavior, including (1) sending
similar data from one machine to the next, (2) tree-like prop-
agation and reconnaissance, and (3) changing a server into a
client. However, it is unclear how the behavioral approach can
be deployed in practice because it is difficult to collect neces-
sary information. We use a very basic worm-like behavior —
long propagation chains — to detect JavaScript worms. Unlike
Internet worms, JavaScript worms usually propagate inside the
same Web domain. Spectator proposes an effective approach to
achieve centralized monitoring, enabling worm detection. Our
approach that only counts unique IP addresses on a propaga-
tion path is similar to looking at the propagation tree breadth in
addition to its depth.

7.2 Server-side XSS Protection
There has been much interest in static and runtime protection
techniques to improve the security posture of Web applications.
Static analysis allows the developer to avoid issues such as
cross-site scripting before the application goes into production.
Runtime analysis allows exploit prevention and recovery. The
WebSSARI project pioneered this line of research [15]. Web-
SSARI uses combined unsound static and dynamic analysis in
the context of analyzing PHP programs. WebSSARI has suc-
cessfully been applied to find many SQL injection and cross-
site scripting vulnerabilities in PHP code. Several projects that
came after WebSSARI improve on the quality of static analy-
sis for PHP [17, 44]. The Griffin project proposes a scalable
and precise sound static and runtime analysis techniques for
finding security vulnerabilities in large Java applications [22,

24]. Based on a vulnerability description, both a static checker
and a runtime instrumentation is generated. Static analysis is
also used to drastically reduce the runtime overhead in most
cases. The runtime system allows vulnerability recovery by
applying user-provided sanitizers on execution paths that lack
them. Several other runtime systems for taint tracking have
been proposed as well, including Haldar et al. for Java [12] and
Pietraszek et al. [31] and Nguyen-Tuong et al. for PHP [29].

7.3 Client-side Vulnerability Prevention
Noxes, a browser-based security extension, is designed to pro-
tect against information leakage from the user’s environment
while requiring minimal user interaction and customization ef-
fort [20]. Information leakage is a frequent side-effect of cross-
site scripting attacks; e.g., the act of sending a cookie to an un-
known URL will be detected and the user will be prompted.
While effective at blocking regular cross-site scripting attacks,
Noxes is generally helpless when it comes to data that is trans-
mitted to a presumably trusted side without user’s knowledge,
such as it would be in the case of a JavaScript worm. In [40],
Vogt et al. propose to prevent XSS on the client side by track-
ing the flow of sensitive information inside the web browser
using dynamic data flow and static analysis. The main issues
with their solution are the number of false alarms and how an
average user can decide if an alarm is false.

8 Conclusions

This paper presents Spectator, the first practical detection and
containment solution for JavaScript worms. The essence of the
Spectator approach is to observe and examine the traffic be-
tween a Web application and its users, looking for worm-like
long propagation chains. We have implemented and evaluated
the Spectator solution on a number of large-scale simulations
and also performed a case study involving a real JavaScript
worm propagating across a social networking site. Our ex-
periments confirm that Spectator is an effective and scalable,
low-overhead worm detection solution.
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