
PlanetLab: Evolution vs
Intelligent Design in Global

Network Infrastructure

Larry Peterson
Princeton University

PlanetLab

• 670 machines spanning 325 sites and 35 countries
 nodes within a LAN-hop of > 3M users

• Supports distributed virtualization
 each of 600+ network services running in their own slice

Slices

Slices

Slices

User Opt-in

Server
NAT

Client

Per-Node View

Virtual Machine Monitor (VMM)

Node
Mgr

Local
Admin

VM1 VM2 VMn…

Global View

…

…

…

PLC

Long-Running Services

• Content Distribution
– CoDeeN: Princeton

– Coral: NYU

– Cobweb: Cornell

• Storage & Large File Transfer

– LOCI: Tennessee

– CoBlitz: Princeton

• Anomaly Detection & Fault Diagnosis
– PIER: Berkeley, Intel

– PlanetSeer: Princeton

• DHT

– Bamboo (OpenDHT): Berkeley, Intel

– Chord (DHash): MIT

Services (cont)

• Routing / Mobile Access
– i3: Berkeley

– DHARMA: UIUC

– VINI: Princeton

• DNS

– CoDNS: Princeton

– CoDoNs: Cornell

• Multicast
– End System Multicast: CMU

– Tmesh: Michigan

• Anycast / Location Service

– Meridian: Cornell

– Oasis: NYU

Services (cont)

• Internet Measurement
– ScriptRoute: Washington, Maryland

• Pub-Sub

– Corona: Cornell

• Email
– ePost: Rice

• Management Services
– Stork (environment service): Arizona

– Emulab (provisioning service): Utah

– Sirius (brokerage service): Georgia

– CoMon (monitoring service): Princeton

– PlanetFlow (auditing service): Princeton

– SWORD (discovery service): Berkeley, UCSD

Usage Stats

• Slices: 600+

• Users: 2500+

• Bytes-per-day: 3 - 4 TB

• IP-flows-per-day: 190M

• Unique IP-addrs-per-day: 1M

Two Views of PlanetLab

• Useful research instrument

• Prototype of a new network architecture

• What’s interesting about this architecture?

– more an issue of synthesis than a single clever
technique

– technical decisions that address non-technical
requirements

Requirements

1) It must provide a global platform that supports
both short-term experiments and long-running
services.

– services must be isolated from each other

– multiple services must run concurrently

– must support real client workloads

Requirements

2) It must be available now, even though no one
knows for sure what “it” is.

– deploy what we have today, and evolve over time

– make the system as familiar as possible (e.g., Linux)

– accommodate third-party management services

Requirements

3) We must convince sites to host nodes running
code written by unknown researchers from other
organizations.

– protect the Internet from PlanetLab traffic

– must get the trust relationships right

Requirements

4) Sustaining growth depends on support for site
autonomy and decentralized control.

– sites have final say over the nodes they host

– must minimize (eliminate) centralized control

Requirements

5) It must scale to support many users with minimal
resources available.
– expect under-provisioned state to be the norm

– shortage of logical resources too (e.g., IP addresses)

Design Challenges

• Develop a management (control) plane that
accommodates these often conflicting
requirements.

• Balance the need for isolation with the reality
of scarce resources.

• Maintain a stable and usable system while
continuously evolving it.

Trust Relationships

Princeton

Berkeley

Washington

MIT

Brown

CMU

NYU

EPFL

Harvard

HP Labs

Intel

NEC Labs

Purdue

UCSD

SICS

Cambridge

Cornell

…

princeton_codeen

nyu_d

cornell_beehive

att_mcash

cmu_esm

harvard_ice

hplabs_donutlab

idsl_psepr

irb_phi

paris6_landmarks

mit_dht

mcgill_card

huji_ender

arizona_stork

ucb_bamboo

ucsd_share

umd_scriptroute

…

N x N
Trusted

Intermediary

(PLC)

Trust Relationships (cont)

Node

Owner
PLC

Service

Developer

(User)1

2

3

4

1) PLC expresses trust in a user by issuing it credentials to access a slice

2) Users trust PLC to create slices on their behalf and inspect credentials

3) Owner trusts PLC to vet users and map network activity to right user

4) PLC trusts owner to keep nodes physically secure

Decentralized Control

• Owner autonomy

– owners allocate resources to favored slices

– owners selectively disallow unfavored slices

• Delegation

– PLC grants tickets that are redeemed at nodes

– enables third-party management services

• Federation

– create “private” PlanetLabs using MyPLC

– establish peering agreements

Virtualization

Virtual Machine Monitor (VMM)

Node
Mgr

Owner
VM

VM1 VM2 VMn…

Linux kernel (Fedora Core)

+ Vservers (namespace isolation)

+ Schedulers (performance isolation)

+ VNET (network virtualization)

Auditing service

Monitoring services

Brokerage services

Provisioning services

Active Slices

Resource Allocation

• Decouple slice creation and resource allocation

– given a “fair share” by default when created

– acquire additional resources, including guarantees

• Fair share with protection against thrashing

– 1/Nth of CPU

– 1/Nth of link bandwidth

• owner limits peak rate

• upper bound on average rate (protect campus bandwidth)

– disk quota

– memory limits not practical

• kill largest user of physical memory when swap at 90%

• reset node when swap at 95%

CPU Availability

Scheduling Jitter

Memory Availability

Evolution vs Intelligent Design

• Favor evolution over clean slate

• Favor design principles over a fixed architecture

• Specifically…

– leverage existing software and interfaces

– keep VMM and control plane orthogonal

– exploit virtualization

• vertical: management services run in slices

• horizontal: stacks of VMs

– give no one root (least privilege + level playing field)

– support federation (divergent code paths going forward)

Other Lessons

• Inferior tracks lead to superior locomotives

• Empower the user: yum

• Build it and they (research papers) will come

• Overlays are not networks

• Networks are just overlays

• PlanetLab: We debug your network

• From universal connectivity to gated communities

• If you don’t talk to your university’s general
counsel, you aren’t doing network research

• Work fast, before anyone cares

Collaborators

• Andy Bavier

• Marc Fiuczynski

• Mark Huang

• Scott Karlin

• Aaron Klingaman

• Martin Makowiecki

• Reid Moran

• Steve Muir

• Stephen Soltesz

• Mike Wawrzoniak

• David Culler, Berkeley

• Tom Anderson, UW

• Timothy Roscoe, Intel

• Mic Bowman, Intel

• John Hartman, Arizona

• David Lowenthal, UGA

• Vivek Pai, Princeton

• David Parkes, Harvard

• Amin Vahdat, UCSD

• Rick McGeer, HP Labs

Node Availability

Live Slices

Memory Availability

Bandwidth Out

Bandwidth In

Disk Usage

Trust Relationships (cont)

Node

Owner
PLC

Service

Developer

(User)1

2

3

4

1) PLC expresses trust in a user by issuing it credentials to access a slice

2) Users trust to create slices on their behalf and inspect credentials

3) Owner trusts PLC to vet users and map network activity to right user

4) PLC trusts owner to keep nodes physically secure

SAMA

MA = Management Authority | SA = Slice Authority

Slice Creation

PLC

(SA)

VMM

NM VM

PI

 SliceCreate()

 SliceUsersAdd()

User/Agent
 GetTicket()

VM …

.

.

.

.

.

.

(redeem ticket with plc.scs)

CreateVM(slice)

p
lc

.s
c
s

Brokerage Service

PLC

(SA)

VMM

NM VM VM VM…

.

.

.

.

.

.

(broker contacts relevant nodes)

Bind(slice, pool)

VM

User

 BuyResources()
Broker

