2007 USENIX Annual Technical Conference
Pp. 275–280 of the Proceedings
Short Paper: A Memory Soft Error Measurement on Production Systems
Xin Li, Kai Shen, and Michael C. Huang, University of Rochester; Lingkun Chu, Ask.com
Abstract
Memory state can be corrupted by the impact of particles causing single-event upsets (SEUs). Understanding and dealing with these soft (or transient) errors is important for system reliability. Several earlier studies have provided field test measurement results on memory soft error rate, but no results were available for recent production computer systems. We believe the measurement results on real production systems are uniquely valuable due to various environmental effects. This paper presents methodologies for memory soft error measurement on production systems where performance impact on existing running applicationsmust be negligible and the system administrative control might or might not be available.
We conducted measurements in three distinct system environments: a rack-mounted server farm for a popular Internet service (Ask.com search engine), a set of office desktop computers (Univ. of Rochester), and a geographically distributed network testbed (PlanetLab). Our preliminary measurement on over 300 machines for varying multi-month periods finds 2 suspected soft errors. In particular, our result on the Internet servers indicates that, with high probability, the soft error rate is at least two orders of magnitude lower than those reported previously. We provide discussions that attribute the low error rate to several factors in today’s production system environments. As a contrast, our measurement unintentionally discovers permanent (or hard) memory faults on 9 out of 212 Ask.com machines, suggesting the relative commonness of hard memory faults.
- View the full text of this paper in HTML and PDF. Listen to the presentation and Q & A in MP3 format.
Until June 2008, you will need your USENIX membership identification in order to access the full papers.
The Proceedings are published as a collective work, © 2007 by the USENIX Association. All Rights Reserved. Rights to individual papers remain with the author or the author's employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research purposes. USENIX acknowledges all trademarks within this paper.
|