
Design Tradeoffs for SSD Performance

Nitin Agrawal∗, Vijayan Prabhakaran, Ted Wobber,
John D. Davis, Mark Manasse, Rina Panigrahy

Microsoft Research, Silicon Valley
∗University of Wisconsin-Madison

Abstract
Solid-state disks (SSDs) have the potential to revolution-
ize the storage system landscape. However, there is little
published work about their internal organization or the
design choices that SSD manufacturers face in pursuit of
optimal performance. This paper presents a taxonomy of
such design choices and analyzes the likely performance
of various configurations using a trace-driven simulator
and workload traces extracted from real systems. We find
that SSD performance and lifetime is highly workload-
sensitive, and that complex systems problems that nor-
mally appear higher in the storage stack, or even in dis-
tributed systems, are relevant to device firmware.

1 Introduction

The advent of the NAND-flash based solid-state stor-
age device (SSD) is certain to represent a sea change in
the architecture of computer storage subsystems. These
devices are capable of producing not only exceptional
bandwidth, but also random I/O performance that is
orders of magnitude better than that of rotating disks.
Moreover, SSDs offer both a significant savings in power
budget and an absence of moving parts, improving sys-
tem reliability.

Although solid-state disks cost significantly more per
unit capacity than their rotating counterparts, there are
numerous applications where they can be applied to great
benefit. For example, in transaction-processing systems,
disk capacity is often wasted in order to improve oper-
ation throughput. In such configurations, many small
(cost inefficient) rotating disks are deployed to increase
I/O parallelism. Large SSDs, suitably optimized for ran-
dom read and write performance, could effectively re-
place whole farms of slow, rotating disks. At this writ-
ing, small SSDs are starting to appear in laptop comput-
ers because of their reduced power-profile and reliability
in portable environments. As the cost of flash continues
to decline, the potential application space for solid-state
disks will certainly continue to grow.

Despite the promise that SSDs hold, there is little in
the literature about the architectural tradeoffs inherent in

their design. Where such knowledge exists, it typically
remains the intellectual property of SSD manufacturers.
As a consequence, it is difficult to understand the archi-
tecture of a given device, and harder still to interpret its
performance characteristics.

In this paper, we lay out a range of design tradeoffs
that are relevant to NAND-flash solid-state storage. We
then analyze several of these tradeoffs using a trace-
based disk simulator that we have customized to char-
acterize different SSD organizations. Since we can only
speculate about the detailed internals of existing SSDs,
we base our simulator on the specified properties of
NAND-flash chips. Our analysis is driven by various
traces captured from running systems such as a full-scale
TPC-C benchmark, an Exchange server workload, and
various standard file system benchmarks.

We find that many of the issues that arise in SSD
design appear to mimic problems that have previously
appeared higher in the storage stack. In solving these
hard problems, there is considerable latitude for design
choice. We show that the following systems issues are
relevant to SSD performance:

• Data placement. Careful placement of data across
the chips of an SSD is critical not only to provide
load balancing, but to effect wear-leveling.

• Parallelism. The bandwidth and operation rate of
any given flash chip is not sufficient to achieve op-
timal performance. Hence, memory components
must be coordinated so as to operate in parallel.

• Write ordering. The properties of NAND flash
present hard problems to the SSD designer. Small,
randomly-ordered writes are especially tricky.

• Workload management. Performance is highly
workload-dependent. For example, design deci-
sions that produce good performance under sequen-
tial workloads may not benefit workloads that are
not sequential, and vice versa.

As SSDs increase in complexity, existing disk models
will become insufficient for predicting performance. In

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 57

particular, random write performance and disk lifetime
will vary significantly due to the locality of disk write
operations. We introduce a new model for characterizing
this behavior based on cleaning efficiency and suggest a
new wear-leveling algorithm for extending SSD lifetime.

The remainder of this paper is organized as follows. In
the next section, we provide background on the proper-
ties of NAND-flash memory. Section 3 describes the ba-
sic functionality that SSD designers must provide and the
major challenges in implementing these devices. Sec-
tion 4 describes our simulation environment and presents
an evaluation of the various design choices. Section 5
provides a discussion of SSD wear-leveling and gives
preliminary simulator results on this topic. Related work
is discussed in Section 6, and Section 7 concludes.

2 Background

Our discussion of flash memory is based on the latest
product specifications for Samsung’s K9XXG08UXM
series NAND-flash part [29]. Other vendors such as
Micron and Hynix offer products with similar features.
For the remainder of this paper, we treat the 4GB Sam-
sung part as a canonical exemplar, although the specifics
of other vendors’ parts will differ in some respects.
We present the specifications for single-level cell (SLC)
flash. Multi-level cell (MLC) flash is cheaper than SLC,
but has inferior performance and lifetime.

Figure 1 shows a schematic for a flash package. A
flash package is composed from one or more dies (also
called chips). We describe a 4GB flash-package consist-
ing of two 2GB dies, sharing an 8-bit serial I/O bus and
a number of common control signals. The two dies have
separate chip enable and ready/busy signals. Thus, one
of the dies can accept commands and data while the other
is carrying out another operation. The package also sup-
ports interleaved operations between the two dies.

Each die within a package contains 8192 blocks, orga-
nized among 4 planes of 2048 blocks. The dies can oper-
ate independently, each performing operations involving
one or two planes. Two-plane commands can be exe-
cuted on either plane-pairs 0 & 1 or 2 & 3, but not across
other combinations. Each block in turn consists of 64
4KB pages. In addition to data, each page includes a 128
byte region to store metadata (identification and error-
detection information). Table 1 presents the operational
attributes of the Samsung 4GB flash memory.

2.1 Properties of Flash Memory

Data reads are at the granularity of flash pages, and a typ-
ical read operation takes 25µs to read a page from the
media into a 4KB data register, and then subsequently
shift it out over the data bus. The serial line transfers

Page Read to Register 25µs
Page Program (Write) from Register 200µs
Block Erase 1.5ms
Serial Access to Register (Data bus) 100µs
Die Size 2 GB
Block Size 256 KB
Page Size 4 KB
Data Register 4 KB
Planes per die 4
Dies per package (2GB/4GB/8GB) 1,2 or 4
Program/Erase Cycles 100 K

Table 1: Operational flash parameters

data at 25ns per byte, or roughly 100µs per page. Flash
media blocks must be erased before they can be reused
for new data. An erase operation takes 1.5ms, which is
considerably more expensive than a read or write opera-
tion. In addition, each block can be erased only a finite
number of times before becoming unusable. This limit,
100K erase cycles for current generation flash, places a
premium on careful block reuse.

Writing (or programming) is also done at page granu-
larity by shifting data into the data register (100µs) and
then writing it out to the flash cell (200µs). Pages must be
written out sequentially within a block, from low to high
addresses. The part also provides a specialized copy-
back program operation from one page to another, im-
proving performance by avoiding the need to transport
data through the serial line to an external buffer.

In this paper, we discuss a 2 x 2GB flash package, but
extensions to larger dies and/or packages with more dies
are straightforward.

2.2 Bandwidth and Interleaving

The serial interface over which flash packages receive
commands and transmit data is a primary bottleneck
for SSD performance. The Samsung part takes roughly
100µs to transfer a 4KB page from the on-chip register to
an off-chip controller. This dwarfs the 25µs required to
move data into the register from the NAND cells. When
these two operations are taken in series, a flash pack-
age can only produce 8000 page reads per second (32
MB/sec). If interleaving is employed within a die, the
maximum read bandwidth from a single part improves
to 10000 reads per second (40 MB/sec). Writes, on the
other hand, require the same 100µs serial transfer time
per page as reads, but 200µs programming time. With-
out interleaving, this gives a maximum, single-part write
rate of 3330 pages per second (13 MB/sec). Interleaving
the serial transfer time and the program operation dou-
bles the overall bandwidth. In theory, because there are
two independent dies on the packages we are consider-
ing, we can interleave three operations on the two dies
put together. This would allow both writes and reads to
progress at the speed of the serial interconnect.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association58

4K Register 4K Register 4K Register

Plane 0 Plane 1 Plane 2 Plane 3

Block 4095Block 4095

Plane 3Plane 2Plane 1Plane 0

4K Register4K Register4K Register4K Register4K Register

o
o

Page 0

Page 1

Page 63Page 63

Page 1

Page 0

o
o

Page 63

Page 1

Page 0

o
o o

o

Page 0

Page 1

Page 63

o
o

Page 0

Page 1

Page 63

Page 63

Page 1

Page 0

o
oo

o

Page 0

Page 1

Page 63

o
o

Page 0

Page 1

Page 63 Page 63

Page 1

Page 0

o
o

Page 63

Page 1

Page 0

o
o

o

o

o

o o

o

o

o o

o

oo

o

o

o

o
o

Block 0

Page 0

Page 1

Page 63

Block 4094

Block 1

Block 8190

Block 4096

o

Block 8191

Block 4097

Flash Package (4 GB) Die 1Die 0

Serial Connection

Block 4097

Block 8191

o

Block 4096

Block 8190

Block 1

Block 4094

Page 63

Page 1

Page 0

Block 0

o
o

o

o

o

o o

o

oo

o

o

oo

o

o

o

o
o

Page 0

Page 1

Page 63Page 63

Page 1

Page 0

o
oo

o

Page 0

Page 1

Page 63

o
o

Page 0

Page 1

Page 63

Figure 1: Samsung 4GB flash internals

Interleaving can provide considerable speedups when
the operation latency is greater than the serial access la-
tency. For example, a costly erase command can in some
cases proceed in parallel with other commands. As an-
other example, fully interleaved page copying between
two packages can proceed at close to 100µs per page as
depicted in Figure 2 in spite of the 200µs cost of a single
write operation. Here, 4 source planes and 4 destination
planes copy pages at speed without performing simulta-
neous operations on the same plane-pair and while opti-
mally making use of the serial bus pins connected to both
flash dies. Once the pipe is loaded, a write completes ev-
ery interval (100µs).

Even when flash architectures support interleaving,
they do so with serious constraints. So, for example, op-
erations on the same flash plane cannot be interleaved.
This suggests that same-package interleaving is best em-
ployed for a choreographed set of related operations,
such as a multi-page read or write as depicted in Fig-
ure 2. The Samsung parts we examined support a fast in-
ternal copy-back operation that allows data to be copied
to another block on-chip without crossing the serial pins.
This optimization comes at a cost: the data can only be
copied within the same flash plane (of 2048 blocks). Two
such copies may themselves be interleaved on different
planes, and the result yields similar performance to the
fully-interleaved inter-package copying depicted in Fig-
ure 2, but without monopolizing the serial pins.

3 SSD Basics

In this section we outline some of the basic issues that
arise when constructing a solid-state disk from NAND-

Source Plane 0

Dest Plane 0

Source Plane 2

Dest Plane 2

Source Plane 1

Dest Plane 1

Source Plane 3

Dest Plane 3

Read
Xfer

Write

Time

Figure 2: Interleaved page copying

flash components. Although we introduce a number of
dimensions in which designs can differ, we leave the
evaluation of specific choices until Section 4.

All NAND-based SSDs are constructed from an ar-
ray of flash packages similar to those described in the
previous section. Figure 3 depicts a generalized block
diagram for an SSD. Each SSD must contain host inter-
face logic to support some form of physical host interface
connection (USB, FiberChannel, PCI Express, SATA)
and logical disk emulation, like a flash translation layer
mechanism to enable the SSD to mimic a hard disk drive.
The bandwidth of the host interconnect is often a critical
constraint on the performance of the device as a whole,
and it must be matched to the performance available to
and from the flash array. An internal buffer manager
holds pending and satisfied requests along the primary
data path. A multiplexer (Flash Demux/Mux) emits com-
mands and handles transport of data along the serial con-
nections to the flash packages. The multiplexer can in-
clude additional logic, for example, to buffer commands
and data. A processing engine is also required to manage
the request flow and mappings from disk logical block

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 59

Host
Interface
Logic

Buffer
Manager

Processor
Flash
Demux
/Mux

Flash
Pkg

Host

Interconnect

RAM

SSD Controller
Flash
Pkg

Flash
Pkg

Flash
Pkg

Figure 3: SSD Logic Components

address to physical flash location. The processor, buffer-
manager, and multiplexer are typically implemented in a
discrete component such as an ASIC or FPGA, and data
flow between these logic elements is very fast. The pro-
cessor, and its associated RAM, may be integrated, as
is the case for simple USB flash-stick devices, or stan-
dalone as for designs with more substantial processing
and memory requirements.

As described in Section 2, flash packages export an
8-bit wide serial data interface with a similar number of
control pins. A 32GB SSD with 8 of the Samsung parts
would require 136 pins at the flash controller(s) just for
the flash components. With such a device, it might be
possible to achieve full interconnection between the flash
controller(s) and flash packages, but for larger configura-
tions this is not likely to remain feasible. For the mo-
ment, we assume full interconnection between data path,
control logic, and flash. We return to the issue of inter-
connect density in Section 3.3.

This paper is primarily concerned with the organiza-
tion of the flash array and the algorithms needed to man-
age mappings between logical disk and physical flash ad-
dresses. It is beyond the scope of this paper to tackle the
many important issues surrounding the design and layout
of SSD logic components.

3.1 Logical Block Map

As pointed out by Birrell et al. [2], the nature of NAND
flash dictates that writes cannot be performed in place as
on a rotating disk. Moreover, to achieve acceptable per-
formance, writes must be performed sequentially when-
ever possible, as in a log. Since each write of a single
logical-disk block address (LBA) corresponds to a write
of a different flash page, even the simplest SSD must
maintain some form of mapping between logical block
address and physical flash location. We assume that the

logical block map is held in volatile memory and recon-
structed from stable storage at startup time.

We frame the discussion of logical block maps us-
ing the abstraction of an allocation pool to think about
how an SSD allocates flash blocks to service write re-
quests. When handling a write request, each target log-
ical page (4KB) is allocated from a pre-determined pool
of flash memory. The scope of an allocation pool might
be as small as a flash plane or as large as multiple flash
packages. When considering the properties of allocation
pools, the following variables come to mind.

• Static map. A portion of each LBA constitutes a
fixed mapping to a specific allocation pool.

• Dynamic map. The non-static portion of a LBA is
the lookup key for a mapping within a pool.

• Logical page size. The size for the referent of a
mapping entry might be as large as a flash block
(256KB), or as small as a quarter-page (1KB) .

• Page span. A logical page might span related pages
on different flash packages thus creating the poten-
tial for accessing sections of the page in parallel.

These variables are then bound by three constraints:

• Load balancing. Optimally, I/O operations should
be evenly balanced between allocation pools.

• Parallel access. The assignment of LBAs to phys-
ical addresses should interfere as little as possible
with the ability to access those LBAs in parallel. So,
for example if LBA0..LBAn are always accessed at
the same time, they should not be stored on a com-
ponent that requires each to be accessed in series.

• Block erasure. Flash pages cannot be re-written
without first being erased. Only fixed-size blocks of
contiguous pages can be erased.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association60

The variables that define allocation pools trade off
against these constraints. For example, if a large portion
of the LBA space is statically mapped, then there is little
scope for load-balancing. If a contiguous range of LBAs
is mapped to the same physical die, performance for se-
quential access in large chunks will suffer. With a small
logical page size, more work will be required to elimi-
nate valid pages from erasure candidates. If the logical
page size (with unit span) is equal to the block size, then
erasure is simplified because the write unit and erase unit
are the same, however all writes smaller than the logical
page size result in a read-modify-write operation involv-
ing the portions of the logical page not being modified.

RAID systems [26] often stripe logically contiguous
chunks of data (e.g. 64KB or larger) across multiple
physical disks. Here, we use striping at fine granular-
ity to distribute logical pages (4K) across multiple flash
dies or packages. Doing so serves both to distribute load
and to arrange that consecutive pages will be placed on
different packages that can be accessed in parallel.

3.2 Cleaning

Fleshing out the design sketched by Birrell et al. [2], we
use flash blocks as the natural allocation unit within an
allocation pool. At any given time, a pool can have one or
more active blocks available to hold incoming writes. To
support the continued allocation of fresh active blocks,
we need a garbage collector to enumerate previously-
used blocks that must be erased and recycled. If the log-
ical page granularity is smaller than the flash block size,
then flash blocks must be cleaned prior to erasure. Clean-
ing can be summarized as follows. When a page write
is complete, the previously mapped page location is su-
perseded since its contents are now out-of-date. When
recycling a candidate block, all non-superseded pages in
the candidate must be written elsewhere prior to erasure.

In the worst case, where superseded pages are dis-
tributed evenly across all blocks, N − 1 cleaning writes
must be issued for every new data write (where there are
N pages per block). Of course, most workloads produce
clusters of write activity, which in turn lead to multiple
superseded pages per block when the data is overwrit-
ten. We introduce the term cleaning efficiency to quantify
the ratio of superseded pages to total pages during block
cleaning. Although there are many possible algorithms
for choosing candidate blocks for recycling, it is always
desirable to optimize cleaning efficiency. It’s worth not-
ing that the use of striping to enhance parallel access for
sequential addresses works against the clustering of su-
perseded pages.

For each allocation pool we maintain a free block list
that we populate with recycled blocks. In this section and
the next, we assume a purely greedy approach that calls

for choosing blocks to recycle based on potential clean-
ing efficiency. As described in Section 2, NAND flash
sustains only a limited number of erasures per block.
Therefore, it is desirable to choose candidates for recy-
cling such that all blocks age evenly. This property is
enforced through the process known as wear-leveling. In
Section 5, we discuss how the choice of cleaning candi-
dates interacts directly with wear-leveling, and suggest a
modified greedy algorithm.

In an SSD that emulates a traditional disk interface,
there is no abstraction of a free disk sector. Hence, the
SSD is always full with respect to its advertised capacity.
In order for cleaning to work, there must be enough spare
blocks (not counted in the overall capacity) to allow
writes and cleaning to proceed, and to allow for block
replacement if a block fails. An SSD can be substan-
tially overprovisioned with such spare capacity in order
to reduce the demand for cleaning blocks in foreground.
Delayed block cleaning might also produce better clus-
tering of superseded pages in non-random workloads.

In the previous subsection, we stipulated that a given
LBA is statically mapped to a specific allocation pool.
Cleaning can, however, operate at a finer granularity.
One reason for doing so is to exploit low-level efficiency
in the flash architecture such as the internal copy-back
operation described in Section 2.2, which only applies
when pages are moved within the same plane. Since a
single flash plane of 2048 blocks represents a very small
allocation pool for the purposes of load distribution, we
would like to allocate from a larger pool. However, if an
active block and cleaning state per plane is maintained,
then cleaning operations within the same plane can be
arranged with high probability.

It might be tempting to view block cleaning as simi-
lar to log-cleaning in a Log-Structured File System [28]
and indeed there are similarities. However, apart from
the obvious difference that we model a block store as op-
posed to a file system, a log-structured store that writes
and cleans in strict disk-order cannot choose candidate
blocks so as to yield higher cleaning efficiency. And,
as with LFS-like file systems, it’s altogether too easy
to combine workloads that would cause all recoverable
space to be situated far from the log’s cleaning pointer.
For example, writing the same sets of blocks over and
over would require a full cycle over the disk content in
order for the cleaning pointer to reach the free space
near the end of the log. And, unlike a log-structured file
system, the disk here is always “full”, corresponding to
maximal cleaning pressure all the time.

3.3 Parallelism and Interconnect Density

If an SSD is going to achieve bandwidths or I/O rates
greater than the single-chip maxima described in Sec-

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 61

tion 2.2, it must be able to handle I/O requests on mul-
tiple flash packages in parallel, making use of the ad-
ditional serial connections to their pins. There are sev-
eral possible techniques for obtaining such parallelism
assuming full connectivity to the flash, some of which
we have touched on already.

• Parallel requests. In a fully connected flash array,
each element is an independent entity and can there-
fore accept a separate flow of requests. The com-
plexity of the logic necessary to maintain a queue
per element, however, may be an issue for imple-
mentations with reduced processing capacity.

• Ganging. A gang of flash packages can be utilized
in synchrony to optimize a multi-page request. Do-
ing so can allow multiple packages to be used in
parallel without the complexity of multiple queues.
However, if only one queue of requests flows to
such a gang, elements will lie idle when requests
don’t span all of them.

• Interleaving. As discussed in Section 2.2, inter-
leaving can be used to improve bandwidth and hide
the latency of costly operations.

• Background cleaning. In a perfect world, clean-
ing would be performed continuously in the back-
ground on otherwise idle components. The use of
operations that don’t require data to cross the serial
interface, such as internal copy-back, can help hide
the cost of cleaning.

The situation becomes more interesting when full con-
nectivity to the flash packages is not possible. Two
choices are readily apparent for organizing a gang of
flash packages: 1) the packages are connected to a se-
rial bus where a controller dynamically selects the target
of each command; and 2) each package has separate data
path to the controller, but the control pins are connected
in a single broadcast bus. Configuration (1) is depicted in
Figure 4. Data and control lines are shared, and an enable
line for each package selects the target for a command.
This scheme increases capacity without requiring more
pins, but it does not increase bandwidth. Configuration
(2) is depicted in Figure 5. Here there is shared set of
control pins, but since there are individual data paths to
each package, synchronous operations which span mul-
tiple packages can proceed in parallel. The enable lines
can be removed from the second configuration, but in this
case all operations must apply to the entire gang, and no
package can lie idle.

Interleaving can play a role within a gang. A long run-
ning operation such as block erasure can be performed on
one element while reads or writes are proceeding on oth-
ers (hence the control line need only be held long enough

Flash
Pkg
1

Flash
Pkg
3

Flash
Pkg
0

Flash
Pkg
2

Control
Chip Enables

Data

Figure 4: Shared bus gang

Flash
Pkg
1

Flash
Pkg
3

Flash
Pkg
0

Flash
Pkg
2

Control
Chip Enables

Data

Figure 5: Shared control gang

to issue a command). The only constraint is competition
for the shared data and command bus. This could be-
come quite important during block recycling since block
erasure is an order of magnitude more expensive than
other operations.

In another form of parallelism, intra-plane copy-back
can be used to implement block cleaning in background.
However, cleaning can take place with somewhat lower
latency if pages are streamed at maximum speed between
two chips. This benefit comes, of course, at the expense
of occupying two sets of controller pins for the duration.

It is unlikely that any one choice for exploiting paral-
lelism can be optimal for all workloads, and certainly as
SSD capacity scales up, it will be difficult to ensure full
connectivity between controllers and flash packages. The
best choices will undoubtedly be dictated by workload
properties. For example, a highly sequential workload
will benefit from ganging, a workload with inherent par-
allelism will take advantage of a deeply parallel request
queuing structure, and a workload with poor cleaning ef-
ficiency (e.g. no locality) will rely on a cleaning strategy
that is compatible with the foreground load.

3.4 Persistence

Flash memory is by definition persistent storage. How-
ever, in order to recover SSD state, it is essential to re-
build the logical block map and all related data struc-
tures. This recovery must also reconstruct knowledge of
failed blocks so that they are not re-introduced into active
use. There are several possible approaches to this prob-
lem. Most take advantage of the fact that each flash page
contains a dedicated area (128 bytes) of metadata storage
that can be used to store the logical block address that
maps to a given flash page. In our simulator, we model
the technique sketched by Birrell et al. [2]. This tech-

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association62

nique eliminates the need to visit every page at startup
by saving mapping information per block rather than per
page. Note that in any such algorithm, pages whose con-
tent has been superseded but not yet erased will appear
multiple times during recovery. In these cases, the stable
storage representation must allow the recovery algorithm
to determine the most recent instance of a logical page
within an allocation pool.

Flash parts do not, in general, provide error detection
and correction. These functions must be provided by ap-
plication firmware. The page metadata can also hold an
error-detection code to determine which pages are valid
and which blocks are failure-free, and an error-correction
code to recover from the single-bit errors that are ex-
pected with NAND flash. Samsung specifies block life-
time assuming the presence of a single-bit ECC [29]. It
may be possible to extend block lifetime by using more
robust error correction.

The problem of recovering SSD state can be bypassed
altogether by holding the logical block map in Phase-
Change RAM [14] or Magnetoresistive RAM [9]. These
non-volatile memories are writable at byte granularity
and don’t have the block-erasure constraints of NAND
flash. The former is not yet widely available, and the lat-
ter can be obtained in small capacities, but at 1000 times
the cost of NAND flash. Alternatively, backup power
(e.g. big capacitors) might be enough to flush the neces-
sary recovery state to flash on demand.

3.5 Industry Trends

The market for NAND flash continues to grow both in
volume and in breadth as storage capacity increases and
cost per unit storage declines. As of late 2007, laptops
are available that use an SSD as the primary disk drive.
In addition, high-end flash systems have become avail-
able for the enterprise marketplace. Most products in the
marketplace can be placed into one of three categories.
Consumer portable storage. These are inexpensive
units with one or perhaps two flash packages and a sim-
ple controller. They commonly appear as USB flash
sticks or camera memories, and feature moderate band-
width for sequential operations, moderate random read
performance, and very poor random write performance.
Laptop disk replacements. These disks provide sub-
stantial bandwidth to approximate that of the IDE and
SATA disks they replace. Random read performance is
far superior to that of rotating media. Random write per-
formance is comparable to that of rotating media.
Enterprise/database accelerators. These units promise
very fast sequential performance, random read perfor-
mance superior to that of a high-end RAID array, and
very strong random write performance. They have costs
to match. However, the specified random-write perfor-

Sequential Random 4K
Read Write Read Write

USB 11.7 MB/sec 4.3 MB/sec 150/sec <20/sec
MTron 100 MB/sec 80 MB/sec 11K/sec 130/sec

Zeus 200 MB/sec 100 MB/sec 52K/sec 11K/sec
FusionIO 700 MB/sec 600 MB/sec 87K/sec Not avail

Table 2: Sample Flash Device Performance

mance numbers are often a bit mysterious, and some-
times are missing altogether. For example, it is often dif-
ficult to tell whether cleaning costs are included.

In Table 2, we provide performance numbers for sam-
ple devices in these categories. The sample devices are
the Lexar JD Firefly 8GB USB flash stick, the MTron
MSD-SATA3025 SSD [20], the ZeusIOPS SSD [30],
and the FusionIO ioDrive [10]. The MTron device is in
the second category above, while the Zeus and FusionIO
devices are clearly enterprise-class. We are not privy to
the internals of these devices, but we can speculate on
how they are organized. Previous work [2] points out
that consumer USB flash devices almost certainly use a
logical page granularity close to the size of a flash block.
Limited random read performance suggests that only a
single I/O request is in flight at a time. The MTron device
gives random read I/O performance better than can be
expected with a single flash request stream, so it almost
certainly employs some sort of parallel request structure.
However, the poor random write I/O performance sug-
gests that a large logical page size is being used (with
substantial read-modify-write costs). The random write
performance of the Zeus and FusionIO devices suggest a
sophisticated block mapping scheme, and multiple par-
allel activities are clearly needed to reach the stated ran-
dom I/O performance. The Zeus system appears to lower
pressure on its cleaning algorithm by substantial over-
provisioning [7]. The FusionIO system (for which only
a preliminary specification was available in 2007) is the
first to offer a PCI-Express interconnect.

4 Design Details and Evaluation

From our discussion of industry trends, it is clear that
current SSDs can get very good performance numbers
from ideal workloads. For example, under sequen-
tial workloads these devices verge on saturating any
interconnect, RAID controller [24], or host peripheral
chipset [1]. However, it’s unclear whether this is true
of a single sequential stream, or multiple streams. And
if multiple, how many streams are optimal? Does the
stated write performance account for cleaning overhead?
What is the random write performance and what are the
assumptions about distribution of superseded pages dur-
ing cleaning?

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 63

This section introduces a trace-driven simulation envi-
ronment that allows us to gain insight into SSD behavior
under various workloads.

4.1 Simulator

Our simulation environment is a modified version of
the DiskSim simulator [4] from the CMU Parallel Data
Lab. DiskSim does not specifically support simulation
of solid-state disks, but its infrastructure for processing
trace logs and its extensibility made it a good vehicle for
customization.

DiskSim emulates a hierarchy of storage components
such as buses and controllers (e.g. RAID arrays) as well
as disks. We implemented an SSD module derived from
the generic rotating disk module. Since this module did
not originally support multiple request queues, we added
an auxiliary level of parallel elements, each with a closed
queue, to represent flash elements or gangs. We also
added logic to serialize request completions from these
parallel elements. For each element, we maintain data
structures to represent SSD logical block maps, clean-
ing state, and wear-leveling state. As each request is
processed, sufficient delay is introduced to simulate real-
time delay according to the specifications in Table 1. If
cleaning and recycling is called for by the simulator state,
additional delay is introduced to account for it, and the
state is updated accordingly. We added configuration pa-
rameters to enable such features as background cleaning,
gang-size, gang organization (e.g. switched or shared-
control), interleaving, and overprovisioning.

Verifying our simulation requires detailed experiments
to determine the caching and flash-management algo-
rithms used by actual SSD hardware. We intend to do
this as future work.

4.2 Workloads

We present results for a collection of workload traces
which we name as follows for the purpose of exposition:
TPC-C, Exchange, IOzone, and Postmark.

We first examine a synthetic workload generated by
DiskSim. We present this workload to characterize base-
line behavior for sequential and random access request
streams. IOzone [15] and Postmark [16] are standard file
system benchmarks run on a workstation class PC with a
750 GB SATA disk. These benchmarks require relatively
little capacity, and can be simulated on a single SSD. De-
spite the fact that we do not simulate on-disk caching, in
the above traces, the disk cache was enabled, producing
unnaturally low request inter-arrival times for writes.

TPC-C is an instance of the well-established database
benchmark [31]. Our trace is a 30-minute trace of a

large-scale TPC-C configuration, running 16,000 ware-
houses. The traced system comprised 14 RAID (HP
MSA1500 Fibre-Channel) controllers each supporting
28 high-speed 36 GB disks. We target one of the con-
trollers serving non-log data tables: a mixed read/write
workload with about twice as many reads as writes. (The
13 non-log controllers have similar workloads.) Al-
though each controller manages over a terabyte of stor-
age, the benchmark uses only about 160GB per con-
troller. The large number of disks are needed to obtain
disk arms that can handle requests in parallel. All re-
quests in this workload are for multiples of 8KB blocks.
Alignment is important, since misaligned requests to
flash add a page access to every read or write. Several
of the logical volumes in our configuration were mis-
aligned, yielding traces in which LBA mod 8 = 7 for
all LBA. We corrected for this by post-processing the
roughly 6.8M events in this trace.

The Exchange workload is taken from a server run-
ning Microsoft Exchange. This is a specialized database
workload with about a 3:2 read-to-write ratio. The traced
server had 6 non-log RAID controllers of a terabyte each
(14 disks). We extracted a 15 minute trace of roughly
65000 events from one of these controllers, involving re-
quests over 250GB of disk capacity.

4.3 Simulation Results

We first present results from a simple workload synthe-
sized by the DiskSim workload-generator. Then, we vary
different configuration parameters and study their impact
on SSD performance under the macro benchmarks.

Our baseline configuration is an SSD with 32GB of
flash: 8 fully connected flash packages. In this config-
uration, allocation pools are the size of a flash package,
the logical page and stripe size is 4KB, and cleaning re-
quires data transfer across the flash package serial inter-
face. Because we model only a small SSD, the larger
workloads require that we simulate a RAID controller as
well. We assume that each SSD is overprovisioned by
15%, which means that the disk capacity available to the
host is around 27 GB. We invoke cleaning when less than
5% free blocks remain. The TPC-C workload requires 6
attached SSDs in this configuration, and the Exchange
workload requires 10.

Microbenchmark Cleaning Latency (µs) IO/s
Sequential read x 130 61,255

Random read x 130 61,255
Sequential write x 309 25,898

Random write x 309 25,898
Sequential write

√
327 24,457

Random write
√

433 18,480

Table 3: SSD performance under microbenchmarks

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association64

 0
 0.2
 0.4
 0.6
 0.8
 1

 1.2
 1.4
 1.6
 1.8

TPC-C Iozone PostmarkExchange

IO
/s

Performance Improvement with Interleaving

None
Dies

Plane-pairs

(a)

0
8
16

TPC-C Iozone Postmark Exchange

re
qu
es
ts

Average Queue Length

Queue length

(b)

Figure 6: Impact of interleaving

Microbenchmarks. We ran a set of 6 synthetic mi-
crobenchmarks involving 4 KB I/O operations and report
the access latency and respective I/O rates in Table 3. In
a fully-connected SSD, sequential and random I/Os have
equivalent latencies. Note that this latency includes the
time to transfer both the page data and the 128-byte page
metadata. When cleaning is enabled, the latencies for
write operations reflect the additional overhead. Notice
that sequential writes result in better cleaning efficiency,
and therefore less cleaning overhead.

Page Size, Striping, and Interleaving. Choice of logi-
cal page size has a substantial impact on overall perfor-
mance. As discussed in Section 3.1, every write that is
smaller than the logical page size requires a read-modify-
write operation. When run with a full-block page size
(256KB) at unit depth (e.g., the entire logical page on
the same die), TPC-C produces an average I/O latency of
over 20 ms, more than two orders of magnitude greater
than what can be expected with a 4KB page size. Our
eight package configuration with a 256KB page size can
(barely) keep up with the average trace rate of 300 IOPS
per SSD, but only due to the inherent parallelism avail-
able in the SSD. We do much better with a smaller page
size. The average latency for TPC-C is 200 µs with a
page size of 4KB, although the workload does not have
enough events to test the 40,000 IOPS that this implies.
As described in Section 2.2, I/O performance can be im-
proved by interleaving multiple requests within a single
flash package or die. Our simulator accounts for inter-
leaving by noticing when two requests are queued on a
flash package that can proceed concurrently according to
the hardware constraints. Figure 6(a) presents I/O rates

 0
 5
 10
 15
 20
 25
 30
 35
 40

TPC-C Iozone Postmark Exchange

Re
sp
on
se
 T
im
e
(re

lat
ive

 to
 n
o
ga
ng
)

8-way
4-way
2-way

Sync 8-way
Sync 4-way
Sync 2-way

Figure 7: Shared-control ganging

normalized with respect to our baseline configuration
and shows how various types of interleaving improves
the performance of our baseline configuration. While
IOzone and Postmark show an increase in throughput,
TPC-C and Exchange do not benefit from interleaving.
As shown in Figure 6(b), the average number of queued
requests (per flash package, as measured by DiskSim)
is very close to zero for these two workloads. With no
queuing, interleaving will not occur. IOzone and Post-
mark have a significant sequential I/O component. When
a large sequential request is dispatched to multiple pack-
ages due to stripe boundaries, queuing occurs and inter-
leaving becomes beneficial. One might think that TPC-C
would benefit from striping its 8KB requests at 8KB in-
crements thereby allowing every request to interleave at
the package or die level. However, splitting up each re-
quest into parallel 4KB requests is in this case superior.

No gang 8-gang 16-gang
Host IO Latency 237 µs 553 µs 746 µs

IOPS per gang 4425 1807 1340

Table 4: Shared-bus gang performance for Exchange

Gang Performance. As suggested in Section 3.3, gang-
ing flash components offers the possibility of scaling ca-
pacity without linearly scaling pin density and firmware
logic complexity. We proposed two types of ganging:
shared-bus and shared-control. Table 4 shows the av-
erage latency of Exchange I/O requests (variable size)
under 8-wide (32KB) and 16-wide (64KB) shared-bus
gangs. As it happens, this workload requires only about
900 IOPS, so the 16-gang is fast enough even though the
ganged components have to be accessed serially. There
is no obvious load-balancing problem when simple page-
level striping is used, even though one would expect such
problems to be exacerbated by ganging.

A shared-control gang can be organized in two ways.
First, although the flash packages are ganged, separate
allocation and cleaning decisions can be made on each

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 65

package, enabling one to perform opportunistic parallel
operations, e.g., when two reads are presented on dif-
ferent gang members at the same time, they can be per-
formed concurrently. We refer to this as asynchronous-
shared-control ganging. Second, all packages in a gang
can be managed in synchrony by utilizing a logical page
depth equal to that of gang size, e.g., a 8-wide gang
would have a page size of 32KB, and we call this design
synchronous-shared-control ganging. We use intra-plane
copy-back to implement read-modify-write for writes of
less than a page in synchronous ganging.

Figure 7 presents normalized response time (with re-
spect to the base line configuration) from various syn-
chronous and asynchronous shared-control gang sizes.
Since the logical page size of a synchronous gang is big-
ger than the corresponding asynchronous gang, it lim-
its the number of simultaneous operations that can be
performed in a gang unit, and hence synchronous gang-
ing uniformly underperforms when compared to asyn-
chronous ganging. The synchronous 8-way gang could
not support the IOzone workload in simulated real-time
and hence its result is absent in the Figure 7.

cleaned Avg. time (ms) Efficiency
TPC-C (inter-plane) 114 9.65 70%
TPC-C (copy-back) 108 5.85 70%
IOzone 101170 1.5 100%
Postmark 2693 1.5 100%

Table 5: Cleaning frequency and efficiency

Copy-back vs. Inter-plane Transfer. Cleaning a block
involves moving any valid pages to another block. If the
source and destination blocks are within a plane, pages
can be moved using the copy-back feature without hav-
ing to transfer them across the serial pins. Otherwise,
pages can be moved between planes through the serial
pins. Table 5 presents the average number of blocks
cleaned per flash package, the average time to clean a
block, and the average cleaning efficiency. Using the
copy-back feature, TPC-C shows a 40% improvement
in cleaning cost per block. In spite of the large number
blocks being cleaned, IOzone and Postmark do not show
any benefit from copy-back. These benchmarks produce
perfect cleaning efficiency; they move no pages during
cleaning.

Cleaning Thresholds. An SSD needs a minimum num-
ber of free blocks to operate correctly; for example, free
blocks are required to perform data transfer during clean-
ing or to sustain sudden bursts of write requests. In-
creasing this minimum-block threshold triggers cleaning
earlier and therefore increases observed overhead. Fig-
ure 8(a) shows the variation in access latency as we in-
crease the free blocks threshold. While the access laten-

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35

 5 6 7 8 9 10

Ac
ce
ss
 la
te
nc
y (
m
s)

(a) Minimum free blocks before cleaning starts (%)

Access Latency vs. Minimum Free Blocks

TPC-C
Iozone

Postmark
Exchange

 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600

 5 6 7 8 9 10

Pa
ge
s m

ov
ed
 (i
n
10
00
s)

(b) Minimum free blocks before cleaning starts (%)

Pages Moved During Cleaning

TPC-C
Iozone

Postmark
Exchange

Figure 8: Impact of minimum free blocks

cies increase in TPC-C with the threshold, other work-
loads show little difference. This difference in the access
latencies among different workloads is explained by Fig-
ure 8(b), which plots the number of pages moved during
cleaning against the free blocks threshold. Figures 8(a)
and 8(b) show that increasing the minimum free blocks
threshold may affect the overall performance of the SSD
depending upon the pages moved under the workload.

4.4 Tradeoff Summary

In Table 6, we present a brief summary of the benefits
and drawbacks of the design techniques discussed above.
We believe that these tradeoffs are largely independent
of each other, but leave a rigorous examination of this
hypothesis for future work.

Technique Positives Negatives
Large allocation pool Load balancing Few intra-chip ops
Large page size Small page table Read-modify-writes
Overprovisioning Less cleaning Reduced capacity
Ganging Sparser wiring Reduced parallelism
Striping Concurrency Loss of locality

Table 6: SSD Design Tradeoffs in Brief

5 Wear-leveling

In the discussion below, we propose a cleaning and wear-
leveling algorithm applicable to NAND-flash SSDs. We
assume that an SSD implements a block-oriented disk in-
terface which provides no a priori knowledge of optimal
data placement or likely longevity.

Efficient cleaning, while it may reduce overall wear,
does not translate to even wear. The drawback of choos-
ing a greedy approach (maximal cleaning efficiency) is
that the same blocks may get used over and over again

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association66

and a large collection of blocks with relatively cold con-
tent may remain unused. For example, if 50% of the
blocks contain cold data that is never superseded, and
the rest contains hot data that is modified frequently, then
the block to be erased will always be taken from the hot
blocks. This will lead to a situation where the life of the
hot blocks will be consumed while that of the cold blocks
will be unutilized, wasting half the total life of the device.

Our objective is to design a block management algo-
rithm so as to delay the expiry time of any single block;
that is, we wish to avoid the situation where one or a
few blocks have finished their life when most blocks have
much life left. This goal implies that we must ensure that
the remaining lifetime across all blocks is equal within an
acceptable variance. To this end, we propose tracking the
average lifetime remaining over all blocks. The remain-
ing lifetime of any block should be within ageV ariance

(say 20%) of the average remaining lifetime.
This desired policy can be achieved by running the

greedy strategy as long as it picks a page whose remain-
ing lifetime is above the threshold. To do this, we must
maintain some notion of block erase count in persistent
storage (for example in the metadata portion of the first
page). What then should we do for worn out blocks
that drop below the threshold? A simple approach is to
only allow recycling when a candidate’s remaining life-
time exceeds the threshold. Doing this could exclude
large numbers of blocks from consideration which in turn
would cause the remaining blocks to be recycled more
frequently and with poorer cleaning efficiency. For ex-
ample if 25% of the blocks have cold data and the re-
maining 75% have hot data accessed uniformly then af-
ter a certain number of writes, the latter will get worn
out and become ineligible for erasure. Subsequently, re-
cycling will be concentrated on the 25% of the blocks
containing cold data. So these blocks will be reused 4

times faster and yield commensurately fewer pages per
erasure. Hence, we need to avoid making a large number
of blocks ineligible for recycling over an extended period
of time.

Instead of freezing the recycling of worn out blocks,
we can rate-limit their usage. Randomization can be used
here to evenly spread out the effect of a rate-limit on the
worn out blocks. We use an approach similar to Random
Early Discard [8] in which the probability of recycling
drops linearly from 1 to 0 as a block’s remaining lifetime
drops from say 80% to 0% of the average.

Another way to slow down the usage of worn out
blocks is to migrate cold data into old blocks. When
data is migrated, cleaning is performed as usual, but
then rather than attaching the recycled block to the al-
location pool queue, instead data from a cold block is
used to fill it. The cold block is then recycled and
added to the free queue. This action can be triggered,

for example, if the remaining lifetime in a block drops
below retirementAge (say 85% of the average re-
maining lifetime). retirementAge should be less than
ageV ariance of average remaining lifetime so that cold
data can be migrated into a worn out block before rate-
limiting kicks in.

One method to identify cold data is to look for blocks
that have exceeded specified parameters for remaining
lifetime and time since last erasure. This approximation
can be made more accurate by keeping track of when
a block was last written in its metadata. In this case,
it is important that temperature metadata travel with the
content as it is moved to a new physical block. When
a block is migrated, the migration should not affect its
temperature metric. However, the process of cleaning
can group pages of different temperatures in the same
block, in this case, the resultant block temperature needs
to reflect that of the aggregate.

So in summary, we propose running the greedy strat-
egy (e.g., the most superseded pages) for picking the next
block to be recycled, as modified below.

• If the remaining lifetime in the chosen block is be-
low retirementAge of the average remaining life-
time then migrate cold data into this block from
a migration-candidate queue, and recycle the head
block of the queue. Populate the queue with blocks
exceeding parametric thresholds for remaining life-
time and duration, or alternatively, choose migra-
tion candidates by tracking content temperature.

• Otherwise, if the remaining lifetime in the chosen
block is below ageV ariance, then restrict recy-
cling of the block with a probability that increases
linearly as the remaining lifetime drops to 0.

5.1 Wear-leveling Simulation

We ran IOzone (due to its high cleaning rate) to study the
wear-leveling algorithm described above. We reduced
the lifetime of a flash block from 100K to 50 cycles for
our experiment so that the ageV ariance (set to 20%)
and retirementAge (set to 85%) thresholds become rel-
evant. Tables 7 and 8 present the results for 3 differ-
ent techniques: the greedy algorithm, greedy with rate-
limited cleaning of worn-out blocks, and greedy with
rate-limiting and cold data migration. Although the av-
erage block lifetime is similar across the techniques, in-
voking migration gives a much smaller standard devia-
tion of remaining block lifetimes at the end of the run.
Moreover, with migration, there were no block expiries
(e.g., blocks over the erasure limit). Since the sim-
ple greedy technique does not perform any rate-limiting,
fewer blocks reach expiry when rate-limiting is used than
without it. Table 8 presents the distribution of flash-block

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 67

lifetimes around the mean. One can observe that cold
data migration offers better clustering around the mean
than the other options.

Mean Lifetime Std.Dev. Expired blocks
Greedy 43.82 13.47 223

+ Rate-limiting 43.82 13.42 153
+ Migration 43.34 5.71 0

Table 7: Block wear in IOzone

< 40% < 80% < 100% ≥ 100%
Greedy 1442 1323 523 13096

+ Rate-limiting 1449 1341 501 13092
+ Migration 0 0 8987 7397

Table 8: Lifetime distribution with respect to mean

The cost of migrating cold pages across blocks im-
poses a performance cost that is workload-dependent.
Our simulation of wear-leveling for IOzone involved
7902 migrations per package which added a 4.7% over-
head to the average I/O operation latency.

5.2 Opening the Box

A system that implements a traditional disk-block in-
terface incurs unnecessary overhead by managing disk
blocks that are free from the point of view of the file sys-
tem. Under a random workload, a disk that is half full
will have twice the cleaning efficiency of a full disk (and
all disks are full except those that are overprovisioned).
Previous work on Semantically-Smart Disk Systems [21]
has shown the benefits of greater file-system informa-
tion being available at the disk level. Although SSDs
that implement a pure disk interface provide advantages
from a perspective of compatibility, it is worth consider-
ing whether the SSD API might support the abstraction
of an unused block. With such a modification, SSD per-
formance would vary with the percentage of free space
rather than always suffering maximal cleaning load and
wear.

Cleaning load can be reduced if an SSD has knowl-
edge of content volatility. For example, certain file types
such as audio and video files are not often modified. If
available at the disk block level, this information would
provide a better predictive metric than the history-based
approximations above. More importantly, if cold data
can be identified a priori, then there is a better chance of
establishing locality for warm data, localization of warm
data will lead to better cleaning efficiency.

6 Related Work

We discuss related work in designing solid-state stor-
age devices, file systems for improving performance, and
work on algorithms and data structures for such devices.

6.1 Solid-State Storage Devices

Previous work on solid-state storage design has focused
on resource-constrained environments such as embedded
systems or sensor networks (e.g., Capsule [19], Micro-
Hash [34]). This body of work has largely dealt with
small flash devices (up to a few hundred MB), with low-
power, shock resistance and size being primary consid-
erations. The MicroHash index [34] attempts to support
temporal queries on data stored locally on a flash chip in
the presence of a low energy budget. Nath and Kansal
propose FlashDB [23], a hybrid B+-tree index design.
The key idea is to have different update strategies de-
pending on the frequency of reads and writes: in-place
updates for pages that are frequently read or infrequently
written, and logging for those that are frequently written.

While the work in embedded and sensor environments
has given useful insights into the workings and con-
straints of solid-state devices, our work systematically
explores design issues in high-performance storage sys-
tems. In these environments, operation throughput is of-
ten the most important metric of interest.

Hybrid disks are another area of research [3] and com-
mercial interest. These devices place a small amount of
flash memory alongside a much larger traditional disk
to improve performance. Flash is not the final persis-
tent store, but rather a write-cache to improve latency.
The non-volatile cache on hybrid disks can be controlled
through specific ATA commands [25].

File systems have also used non-volatile memory to
log data or requests. WAFL [13] is one such file system
that uses non-volatile RAM (NVRAM) to keep a log of
NFS requests it has processed since the last consistency
point. After an unclean shutdown, WAFL replays any
requests in the log to prevent them from being lost.

The hybrid disk and NVRAM approaches use flash
as an add-on storage for rotating disks. In our designs,
solid-state devices serve as a replacement for rotating
disks, providing a better rate of operation throughput.

Kim and Ahn [17] propose a cache-management strat-
egy that improves random-write performance for SSDs
operating with a block-sized logical page. They attempt
to flush write-cache pages that occupy the same block at
the same time, thereby reducing read-modify-write over-
head. This works well if the workload does not over-
whelm the cache or require immediate write persistence.
Moreover, write-caching that handles bursty or repetitive
writes is complementary to our approach.

6.2 File System Designs

File systems specific to flash devices have also been
proposed. Most of these designs are based on Log-
structured File Systems [28], as a way to compensate

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association68

for the write latency associated with erasures. JFFS, and
its successor JFFS2 [27], are journaling file systems for
flash. The JFFS file systems are not memory-efficient for
storing volatile data structures, and require a full scan to
reconstruct these data structures from persistent storage
upon a crash. JFFS2 performs wear-leveling, in a some-
what ad-hoc fashion, with the cleaner selecting a block
with valid data at every 100th cleaning, and one with
most invalid data at other times.

YAFFS [18] is flash file system for use in embedded
devices. It treats handling of wear-leveling akin to han-
dling bad blocks, which appear as the device gets used.
Other examples of embedded micro-controller file sys-
tems include the Transactional Flash File System [11]
and the Efficient Log Structured Flash File System [6].
The former was designed for more expensive, byte ad-
dressable NOR flash memory, which has considerably
fewer constraints than NAND flash. The latter was de-
signed for sensor nodes using NAND flash. It supports
simple garbage collection and provides an optional best
effort crash recovery mechanism.

It is useful to compare our approach with improve-
ments higher up in the storage stack, such as the spe-
cialized file systems for flash devices. Enhancements at
the flash controller will obviate the need to invest signifi-
cant effort in re-writing a custom flash file system. It will
also alleviate the overhead of transitioning from rotating
disks to flash-based storage by exporting a “flash-disk”
that performs well even with existing file systems.

6.3 Algorithms and Data-structures

Much prior work has been done on proposing and eval-
uating algorithms and data structures specially suited for
operation in flash devices. A recent survey [12] discusses
much of this work in greater detail.

Wear-leveling is an important constraint of flash de-
vices and several proposals have been made to perform it
efficiently, increasing the usable life time of the device.
Wu and Zwaenepoel [33] use a relative wear-count of
blocks for wear-leveling. Similar to our approach, data
is swapped when the block chosen for cleaning exceeds
a wear-count. Wells [32] proposed a reclamation policy
based on weighted combination of efficiency and wear-
leveling, while the work by Chiang and Chang [5] uses
the likelihood of a block being used soon, which is equiv-
alent to the logical hotness or coldness of data within the
block chosen for cleaning.

Recent work by Myers [22] looks at ways to exploit
the inherent parallelism offered by the flash chip. He
fragments a block and stores it on multiple physical
pages on different chips, under the hypotheses that a dy-
namic striping or replication strategy based on workload
will outperform a static one. His work focuses on ap-

plicability of flash for database workloads and concludes
that widespread adoption is not yet possible. In contrast,
our design and analysis shows that while there are sev-
eral tradeoffs, SSDs are a viable and possibly an attrac-
tive option for transactional workloads such as TPC-C.

7 Conclusion

As we have shown, there are numerous design tradeoffs
for SSDs that impact performance. There is also sig-
nificant interplay between both the hardware and soft-
ware components and the workload. Our work pro-
vides insight into how all of these components must co-
operate in order to produce an SSD design that meets
the performance goals of the targeted workload. From
the hardware standpoint, the SSD interface (SATA, IDE,
PCI-Express) and package organization dictate theoret-
ical maximum I/O performance. On the software side,
the properties of the allocation pool, load balancing, data
placement, and block management (wear-leveling and
cleaning) combined with workload characteristics de-
termine overall SSD performance. Moreover, we have
demonstrated that all designs can benefit from plane in-
terleaving and some degree of overprovisioning, and we
have proposed a wear-leveling algorithm and shown its
efficacy in at least one scenario.

We have demonstrated a simulation-based technique
for modeling SSD performance driven by traces ex-
tracted from real hardware. In some cases, the traced
systems require storage components that would be much
too expensive for most organizations to provide for the
purposes of experimentation. Our simulation framework
has proved both resilient and flexible, and we expect to
continue to add to the set of behaviors that we can model.
Shared-control ganging and refined wear-leveling data
are particular topics of interest.

There is no fixed rule that NAND flash be integrated
into computer systems as disk storage. However, the
block-access nature of NAND suggests that a block-
oriented interface will often be appropriate. Although
outside of the scope of this work, we suspect that our
simulation techniques will be applicable to NAND-flash
block-storage independent of architecture because the
same issues (e.g. cleaning, wear-leveling) will still arise.

Flash-based storage is certain to play an important role
in future storage architectures. One corollary of our sim-
ulation results is that the storage systems necessary to
support a substantial TPC-C workload, which in the past
have involved many hundreds of spindles, might well be
replaced in future by small numbers of SSD-like devices.
Our work represents a step towards understanding and
optimizing the performance of such systems.

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 69

Acknowledgements

We are grateful to the DiskSim team for making their
simulator available, and to Dushyanth Narayanan for
porting it to Windows. Andrew Birrell, Chuck Thacker,
and James Hamilton participated in many fruitful discus-
sions during the course of this work. Bruce Worthington
and Swaroop Kavalanekar gathered our TPC-C and Ex-
change traces. And finally, we would like to honor the
memory of Dr. Jim Gray, who inspired this work.

References
[1] AnandTech. MTRON SSD 32GB: Wile E. Coyote or Road

Runner? http://www.anandtech.com/storage/
showdoc.aspx?i=3064.

[2] A. Birrell, M. Isard, C. Thacker, and T. Wobber. A Design
for High-Performance Flash Disks. Operating Systems Review,
41(2):88–93, 2007.

[3] T. Bisson and S. A. Brandt. Reducing Hybrid Disk Write Latency
with Flash-Backed I/O Requests. In MASCOTS ’07: Proceedings
of the 15th IEEE International Symposium on Modeling, Analy-
sis, and Simulation, 2007.

[4] J. S. Bucy, G. R. Ganger, and et al. The DiskSim Simulation Envi-
ronment Version 3.0 Reference Manual. http://citeseer.
ist.psu.edu/bucy03disksim.html.

[5] M.-L. Chiang and R.-C. Chang. Cleaning Policies in Mobile
Computers Using Flash Memory. Journal of Systems and Soft-
ware, 48(3):213–231, 1999.

[6] H. Dai, M. Neufeld, and R. Han. ELF: An Efficient Log-
Structured Flash File System for Micro Sensor Nodes. In SenSys
’04: Proceedings of the 2nd International Conference on Embed-
ded Networked Sensor Systems, pages 176–187, 2004.

[7] D. Dumitru. Understanding Flash SSD Performance.
http://managedflash.com/news/papers/
easyco-flashperformance-art.pdf.

[8] S. Floyd and V. Jacobson. Random early detection gateways for
congestion avoidance. IEEE/ACM Transactions on Networking,
1(4):397–413, 1993.

[9] Freescale Semiconductor. 256K x 16-Bit 3.3-V Asynchronous
Magnetoresistive RAM. http://www.freescale.
com/files/microcontrollers/doc/data_sheet/
MR2A16A.pdf.

[10] FusionIO Corporation. ioDrive Datasheet. http://www.
fusionio.com/iodrivedata.pdf.

[11] E. Gal and S. Toledo. A Transactional Flash File System for Mi-
crocontrollers. In Proceedings of the USENIX Annual Technical
Conference, pages 89–104, 2005.

[12] E. Gal and S. Toledo. Algorithms and Data Structures for Flash
Memories. ACM Computing Surveys, 37(2):138–163, 2005.

[13] D. Hitz, J. Lau, and M. Malcolm. File System Design for an NFS
File Server Appliance. In Proceedings of the USENIX Winter
1994 Technical Conference, pages 235–246, 1994.

[14] IBM Corporation. Promising New Memory Chip Technology
Demonstrated By IBM, Macronix & Qimonda Joint Research
Team. http://domino.research.ibm.com/comm/
pr.nsf/pages/news.20061211_phasechange.
html.

[15] IOzone.org. IOzone Filesystem Benchmark. http://www.
iozone.org.

[16] J. Katcher. PostMark: a New File System Benchmark. Technical
Report TR3022, Network Appliance, October 1997.

[17] H. Kim and S. Ahn. A Buffer Management Scheme for Im-
proving Random Writes in Flash Storage. In Proceedings of the
6th USENIX Symposium on File and Storage Technologies (FAST
’08), pages 239–252, 2008.

[18] C. Manning. YAFFS: Yet Another Flash File System. http:
//www.aleph1.co.uk/yaffs, 2004.

[19] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy. Cap-
sule: An Energy-Optimized Object Storage System for Memory-
Constrained Sensor Devices. In SenSys ’06: Proceedings of the
4th International Conference on Embedded Networked Sensor
Systems, pages 195–208, 2006.

[20] MTron Co., Ltd. MSD-SATA3025 Product Specifica-
tion. http://mtron.net/Upload_Data/Spec/ASiC/
MSD-SATA3025.pdf.

[21] Muthian Sivathanu and Vijayan Prabhakaran and Florentina I.
Popovici and Timothy E. Denehy and Andrea C. Arpaci-Dusseau
and Remzi H. Arpaci-Dusseau. Semantically-Smart Disk Sys-
tems. In Proceedings of the 2nd USENIX Symposium on File and
Storage Technologies (FAST ’03), pages 73–88, 2003.

[22] D. Myers. On the Use of NAND Flash Memory in High-
Performance Relational Databases. Master’s thesis, MIT, 2007.

[23] S. Nath and A. Kansal. FlashDB: Dynamic Self-Tuning Database
for NAND Flash. In IPSN ’07: Proceedings of the 6th Inter-
national Conference on Information Processing in Sensor Net-
works, pages 410–419, 2007.

[24] Next Level Hardware. Battleship MTron. http://www.
nextlevelhardware.com/storage/battleship/.

[25] N. Obr and F. Shu. A Non-Volatile Cache Command Proposal for
ATA8-ACS. http://t13.org, 2005.

[26] D. Patterson, G. Gibson, and R. Katz. A Case for Redundant
Arrays of Inexpensive Disks (RAID). In Proceedings of the ACM-
SIGMOD International Conference on the Management of Data,
pages 109–116, 1988.

[27] Red Hat Corporation. JFFS2: The Journalling Flash File Sys-
tem. http://sources.redhat.com/jffs2/jffs2.
pdf, 2001.

[28] M. Rosenblum and J. Ousterhout. The Design and Implemen-
tation of a Log-Structured File System. ACM Transactions on
Computer Systems, 10(1):26–52, 1992.

[29] Samsung Corporation. K9XXG08XXM Flash Memory Specifi-
cation. http://www.samsung.com/global/system/
business/semiconductor/product/2007/6/11/
NANDFlash/SLC_LargeBlock/8Gbit/K9F8G08U0M/
ds_k9f8g08x0m_rev10.pdf, 2007.

[30] STEC Incorporated. ZeusIOPS Solid State Drive.
http://www.stec-inc.com/downloads/flash_
datasheets/iopsdatasheet.pdf.

[31] Transaction Processing Performance Council. TPC Benchmark
C, Standard Specification. http://www.tpc.org/tpcc/
spec/tpcc_current.pdf.

[32] S. E. Wells. Method for Wear Leveling in a Flash EEPROM
Memory. US patent 5,341,339, Aug 1994.

[33] M. Wu and W. Zwaenepoel. eNVy: A Non-Volatile, Main Mem-
ory Storage System. In ASPLOS-VI: Proceedings of the 6th Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems, pages 86–97, 1994.

[34] D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos, and
W. A. Najjar. Microhash: An Efficient Index Structure for Flash-
Based Sensor Devices. In FAST’05: Proceedings of the 4th
USENIX Conference on File and Storage Technologies, pages 31–
44, 2005.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association70

