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PlanetLab

• 670 machines spanning 325 sites and 35 countries
     nodes within a LAN-hop of  > 3M users

• Supports distributed virtualization
    each of 600+ network services running in their own slice
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Long-Running Services

• Content Distribution
– CoDeeN: Princeton

– Coral: NYU

– Cobweb: Cornell

• Storage & Large File Transfer

– LOCI: Tennessee

– CoBlitz: Princeton

• Anomaly Detection & Fault Diagnosis
– PIER: Berkeley, Intel

– PlanetSeer: Princeton

• DHT

– Bamboo (OpenDHT): Berkeley, Intel

– Chord (DHash): MIT



Services (cont)

• Routing / Mobile Access
– i3: Berkeley

– DHARMA: UIUC

– VINI: Princeton

• DNS

– CoDNS: Princeton

– CoDoNs: Cornell

• Multicast
– End System Multicast: CMU

– Tmesh: Michigan

• Anycast / Location Service

– Meridian: Cornell

– Oasis: NYU



Services (cont)

• Internet Measurement
– ScriptRoute: Washington, Maryland

• Pub-Sub

– Corona: Cornell

• Email
– ePost: Rice

• Management Services
– Stork (environment service): Arizona

– Emulab (provisioning service): Utah

– Sirius (brokerage service): Georgia

– CoMon (monitoring service): Princeton

– PlanetFlow (auditing service): Princeton

– SWORD (discovery service): Berkeley, UCSD



Usage Stats

• Slices: 600+

• Users: 2500+

• Bytes-per-day: 3 - 4 TB

• IP-flows-per-day: 190M

• Unique IP-addrs-per-day: 1M



Two Views of PlanetLab

• Useful research instrument

• Prototype of a new network architecture

• What’s interesting about this architecture?

– more an issue of synthesis than a single clever
technique

– technical decisions that address non-technical
requirements



Requirements

1) It must provide a global platform that supports
both short-term experiments and long-running
services.

– services must be isolated from each other

– multiple services must run concurrently

– must support real client workloads



Requirements

2) It must be available now, even though no one
knows for sure what “it” is.

– deploy what we have today, and evolve over time

– make the system as familiar as possible (e.g., Linux)

– accommodate third-party management services



Requirements

3) We must convince sites to host nodes running
code written by unknown researchers from other
organizations.

– protect the Internet from PlanetLab traffic

– must get the trust relationships right



Requirements

4) Sustaining growth depends on support for site
autonomy and decentralized control.

– sites have final say over the nodes they host

– must minimize (eliminate) centralized control



Requirements

5) It must scale to support many users with minimal
resources available.
– expect under-provisioned state to be the norm

– shortage of logical resources too (e.g., IP addresses)



Design Challenges

• Develop a management (control) plane that
accommodates these often conflicting
requirements.

• Balance the need for isolation with the reality
of scarce resources.

• Maintain a stable and usable system while
continuously evolving it.



Trust Relationships
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Trust Relationships (cont)
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1) PLC expresses trust in a user by issuing it credentials to access a slice

2) Users trust PLC to create slices on their behalf and inspect credentials

3) Owner trusts PLC to vet users and map network activity to right user

4) PLC trusts owner to keep nodes physically secure



Decentralized Control

• Owner autonomy

– owners allocate resources to favored slices

– owners selectively disallow unfavored slices

• Delegation

– PLC grants tickets that are redeemed at nodes

– enables third-party management services

• Federation

– create “private” PlanetLabs using MyPLC

– establish peering agreements



Virtualization
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Linux kernel (Fedora Core)

+ Vservers (namespace isolation)

+ Schedulers (performance isolation)

+ VNET (network virtualization) 
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Resource Allocation

• Decouple slice creation and resource allocation

– given a “fair share” by default when created

– acquire additional resources, including guarantees

• Fair share with protection against thrashing

– 1/Nth of CPU

– 1/Nth of link bandwidth

• owner limits peak rate

• upper bound on average rate (protect campus bandwidth)

– disk quota

– memory limits not practical

• kill largest user of physical memory when swap at 90%

• reset node when swap at 95%
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Evolution vs Intelligent Design

• Favor evolution over clean slate

• Favor design principles over a fixed architecture

• Specifically…

– leverage existing software and interfaces

– keep VMM and control plane orthogonal

– exploit virtualization

• vertical: management services run in slices

• horizontal: stacks of VMs

– give no one root (least privilege + level playing field)

– support federation (divergent code paths going forward)



Other Lessons

• Inferior tracks lead to superior locomotives

• Empower the user: yum

• Build it and they (research papers) will come

• Overlays are not networks

• Networks are just overlays

• PlanetLab: We debug your network

• From universal connectivity to gated communities

• If you don’t talk to your university’s general
counsel, you aren’t doing network research

• Work fast, before anyone cares
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Trust Relationships (cont)
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1) PLC expresses trust in a user by issuing it credentials to access a slice

2) Users trust to create slices on their behalf and inspect credentials

3) Owner trusts PLC to vet users and map network activity to right user

4) PLC trusts owner to keep nodes physically secure

SAMA

MA = Management Authority  |  SA = Slice Authority



Slice Creation
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Brokerage Service
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