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Abstract
Operating system lockup errors can render a computer
unusable by preventing the execution other programs.
Watchdog timers can be used to recover from a lockup
by resetting the processor and rebooting the system when
a lockup is detected. This results in a loss of unsaved
data in running programs. Based on the observation that
volatile memory is not affected when a processor a re-
set occurs, we present an approach to recover from a
watchdog reset with minimal or zero loss of applica-
tion state. We study the resolution of lockup conditions
using thread termination and using exception dispatch.
Thread termination can still result in a usable system and
is already used as a recovery strategy for other errors in
Linux. Using exceptions allows developers to write code
to handle a lockup within the erroneous thread and at-
tempt application transparent recovery. Fault injection
experiments show that a significant percentage of lock-
ups can be recovered by thread termination. Exception
handling further improves the recoverability of the oper-
ating system.

1 Introduction

While many techniques have been invented over the
years to create software that is resilient to faults [1], er-
rors due to hardware and software faults still remain a
serious problem in today’s world. Some errors can cause
the processor to lock up in an infinite loop of useless
computation. In this case, the error can only be detected
by an external entity. Lockup errors that happen in user
programs can be detected by other programs [2] and can
usually be handled without affecting unrelated programs.
On the other hand, lockups that occur inside the operat-
ing system (OS) can render the computer unusable by not
allowing any other programs to execute. Lockup causing
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bugs are common in OS code. More than 30% of the
bugs in Linux discovered by Chou et al. [3] were bugs
that could potentially cause a lockup.

Watchdog timers have been traditionally used to de-
tect lockups in OS code and are usually configured to
reset the processor when the timer expires. To prevent
a processor reset and a consequent reboot, the OS must
periodically reset the watchdog timer. It is common to
refer to watchdog expiration as a bite and to the act of
resetting the watchdog as a kick. While rebooting after
a lockup improves availability, it results in a loss of all
running user programs and data.

In this paper, we demonstrate that this reboot behav-
ior can be replaced by an approach where the reset sig-
nal to the processor is used to recover the system with
minimal or zero loss of application state. The key ob-
servation that motivates our approach to OS recovery is
that the reset signal only affects the processor and leaves
volatile memory intact. Information loss is limited to the
contents of the processor at the time of the reset and the
contents of volatile memory can be used for recovery.

We have implemented watchdog based recovery in
Linux and in the Choices object-oriented OS [4]. We
explore recovery after a watchdog bite using two meth-
ods: by terminating the locked up thread (in Linux and
Choices), and by dispatching a C++ exception to the
thread (in Choices).

Using thread termination is a simple approach to re-
covery. There is no attempt to prevent or fix possible
kernel data structure inconsistencies. Therefore, there
are no guarantees that the system is successfully recov-
ered. However, attempting to recover a crashed system
by terminating a thread is not uncommon. Operating
systems such as Linux already respond to kernel space
errors like invalid pointer dereferencing by terminating
the erroneous thread. We, therefore, apply this approach
to lockup errors as well. Experiments with Choices and
with Linux demonstrate that recovery is possible from
a wide variety of OS lockups when using thread termi-
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nation. We consider a recovery attempt to be success-
ful if the OS continues to schedule and run other exist-
ing threads and provides some minimal functionality like
filesystem and console access.

In Choices, we are exploring the use of the C++ excep-
tion mechanism as a unified framework for notification
of all errors that occur within the OS. We create excep-
tions from errors like memory faults, invalid instructions
and hardware aborts and allow threads to respond to them
using exception handlers [5]. We were therefore moti-
vated to add OS lockups to the set of exceptions already
handled by the Choices kernel.

Existing techniques such as Nooks [6] and
SafeDrive [7] do not attempt to recover from lockup
errors within extensions. Our watchdog timer based
recovery approach complements both these techniques
and enables them to recover from a larger class of
errors. OKE [8] can detect and recover lockup errors
in extensions compiled with a safety enforcing trusted
C compiler. Our recovery approach does not require a
special compiler and works with existing code. Also,
these systems only consider errors in device drivers.
Thread termination and exception dispatch can be used
to recover from lockup errors in other parts of the OS
as well. For example, a lockup in a non-preemptable
system call handler is not detected by Nooks, SafeDrive,
or OKE; but is detected and potentially recovered by our
techniques.

Our recovery implementations have been evaluated on
two ARM processor based platforms: the Texas Instru-
ments OMAP1610 H2 hardware development kit and the
QEMU [9] system emulator.

While the traditional action of a watchdog has been
to reset the system on a watchdog bite, an alternative
would be to raise a non-maskable interrupt (NMI). Cur-
rent ARM processors do not support non-maskable inter-
rupts. Nevertheless, we still examine the advantages of
using a non-maskable interrupt to notify the processor of
a watchdog bite.

2 Watchdog Recovery Design

A careful analysis of OS behavior is required when de-
ciding when to execute watchdog kicks. Placing the kick
code in the timer interrupt handler ensures that, as long
as interrupts are enabled, and there is no lockup in the
interrupt handler, the watchdog will not bite. However,
it is possible that a lockup can occur with interrupts still
enabled. If the lockup is in a non-preemptable section of
code, the OS is unusable because it does not schedule any
other threads. In Linux, watchdog timers are exported as
devices to userspace and the kicks are issued periodically
by a userspace thread. If the userspace thread does not
get scheduled because of an OS lockup, the watchdog re-

boots the system. Kicks issued from threads are a more
effective indication of the system being alive than kicks
issued from timer interrupts.

When the ARM processor is reset, it switches to a
privileged execution mode and sets its program counter
(PC) to address 0. The signal also resets the interrupt
controller and all interrupts are turned off. The mem-
ory management unit (MMU) is also turned off and only
physical addressing is possible. Address 0 is normally
the start address of the bootloader. The bootloader’s job
is to initialize the memory hardware and load the OS ker-
nel into RAM from flash memory or secondary storage.
It then relinquishes control to the OS. The bootloader
usually does not differentiate between resets attributed
to watchdog timers and power-on resets. Thus, the OS is
always reloaded and rebooted, causing a loss of all run-
ning programs and data in memory.

In order to ensure that memory contents are preserved,
the bootloader needs be modified to treat the watchdog
bite differently. When the watchdog bites, the boot-
loader should not reload the kernel and should instead
directly transfer control to the OS start address in mem-
ory. This is a reasonable approach because, once it is up
and running, the OS core is never paged out and resides
in the same physical memory area into which it was first
loaded.

Once control is back in the OS, a recovery routine
can take over. The recovery process involves switching
the MMU back on, initializing the interrupt controller,
re-enabling interrupts and performing an appropriate ac-
tion to eliminate the lockup condition before starting to
schedule threads again.

There are a couple of issues that arise when attempt-
ing to recover from watchdog bites that reset the proces-
sor. This requires that the processor cache is configured
as write-through instead of write-back in order to avoid
loss of cached data. Thus, when using this technique,
we gain increased reliability at the expense of some de-
creased performance. Also, part of the processor context
at the time the watchdog bites is lost forever. For exam-
ple, the program counter is instantaneously overwritten
by 0. This makes it difficult to accurately pinpoint the
location of the lockup and debug the error. Both these
issues cease to exist if the watchdog timer is wired to
a non-maskable interrupt. This would enable the OS to
respond to the lockup without any loss of information
in the processor or the cache. Additionally, using an
NMI simplifies the recovery implementation because the
MMU and interrupt controllers are not disturbed.

3 Recovering Linux

Soft Lockup Detector: A soft lockup is an error con-
dition where a thread is locked up in kernel mode with
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interrupts enabled. Some soft lockups can render the
system unusable by permanently preempting all other
threads. The Linux kernel includes code that detects
these kinds of soft lockup errors. A low priority thread
updates a timestamp every second. This timestamp is
checked during a timer interrupt to see if it was updated
within the last ten seconds. This ensures that the system
is usable by confirming that the watchdog thread is pe-
riodically scheduled. If the check fails, the detector dis-
plays a message reporting the lockup error and records it
in the system logs. The detector does not attempt to fix
the error.

In order to study the recoverability of the Linux ker-
nel from a lockup detected by the soft lockup detector,
we added code to terminate the thread which has locked
up in kernel mode. Linux already handles most errors
that are encountered within the kernel by terminating the
thread. These are usually called “Oops” errors. How-
ever, if an “Oops” occurs in interrupt mode, the error
is deemed to be serious and the “Oops” handler calls
panic() which halts the system. Kernel code can also
directly call panic() on detecting a serious error. We
do not attempt to recover from Linux kernel panics.

The soft lockup detector cannot detect lockups that
occur when interrupts are disabled because the detector
code is not executed. These “hard” lockups can only be
detected using an external hardware watchdog timer.

Hardware Watchdog: We added a new kernel
thread that wakes up periodically and kicks the watch-
dog timer. If this thread is not scheduled periodically, the
processor is reset. A normal power on reset causes the
bootloader to load a compressed kernel image into RAM
and transfer control to the header in the compressed
image. The header then runs a decompression routine
which places the kernel at some platform dependent
physical address. The kernel is always resident at this
physical address. We modified the small bootloader
built into QEMU so that it does not reload Linux and
instead directly jumps to the start address of the existing
uncompressed kernel when a reset is generated by the
watchdog timer.

We modified the first few instructions in the Linux
boot up code to check for the reset reason. If the re-
set was due to the watchdog timer, a recovery routine
is executed. The MMU is turned on first with the page
tables configured for kernel tasks. Switching on virtual
memory ensures that all kernel data structures are visible
again. The task that was running at the time of the watch-
dog bite is then terminated. In the next stage, peripheral
interrupts and the watchdog timer are re-enabled. The
code then enters the processor idle loop which works as
a dispatcher for runnable threads. Recovery is completed
once the idle loop begins picking up runnable threads and

scheduling them on the processor.
We do not need to worry about locks held by the thread

when it is terminated because our target platform is a
uniprocessor. Linux implements spin locks on unipro-
cessors by disabling interrupts for the duration that the
lock is held. Thus, if a thread locks up when holding a
spin lock, it can only be detected by a watchdog timer.
The lock is implicitly released after recovering from a
watchdog bite. On multi-processor hardware, lock usage
tracking functionality is required in order to release all
locks held by the thread when it is terminated. This can
be implemented easily by modifying the spin lock func-
tions or by using a code rewriting approach [7]. Usage
of semaphores in the locked up thread can present some
problems with recovery. We expect tracking semaphore
usage to improve chances of successful recovery, but we
have not yet explored this direction.

It is also possible that kernel data structures are left
in an inconsistent state after a thread is abruptly termi-
nated. This might be unacceptable in high integrity sys-
tems. Data structure usage tracking techniques such as
those used in Nooks can help mitigate this issue. Fix-
ing or preventing kernel data structure corruption is it-
self a significant challenge and we do not address it in
this work.

These issues with locking, semaphore usage and data
structure corruption are identical to those that occur
when Linux encounters “Oops” errors. The default re-
sponse in Linux is to terminate the thread without worry-
ing about any of these issues. Thus, lock and semaphore
tracking can also improve recoverability in this case.

As described in section 2, the use of an NMI allows for
improved performance and improved debugging support.
Some recent x86 interrupt controllers can be configured
to generate periodic non-maskable interrupts to the pro-
cessor. The x86 version of the Linux kernel includes
support for lockup detection which exploits this func-
tionality. Similar to the soft lockup detector, the NMI
driven detector displays an error message when it detects
a lockup. This support is however not yet available on
the ARM platform.

4 Recovering Choices

Hardware Watchdog: Recovery from a processor re-
set issued by a hardware watchdog has also been imple-
mented in Choices. Choices does not yet support soft
lockup detection. Soft lockups do not result in an unus-
able system because the kernel is fully preemptable.

The watchdog is kicked at every timer interrupt. If
timer interrupts are not received because of a hard kernel
lockup, the watchdog bites. Just as with Linux, Choices
invokes a recovery routine instead of proceeding with
normal boot if the reset reason was a watchdog timeout.
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The recovery routine pretends to be the idle thread and
switches the MMU on and restores interrupts. It then
pretends to be the locked up thread and calls die() di-
rectly.

The recovery procedure differs from our Linux imple-
mentation. In Linux, we restored the idle thread and it
picks up and kills the locked thread. In Choices, we di-
rectly kill the locked thread and this automatically re-
stores the next runnable thread on the processor. Both
these approaches are valid and either one can be chosen
depending on ease of implementation.

While a thread termination approach might help the
kernel to continue scheduling other threads, it might still
render the OS unusable because the terminated thread
might be a critical kernel thread. We have previously
explored the use of C++ exceptions to notify threads of
errors they encounter in kernel space [5]. Using excep-
tions allows threads to attempt local recovery strategies
in exception handlers. We were therefore motivated to
explore converting a thread lockup condition into a C++
exception.

An exception can only be properly dispatched by the
C++ exception handling libraries if the context in which
the exception is thrown is correct. Thus, simply writing
a C++ throw statement in the recovery routine will not
work. We needed a way to recover the context of the
locked up thread at the time of the watchdog bite. After
some experimentation, we discovered that the processor
does not lose the contents of most of its registers when it
is reset. The PC is lost because it is reset to 0x0, and the
value of the processor status register is also lost. But the
contents of all the other registers are preserved.

We modified the bootloader to respond to a watchdog
bite by storing the contents of the reset preserved regis-
ters before they are clobbered by running the recovery
routine. A valid value of PC needs to be recovered for
exception dispatch to work. We choose to approximate
the value of the PC as the first instruction of the function
in which the lockup occurred. In machine code generated
by the GNU C++ compiler, the PC is saved on the stack
frame in the preamble of every function. We can read the
last saved PC from the stack using the recovered stack
frame pointer register and use this value. The context is
now usable for dispatching an exception. This context is
modified so that when it is restored on the processor, it
enters a helper function which uses the C++ throw key-
word to raise an exception.

Standard C++ try-catch syntax can be used to han-
dle these exceptions. We believe that this is an elegant
approach to handling lockup conditions within an erro-
neous thread in kernel mode. A developer can write an
exception handler to try thread-specific recovery strate-
gies if the thread ever locked up. Also, unlike the thread
termination approach, lockup exception handling can be

Table 1: Lockup detection and recovery for Non-
Preemptable and Preemptable Linux (*-Y with enhance-
ment)
Lockup Location Software Watchdog

Det? Rec? Det? Rec?
Interruptible thread Y N* Y N* Y N Y N
Non-interruptible thread N N N N Y Y Y Y
Interrupt handler Y Y N N Y Y N N
Syscall handler Y N* Y N* Y N Y N

used within kernel contexts like the initial interrupt pro-
cessing code which is not a part of any thread.

5 Evaluation

Linux: The 2.6 series of kernels have experimental sup-
port for kernel-mode preemption and this affects lockup
detection. We, therefore, evaluate our implementations
with both a non-preemptable and a preemptable kernel.

We introduced artificial infinite loop bugs into differ-
ent types of kernel contexts and studied the detection and
recovery properties of the kernel software detector and a
hardware watchdog with kicks issued by a kernel thread.
The thread that is terminated for recovery is a non-critical
dummy thread and there is no memory corruption.

Table 1 catalogs our experiences with both a non-
preemptable and a preemptable version of the kernel.
As expected, the soft lockup detector is unable to detect
lockups when interrupts are disabled. In these cases, the
watchdog timer is able to detect and recover the system.
Linux allows nested interrupts and therefore interrupts
are enabled when running an interrupt service routine
(ISR). A lockup in an ISR, which is non preemptable,
is therefore detectable by the soft lockup detector. Re-
covery is not possible because Linux does not support
termination of a thread executing in interrupt context.

Lockup detection effectiveness is reduced when exper-
imental kernel mode preemption support is turned on.
This ensures that the watchdog thread is always sched-
uled even when a higher priority preemptable thread en-
ters a lockup in kernel mode. This is an unfavorable
situation because, even though the system is usable, the
locked up thread keeps the processor busy. It is possible
to detect such situations by measuring the time spent by
a thread in kernel space without yielding. A kernel de-
veloper has posted a patch for the x86 architecture that
enables the soft lockup code to detect these lockups1,
but this has not yet been included in the mainstream ker-
nel. In the table, entries marked with an asterisk can be
changed to “Y” with such an enhancement.

1http://lkml.org/lkml/2005/8/2/216
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Figure 1: Linux lockup detection and recovery efficiency

When kernel preemption is turned on, the existing soft
lockup detector can still detect lockups that occur dur-
ing a period when preemption is temporarily disabled,
resulting in the system being unable to schedule other
threads. For example, lockups in interrupt handlers can
be detected because these cannot be preempted.

We also performed automated lockup fault injection
experiments into various parts of the kernel using a modi-
fied QEMU. We randomly pick instruction addresses into
which faults are to be injected. A fault is injected by
changing the chosen instruction to a self-loop. The fault
is transient and is not re-encountered if the instruction is
executed again. We inject only one lockup in each exper-
iment. In one set of experiments, faults are injected when
running a bzip2 decompression task (bzcat). In another
set, faults are injected when running a sort task. Our goal
is to examine if lockups in random parts of the kernel af-
fect the successful completion of these user tasks.

We measure the number of lockup detections (using
both the soft lockup detector and the watchdog timer)
and the number of successful completions of these tasks
after recovery is attempted. A successful completion is
defined as a run that produces output identical to a run
without fault injection. In all our experiments, there are
several running background tasks; some of which are
standard Linux kernel threads.

The results of our experiments are shown in figure 1.
For the non-preemptable version of the kernel, the soft
lockup detector detects less than 40% of lockups be-
cause most of them occur when interrupts are disabled.
The system does not recover when the lockup goes unde-
tected. The watchdog timer detects all the lockups. But,
in spite of this increased detection efficiency, the user
task only completes correctly in around 50% of the lock-
ups. The reasons for unsuccessful recovery (after detec-
tion) vary. Our analysis reveals that between 80-100%
of these were because the detection occurred when the

kernel was in interrupt context. Since the kernel calls
panic() when a thread is terminated in interrupt con-
text, the system does not recover.

In the preemptable kernel experiments, there are sev-
eral lockups that do not cause a complete system crash
because they are preempted (not shown in the figure).
These are not detected by either the soft lockup detec-
tor or the watchdog timer. In 7-10% of the lockups, the
tasks complete successfully in spite of the lockup not be-
ing detected. These represent the cases in table 1 marked
with an asterisk.

For the preemptable kernel, the watchdog has an
edge over the soft lockup detector because it can detect
lockups when interrupts are disabled.

Choices: The Choices kernel is designed to be
preemptable and watchdog timers are only used to detect
hard lockups. In order to test our watchdog recovery
implementation in Choices, we first inserted artificial
lockup bugs into a dummy kernel thread in Choices.
Choices is able to recover from bugs in interruptible,
non-interruptible and system call handlers by termi-
nating the dummy thread. Unlike Linux, the design
of Choices allows it to be recovered from lockups in
interrupt handlers as well. Dummy threads and transient
lockups were also used to test correct operation of the
lockup exception dispatch mechanism in Choices.

We also performed fault injection experiments with
Choices in a manner similar to that described for the
Linux experiments. We use user tasks represented by a
sort program and a gunzip decompression program. Hard
lockup errors (infinite loop with interrupts disabled) are
injected into the Choices kernel. The watchdog detects
all the hard lockups errors that are encountered. Ex-
periments are performed for both the thread termination
and the exception handling approaches to recovery. C++
“catch” statements are used in several top level objects to
handle exceptions by retrying the request.

Figure 2 compares the recovery capabilities of the
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Figure 2: Choices hard lockup recovery comparison
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exception based approach with the thread termination
based approach. Handling errors using exceptions results
in the user task completing successfully from about 6-9%
more lockups than when using thread termination. This
is because exception handlers in various OS objects at-
tempt to recover the locked thread by retrying the method
call that failed and some of these retries are successful.
Non-recovered lockups are mostly due to data structures
left in an inconsistent state. These results are based on
only a few exception handlers in top level objects. We ex-
pect that a more thorough deployment of exception han-
dlers throughout the object hierarchies will reduce data
structure inconsistency issues that prevent recovery and
result in improved recoverability.

6 Discussion and Related Work

In addition to watchdog timers, lockups can also be de-
tected by hardware such as the RSE [10]. RMK [11]
detects an OS lockup by counting the number of instruc-
tions between two consecutive context switches.

Our approaches to recovery deviate from a fail-stop
model of computation in a manner similar to failure
oblivious computing [12]. A full system reboot may have
to be performed in order to completely recover the sys-
tem. Our approaches can be combined with techniques
like isolation containers [13, 6], microreboots [14] and
data structure repair [15] to improve recoverability.

There is some directly related research in applica-
tion recovery after OS crashes. The recovery box ap-
proach [16] uses non-volatile memory to store applica-
tion state that is restored when the system is restarted
after a crash. Remote-DMA can be used to access the
memory of a crashed system and recover application
state [17]. In the Rio filesystem [18], the buffer cache
is recovered from volatile memory after a reset. In con-
trast to these approaches, we attempt to recover the entire
system.

7 Summary and Conclusions

We have discussed detection of operating system lockup
errors using software detectors and watchdog timers. We
have shown that it is possible to recover from a signif-
icant number of such lockup errors by terminating the
locked up thread. We have also shown that the use of
simplistic retry based exception handling to attempt re-
covery provides up to a 9% improvement in recoverabil-
ity. We expect this number to increase with increased
deployment of exception handling within the OS.

Additional details and code are available online at
http://choices.cs.uiuc.edu/.
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