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Abstract
Suboptimal performance of the ISC BIND9 DNS server
with multiple threads is a well known problem. This pa-
per explores practical approaches addressing this long-
standing issue. First, intensive profiling identifies ma-
jor bottlenecks occurring due to overheads for thread
synchronization. These bottlenecks are then eliminated
by giving separate work areas with a large memory
pool to threads, introducing faster operations on refer-
ence counters, and implementing efficient reader-writer
locks. Whereas some of the solutions developed de-
pend on atomic operations specific to hardware architec-
ture, which are less portable, the resulting implementa-
tion still supports the same platforms as before through
abstract APIs. The improved implementation scales well
with up to four processors whether it is operating as an
authoritative-only DNS server, with or without dynamic
updates, or as a caching DNS server. It also reduces the
memory footprint for large DNS databases. Acceptance
of this new sever will also have a positive side effect
in that BIND9, and its new features such as DNSSEC,
should get wider acceptance. The direct result has other
ramifications: first, the better performance at the applica-
tion level reveals a kernel bottleneck in FreeBSD; also,
while the results described here are based on our experi-
ence with BIND9, the techniques should be applicable to
other thread-based applications.

1 Introduction

As the Internet has become an indispensable piece of
infrastructure, the domain name system (DNS)[10] has
also been facing increasing pressure as a core feature of
the Internet. For example, forged DNS data can lead to
net scams, and the IETF has standardized a new version
of security framework for DNS (DNSSEC[2]) in order
to address such threats. At the same time, top level DNS
servers have been receiving more queries, and have even

been the target of denial of service attacks. Today’s DNS
servers thus need to have the latest functionality as well
as higher performance to handle the heavy query rate.

ISC BIND9[6] was designed to meet these seemingly
contradictory requirements. It supports all standardized
DNS-related protocols, including the latest version of
DNSSEC as well as adopting a multi-thread architecture
so that it could meet the performance requirements by
using multiple processors.

Unfortunately, BIND9’s multi-thread support did not
benefit much from multiple processors. The performance
measured by queries per second that the server could pro-
cess was soon saturated or even degraded as the num-
ber of processors and threads increased. In the worse
case, BIND9 with multiple threads showed poorer per-
formance compared to a single process of its predeces-
sor, BIND8, which does not even try to take advantage
of multiple processors.

Partly due to the poorer performance, operators who
see high query rates have tended to stick to BIND8, im-
plicitly hindering wider deployment of new technologies
like DNSSEC.

We address the performance problem with multi-
ple threads through a set of practical approaches and
have already reported a preliminary result [7] for an
authoritative-only DNS server that does not allow dy-
namic update requests [16]. This paper completes the
ongoing work by improving memory management fur-
ther and providing thorough evaluation and discussions
of the implementation. The evaluation covers the case
with dynamic updates or caching and with test data based
on real DNS traffic.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide an overview of the BIND9 implemen-
tation architecture as a base for later discussions. Section
3 explains how to identify major bottlenecks regarding
thread synchronization, and Section 4 describes our ap-
proaches to eliminate the bottlenecks followed by some
detailed notes about the implementation in Section 5. We
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then show evaluation results for the improved implemen-
tation in terms of response performance and run-time
memory footprint along with relevant discussions in Sec-
tion 6. We review related work in Section 7 and conclude
in Section 8 with remaining work.

2 BIND9 Architecture

In general, DNS servers are categorized as authoritative
servers and caching (recursive) servers. An authoritative
server has the authority for at least one zone, an admin-
istrative perimeter within the DNS. When the server re-
ceives a DNS query for a domain name, it searches the
zone that best matches the queried name, and, if found,
responds with the corresponding resource records (RRs)
stored in the zone. A caching server handles queries
for end stations by forwarding them toward authoritative
servers until a determinate answer is received. This pro-
cess is called recursive resolution. The answer is cached
for possible re-use, and then forwarded back to the orig-
inating end station.
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Figure 1: The system architecture of a DNS server with
multiple processors running threaded version of BIND9.

Figure 1 is an overview of the entire system of a DNS
server that has multiple processors and runs BIND9 with
multiple threads.

BIND9 can act as either an authoritative or caching
server. For the authoritative service, it has a zone ta-
ble, whose entries correspond to the zones for which the

server has the authority. Each zone entry has an associ-
ated zone database, which consists of RRs of that zone.
For the caching service, it has a separate cache database
for storing results of recursive resolution. BIND9 can
support multiple implementations of databases, but the
default implementation of zone databases and the cache
database is the same. The zone table, zone databases,
and the cache database are, by default, built in-memory,
either from configuration files or dynamically.

When built with threads, BIND9 creates a set of
worker threads at startup time. The number of worker
threads is equal to the number of available processors
by default, and the threads run concurrently on differ-
ent processors handling DNS queries. Note that an ad-
ditional “pool” of worker threads is unnecessary and in-
deed unused, especially for an authoritative server; since
the processing of each query does not involve any net-
work or file I/O, or blocking operations in general, there
is no benefit in handling more queries than the number
of processors concurrently.

Each DNS query arriving at the server is represented
as a separate data structure called a client object in the
BIND9 implementation. Available worker threads are
assigned to the client objects and process the queries
by consulting the zone table and the appropriate zone
databases. If the server does not have authority for the
queried domain name, the worker thread looks for the
answer in the cache database. In either case when an
answer is found the worker thread sends the response
packet to the socket that received the query.

A caching server often needs to send additional
queries to external authoritative servers in processing in-
coming queries. In BIND9 the worker thread sends such
queries through the client object and receives the re-
sponses for further processing. While waiting for the re-
sponses, the worker thread works on other client objects,
if any, so that it can handle as many queries as possible.

There are some other threads, regardless of the num-
ber of processors, which manage timers or watch events
regarding sockets.

Since multiple threads get access to the zone table
and databases concurrently, such access must be properly
protected to avoid race conditions. BIND9 uses standard
POSIX pthread locks [4] for this purpose.

3 Identifying Bottlenecks

The first step in this work was to identify major bot-
tlenecks that affected BIND9’s response performance in
multi-processor environments. We used a simple profiler
for lock overhead contained in the BIND9 package for
this purpose. It is available by building the server with
the ISC MUTEX PROFILE preprocessor variable being
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non-0. When enabled, it measures for each lock the wait-
ing period for achieving the lock and the period that the
lock is held by issuing the gettimeofday system call
before and after the corresponding periods. The BIND9
server retains the statistics while it is running, and dumps
the entire result on termination as follows:

mem.c 720: 1909760 7.223856 24.671104
mem.c 1030: 108229 0.401779 1.625984
mem.c 1241: 67 0.000107 0.000108
...

The above output fragment shows the statistics of a
lock created at line 720 of mem.c. This lock was ac-
quired 108,229 times at line 1030 of mem.c, the to-
tal time that threads spent in the corresponding critical
section was 0.401779 seconds, and the total time that
threads waited to acquire the lock was 1.625984 seconds.

We built BIND 9.3.2 on a SuSE Linux 9.2 machine
with four AMD Opteron processors and with enabling
the lock profiler 1. We then configured it as a root DNS
server using a published snapshot of the root zone, sent
queries to the server for 30 seconds, and observed its be-
havior (see Section 6 for more details about the test en-
vironment).

According to the profiling results, threads spent about
52 seconds for acquiring locks, which were 43.3% of the
total running time of the worker threads (120 seconds
with four threads). We examined the results and catego-
rized the points in the code that dominated the waiting
periods as follows:

• 54.0% of the total waiting period belonged to mem-
ory management routines for allocating or releasing
temporary memory to make response packets.

• 24.2% were mainly for incrementing or decrement-
ing reference counters to some data objects.

• 11.4% were for getting access to data objects repre-
senting zones or resource records.

• 10.4% took place in BIND9’s internal reader-writer
lock implementation. These locks were for either
the zone table or zone databases.

It may look too severe that nearly a half of the run-
ning time was occupied just for acquiring locks. But it
is actually not surprising because the processing of DNS
queries is lightweight. Especially in the case of an au-
thoritative server, it does not involve any additional net-
work or disk I/O, and the synchronization cost between
the threads is relatively much expensive.

4 Eliminating Bottlenecks

In the following subsections, we discuss details about
how to eliminate the bottlenecks shown in the previous
section.

4.1 Working Space Separation

According to the profiling results, the most significant
bottleneck was in memory management routines. Specif-
ically, it was caused by a mutex lock for a data struc-
ture called the memory context. This structure maintains
memory usage information in order to detect a mem-
ory leak and contains some small fragments of memory
that can be reused. Multiple client objects share a single
memory context and use it for building response mes-
sages frequently in the original BIND9 implementation,
which caused the severe lock contentions.

In addition, the original implementation uses the stan-
dard library versions of malloc and free to allocate
and release memory, which may internally cause addi-
tional lock overhead.

We mitigated the first type of overhead by separating
memory contexts for different client objects. This is safe
because the allocated memory is a temporary working
space specific to each client and the worker thread work-
ing on it, and generally does not have to be shared with
other threads.

In order to reduce the overhead imposed by the stan-
dard library, we enabled a BIND9’s experimental feature
called the “internal memory allocator”. It initially allo-
cates a 256KB memory block as a large pool for each
memory context, and repeatedly uses fragments in the
memory pool without involving the standard library.

One obvious issue with this approach is the additional
memory consumption for the separate space. Overcon-
sumption of memory is of concern particularly when
BIND9 acts as a caching server. In this case, it can have
many client objects that are handled by a smaller number
of worker threads: by default, the maximum number of
concurrent clients is 1000, while the number of worker
threads is equal to the number of processors. If we sim-
ply separated the work space for each client object, the
maximum amount of memory needed might be unaccept-
ably large.

Instead, we had multiple client objects share a sin-
gle memory context as shown in Figure 2. The num-
ber of contexts has a fixed limit regardless of the number
of client objects, thereby ensuring the upper limit of re-
quired memory for the work space.

Since different worker threads can work on client ob-
jects sharing the same memory context, access to the al-
located memory must be locked properly. For example,
worker threads A and B in Figure 2 share the same mem-
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Figure 2: Sharing memory contexts by clients.

ory context and may contend with each other for holding
the lock of the context.

We avoided the lock contention in a probabilistic way,
that is, by creating many more shared memory contexts
on-demand than worker threads. In the current imple-
mentation, the maximum number of memory contexts
is 100, which we believe to be large enough for a de-
cent number of worker threads in environments where
BIND9 is expected to work. Yet this number is an arbi-
trary choice; in fact, we have not seen significant differ-
ences in performance with 10 or 100 clients with evalu-
ation configurations described in Section 6. Its effective-
ness will have to be assessed through live experiments.

Regarding the additional memory consumption, the
total amount of memory for the preallocated block oc-
cupies the dominant part. If all the 100 contexts are
created and used, the total amount will be 25MB. More
blocks of memory could be required if the clients con-
sume all the pre-allocated memory, but typically it should
not happen since the memory is used only for temporary
work space to build a moderate size of response message
and only requires a small amount of memory. It should
also be noted that an authoritative server does not need
additional clients, and the discussion only applies to a
caching server. For a busy caching server, which gener-
ally needs a large amount of memory for the cache, we
believe the additional consumption is minor.

4.2 Faster Operations on Counters

As shown in the previous section, nearly a quarter of the
major bottlenecks in terms of the waiting period caused
by locks were regarding operations on reference coun-
ters. Reference counters are essential for threaded pro-
grams, since multiple threads can independently refer to
a single data object and it is hard to determine without
counters whether a shared object can be safely destroyed.

Obviously, change operations on a reference counter
must be mutually exclusive. In addition, a significant
action for the referenced object can happen when the ref-
erence increases from or decreases to zero, in which case
additional locks may be necessary to protect that action.
However, such an event does not take place in the typical
case where worker threads are working on those refer-
ences, since the base system usually holds the structure
in a stable state. For example, a zone keeps a positive
reference to the corresponding database until it replaces
the database with a new one, e.g., by reloading the con-
figuration file or at shutdown time. Thus, the locks for
reference counters generally only protect the simple op-
eration of increasing or decreasing an integer.

This observation led us to the following idea: most
of today’s processors have dedicated atomic instructions
that allow multiple threads to increment or decrement an
integer concurrently and atomically. Some processors
support an instruction exactly for this purpose. We can
also implement these operations with other type of in-
structions such as compare-and-swap (CAS) and a busy
loop, as shown in Chapter 15 of [8]. In either case, the
resulting operations on reference counters can run much
faster than those protected by general locks, and we will
simply call both “atomic operations” hereafter. We still
use normal POSIX locks for the rare cases where the
counter decrements to zero.

4.3 Efficient Reader-writer Lock

According to the results of Section 3, about 30% of the
locks affecting the performance were related to access to
the zone table or to zone databases. While some of the
locks are general and allow only one thread to enter the
critical section at once, the access is read-only in most
cases for an authoritative DNS server that does not allow
dynamic updates: once the server loads the configuration
and zones, the worker threads just search the zone table
and zone databases for the answers to queries, without
modifying the objects they are referring to.

One possible optimization here is to use reader-writer
locks (rwlocks). In fact, the original BIND9 implemen-
tation used rwlocks for some cases considered here. It
uses a custom version of rwlocks instead of the pthread
rwlock library in order to ensure fairness, and the custom
implementation relies on the general locks internally. As
a side effect of this, readers can be blocked even if there
is no writer.

If we could assume some atomic operations supported
by the underlying hardware, however, rwlocks could be
implemented more efficiently [9]. We adopted a slightly
modified version of the “simple” algorithm described in
[9] 2, and used the new rwlocks for all of the above cases.
The new rwlock implementation requires an atomic op-
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eration that adds some (positive or negative) value to an
integer and an atomic CAS operation.

The key to the algorithm are the following in-
teger variables, which are modified atomically:
write_requests, write_completions, and
cnt_and_flag.

The first two variables act as a waiting queue for
writers in order to ensure the FIFO order. Both of
them begin with the initial value of zero. When a
new writer tries to get a write lock, it increments
write_requests and gets the previous value of the
variable as a ”ticket”. When write_completions
reaches the ticket number, the new writer can start writ-
ing. When the writer completes its work, it increments
write_completions so that another new writer can
start working. If the write_requests is not equal to
write_completions, it means a writer is now work-
ing or waiting. In this case, new readers cannot start read-
ing; in other words, this algorithm prefers writers.

The variable cnt_and_flag is a “lock” shared
by all readers and writers. This 32-bit inte-
ger variable acts as a structure with two members:
writer_flag (1 bit) and reader_count (31 bits).
The writer_flag bit reflects whether a writer is
working, and reader_count is the number of readers
currently working or almost ready to work (i.e., waiting
for a currently working writer).

A writer who has the current “ticket” tries to get the
lock by exclusively setting the writer_flag to 1, pro-
vided that the whole 32-bit value is 0 (meaning no read-
ers or writers working). We need the atomic CAS in-
struction here. On the other hand, a new reader first
checks there are no writers waiting, and then increments
the reader_count field while getting the previous
value of cnt_and_flag. If the writer_flag bit
is not set, then the reader can enter the critical section;
otherwise, it waits for the currently working writer.

When the necessary prerequisite conditions are not
met, the reader or the writer sleeps until the related con-
ditions change. When a working reader or writer com-
pletes its work, some readers or writers are sleeping,
and the condition that suspended the reader or writer has
changed, then it wakes up the sleeping readers or writ-
ers. Our implementation uses condition variables and
locks as defined in the standard pthread library for these
cases. The use of the standard library may degrade the
performance, but we believe this does not matter much,
since writers should appear only very rarely in our in-
tended scenarios. In addition, we found the extensions to
the original algorithm described below could be imple-
mented much easier with the standard library for the rare
cases.

The original algorithm based on [9] was not
starvation-free for readers. In order to prevent readers

from starving, our implementation also introduced the
“writer quota” (Q). When Q consecutive writers have
completed their work, possibly suspending readers, the
last writer will wake up the readers even if a new writer
is waiting.

We implemented other extensions: “trylock”, “tryup-
grade”, and “downgrade”, which are necessary in some
special cases in the BIND9 implementation.

The “trylock” extension allows the caller to check
whether the specified lock is achieved and to get the lock
when possible without blocking. This extension is actu-
ally used for writers only. Our implementation of this ex-
tension lets the caller pretend to have the “current ticket”
and try the same thing as a candidate writer would nor-
mally do as described above. If this succeeds, then the
caller decrements write_completions as if it had
the “current ticket”, and starts writing. Otherwise, this
attempt simply fails without making the caller sleep.

The “tryupgrade” extension allows a reader who al-
ready has a lock to become a writer if there are no other
readers. The implementation is similar to that of “try-
lock”, but in this case the prerequisite condition for the
CAS operation is that reader_count be one, not zero,
which indicates this is the only reader.

On the other hand, if a writer “downgrades”, it be-
comes a reader without releasing the lock, so that other
readers can start reading even if there is a waiting writer.
The implementation of downgrading is straightforward
and is not discussed here.

4.3.1 Alternative Approach: Standard Rwlock

One possible alternative to the optimized, but less
portable rwlock described above is the standard rwlock
implementation [15] provided as a part of the operating
system. It is clearly advantageous in terms of portability,
and it may also provide decent performance depending
on the implementation detail.

However, the standard rwlock specification is not
guaranteed to be starvation free, which is the primary
reason why we did not rely on it. In addition, the perfor-
mance of the standard implementation varies among dif-
ferent implementations as we will see in Section 6.1.6.
Considering the variety of architectures that have the
necessary atomic operations for the customized rwlock
implementation (see Section 5.2), we believed our ap-
proach with the customized implementation would pro-
vide better performance for as many systems as possible.

5 Implementation

We modified BIND9 using the optimization techniques
described in the previous section and contributed the new
implementation to ISC. While it is not publicly available
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as of this writing, it has been incorporated in the ISC’s
development tree, and will be released as free software
in BIND 9.4, the next major release of BIND9.

In the following subsections we make some supple-
mental notes on the implementation.

5.1 Where and How to Use Rwlocks
It was not straightforward to apply the efficient rwlock
implementation described in Section 4.3. We used the
rwlocks for the zone table, each of the zone and cache
databases, and every database entry, which is sets of RRs
(called RRsets) for the same name.

The original implementation used normal mutex locks
for the RRsets, not rwlocks. In order to use the rwlocks
for the RRsets in an effective way, we first separated the
targets protected by the locks into reference counters and
other content. We then ensured safe and efficient opera-
tions on the former as described in Section 4.2 while us-
ing rwlocks for protecting access to the latter. This way
we typically only need read-only access to the RRsets,
where the rwlocks work effectively. This is definitely the
case for authoritative-only servers that do not allow dy-
namic updates.

For caching servers, which need write access to
RRsets in the cache database more frequently, we intro-
duced one further customization. Whether it is a zone or
cache database, the original implementation used a lock
bucket, each entry of which contained a lock shared by
multiple RRsets in order to limit the necessary memory
for the locks. Moreover, the number of entries in a bucket
was set to 7 by default, a pretty small number, so that
the memory consumption would still be small even if the
server had a large number of zones. Using a lock bucket
should make sense, but it was not reasonable for apply-
ing the same limit of the bucket size to zone databases
and the cache database because there is typically only
one cache database in a single server. Thus, we enlarged
the bucket size for the cache database to a much larger
number. It is 1009 in the current implementation, which
is an experimental arbitrary choice at the moment.

5.2 Portability Considerations
Some approaches described so far rely on hardware de-
pendent atomic operations. An obvious drawback of
such approaches is that the resulting implementation
becomes less portable. This is particularly severe for
BIND9, since portability is one of its major goals as a
reference implementation.

To ensure as much portability as possible, we mini-
mized the necessary operations. In fact, we only need
two operations: atomic addition on an integer, which
can also be used for atomic operations on counters, and

atomic CAS. Furthermore, these can actually be emu-
lated using other primitive operations.

We have implemented the two operations, through em-
ulation in some cases, for Intel x86, AMD, Alpha, Sparc
v9, PowerPC, and MIPS as a proof of concept. The
first two have dedicated instructions for our purposes
[5]. Sparc v9 has CAS as a primitive instruction [13],
on which we can emulate the atomic addition on an in-
teger. The others have a variant of locked load and store
instructions, with which we can emulate the necessary
operations. We believe these operations can also be im-
plemented on many of today’s architectures.

However, we still expect the operations cannot be pro-
vided in a realistic way for some architectures. Thus,
any use of these operations are hidden under an abstract
interface, and the new code works just as before on ma-
chines that do not support the necessary operations for
our optimizations.

5.3 Optimizing OS Kernel

Application-level optimization sometimes reveals sys-
tem bottlenecks. In fact, after implementing the possible
optimizations described so far, we noticed that FreeBSD
still did not show the performance we expected on a
fast multi-processor machine, while Linux and Solaris
showed the anticipated improvement.

We then examined the kernel source code of FreeBSD
and found that a kernel lock was protecting the send
socket buffer. The lock was to protect simultaneous ac-
cess to parameters of the socket buffer such as water-
marks for flow control or a list of outgoing packets kept
in the socket for retransmission. This lock was held
throughout the socket output routine including the out-
put processing at the network and datalink layers. Since
a DNS server typically works on a single UDP port and
the worker threads of BIND9 share a single UDP socket
for sending responses as a result, they would contend in
the kernel attempting to acquire the lock.

For a UDP socket, however, this lock was unnecessary.
In fact, none of the protected parameters were used for
the output processing of UDP packets due to its property
as a non-reliable transport protocol without flow control.

We wrote a simple patch that omitted the unneces-
sary lock for UDP sockets, and confirmed that it worked
efficiently without causing any disruption in the ker-
nel. We then reported this performance issue with the
patch to the FreeBSD developers community. Fortu-
nately, FreeBSD’s netperf project [17] has removed this
bottleneck in a recent change based on our report.

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association120



6 Evaluation

We evaluated the effectiveness of the implementation de-
scribed so far using a real multi-processor machine and
actual DNS queries.

The base of our implementation was an unpublished
version of BIND9. The response performance we
achieved, however, should be equivalent to BIND 9.3.2,
the latest released version as of this writing.

The target machine used for the evaluation was a 4-
way AMD Opteron with 3.5GB of memory, 1GB of L2
cache, and 64KB of L1 cache (64KB each for instruction
and data) and had a Broadcom BCM5704C Dual Gigabit
Ethernet adaptor.

Most of the results shown in this paper were those for
SuSE Linux 9.2 (kernel 2.6.8 and glibc 2.3.3) running
in the 64-bit mode, unless explicitly noted otherwise.
We also performed the same tests against FreeBSD 5.4-
RELEASE and Solaris 10 on the same hardware, both
running in 32-bit mode, and confirmed the overall results
were generally the same.

We built BIND9 both with and without the opti-
mizations we developed on the test machine, which
we call “BIND9 (old)” and “BIND9 (new)”, respec-
tively. For comparison, we also used BIND9 without en-
abling threads and BIND 8.3.7. These are referenced as
“BIND9 (nothread)” and “BIND8”.

6.1 Response Performance
6.1.1 Server Configurations

We configured various types of DNS servers for evalu-
ating the response performance of our implementation.
These configurations have several different characteris-
tics.

The first type of configuration is for “static” author-
itative servers, i.e., authoritative-only DNS servers that
do not allow dynamic updates, which has the following,
three specific configurations:

• A root server configuration with a real snapshot
of the root zone as of October 28th, 2005. Snap-
shots of the root zone are publicly available at
ftp://ftp.internic.net/. We specifically emulated the
F-root server, which also had authority for the
“.ARPA” zone. We used a copy of the “.ARPA”
zone data of the same day from the F-root server
via the zone transfer protocol and used it for config-
uring the test server.

• The “.NET” server configuration with a copy of the
actual zone database as of March 2003. It contained
8,541,503 RRs and was used as a sample of a sin-
gle huge zone. The vast majority of the zone data
consists of NS and glue RRs.

• A generic server configuration with a massive num-
ber of small zones. Specifically, it had 10,000
zones, each of which contained 100 A RRs in addi-
tion to a few mandatory RRs for managing the zone.

The second type of configuration is for a “dynamic”
authoritative server. It started with a single pre-
configured zone containing 10,000 RRs in addition to
a few mandatory RRs and accepted dynamic update re-
quests.

The third type of configuration is for a “caching” re-
cursive server. It started without any authoritative zones
and accepted recursive queries.

6.1.2 Evaluation Environment

Our measure of performance common to all the con-
figurations was the maximum queries per second that
the tested implementation could handle without dropping
any queries. Our engineering goal regarding this measure
was to add 50% of the single-processor query rate for ev-
ery additional processor. This engineering goal was set
so that BIND9 with two processors would outperform
BIND8 if BIND9 with a single processor could operate at
no less than 80% of the speed of BIND8 on that same sin-
gle processor. While the target may sound conservative,
we believe this is in fact reasonable since the base per-
formance of BIND9 is generally poorer than BIND8 due
to its richer functionality, such as support for DNSSEC,
and the cost of securer behavior, such as normalization
of incoming data.

We connected two external machines to the same Gi-
gabit Ethernet link to which the test machine was at-
tached. The external machines acted as the clients for the
evaluation target. In order to avoid the situation where
performance on the client side was the bottleneck, we
used multiple processes on the client machines.

We used a variant of the queryperf program con-
tained in the BIND9 distributions for the client side pro-
cesses, which was slightly customized based on the orig-
inal tool for our testing purposes. The program was mod-
ified so that it could combine the results of multiple pro-
cesses on different machines and could send dynamic up-
date requests as well as ordinary queries. In all test cases
queryperf repeatedly sent pre-configured queries, ad-
justing the query rate in order to avoid packet loss, and
dumped the average queries per second processed.

6.1.3 Static Server Performance

We prepared the test queries for the root server config-
uration based on real traffic to the F-root server located
in San Francisco, California. We used packets that had
reached the server between 5:18am and 6:18am on Oc-
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Figure 3: Evaluation Results for the static configurations.

tober 28th, 2005, a sample which contained 31,244,014
queries.

The reason why we performed the evaluation based on
real data was because details of the query pattern may
affect the response performance significantly. Of par-
ticular importance in terms of bottlenecks for a multi-
threaded BIND9 server is the proportion of queries that
match the same database entries; if a large fraction of the
whole queries matches a small number of entries, it may
cause contentious access by multiple threads and can be
a bottleneck due to the contentions for acquiring locks.
In fact, we analyzed the query data and found that the
query pattern was unbalanced: 22.9% of the queries was
for names under the same domain (.BR) and names un-
der the top six domains occupied more than a half of the
whole queries.

We separated the queries into three chunks and ran
three instances of the queryperf program concur-
rently with the divided queries as input so that the result-
ing test query stream roughly emulated the actual query
traffic. We did not stick to reproducing the real queries
in the same order and at the same timing since our pri-
mary goal was to know the maximum performance of the
tested implementation.

For all other authoritative server configurations than
the root server case, we generated the test queries by
randomly choosing domain names under the zone that
the target server managed. A small fraction of the query
names did not exist in the zone and resulted in negative
responses.

Figure 3 summarizes the evaluation results. For
BIND8, and for BIND9 with “nothread”, the results for
more than one thread are meaningless. For comparison
purposes, however, we showed these meaningless results
as if they were independent of the number of threads.
The graphs labeled “target” show our original engineer-
ing goal.

Although we did not reach our original engineering
goals in some cases, our results are generally good. The
new BIND9 implementation also scaled almost linearly
to the number of processors, up to a maximum of four

processors.
In comparison to BIND8, the new BIND9 implemen-

tation with two processors could answer the same num-
ber or more queries than BIND8 could, and with three
or more processors the results were much better than
BIND8. We also note that the old BIND9 implemen-
tation could never outperform BIND8 even with all the
four processors for the root server configuration.

Another remarkable point is that BIND9 with one
thread could generally handle more queries than BIND9
without threads. This is not an intuitive result, since
both implementations should benefit only from a single
processor and there should be overhead specifically re-
lated to threads. We discovered the reason for the re-
sult was because the “nothread” version needed to check
other asynchronous events such as timer expiration peri-
odically, even though such events rarely occurred; in the
threaded version, the worker thread could keep handling
queries without any interrupts, since separate threads
which were effectively idle could handle the exceptional
events. This should prove that a well-tuned threaded ap-
plication can run more efficiently even on a single pro-
cessor machine.

6.1.4 Performance with Dynamic Updates

To evaluate the authoritative server while it was allow-
ing dynamic updates, a separate client process sent up-
date requests at a configured rate, cooperating with the
queryperf processes. In order to emulate a busy au-
thoritative server handling frequent update requests, we
measured the total response performance using the up-
date rates of 10 and 100 updates per second.

Figure 4 is the evaluation results of these scenarios.
There is an exception in the case of BIND9 implementa-
tions receiving the higher rate of update requests with no
or one thread: the BIND9 server using a single processor
could only handle at most 75 updates per second. With
two or more processors, it could process the configured
update rate.

In either case the new BIND9 implementation
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Figure 4: Evaluation results for a server accepting 10 and 100 update requests per second.

achieved the expected improvement in that it could at
least handle with two threads as many queries as BIND8
and could process more with three or more threads. This
result proves that the efficient rwlock implementation
works as expected with a small number of writers.

It should be noted that dynamic update processing can-
not benefit from multiple processors, since update re-
quests must be handled sequentially. We thus fixed the
update rate regardless of the number of threads in the
evaluation, which means the total queries handled with
one thread is much smaller than the other cases. There-
fore, the “target” performance in these cases do not mat-
ter much, and we did not include it in Figure 4.

6.1.5 Caching Server Performance

It is not trivial to evaluate the response performance of
a caching DNS server as pointed out by [12]. The main
reason is that query processing at a caching server can
involve additional transactions with external authorita-
tive servers and so the total performance depends on var-
ious factors such as available network bandwidth, the re-
sponse performance or availability of the external author-
itative servers, or the cache hit rates. Some of the domi-
nant factors are hard to control or reproduce.

We used a simplified model for our evaluation as
shown in Figure 5. It consisted of two external authorita-
tive servers in addition to a client (tester) and the caching
server (evaluation target), all attached to the same Eth-
ernet segment. External server 1 had authority for 1,000
external zones, each of which contained 200 RRs, and
external server 2 had authority for a common parent zone
of these zones and delegated the authority of the child
zones to server 1. The client sent queries for names be-
longing to these zones to the caching server.

In the initial stage of the performance evaluation the
caching server needed to follow the delegation chain of
authority from the root server to external server 1. The
caching server then repeatedly queried external server 1
and cached the result as it received queries from the client
(as shown by exchanges 1 through 4 in the figure). At

get delegations
at the initial stageCaching Server

(evaluation target)

Client
(tester)

External
authoritative

server1

External
authoritative

server2

1000
zones

Cache

1000
delegations
to server1

Figure 5: Network configuration for evaluating caching
server performance.

some point the cache stabilized, and the caching server
did not have to query the external server as long as the
data remained in the cache (as shown by exchanges 5 and
6 in the figure). At this stage we measured the response
performance.

The configurable evaluation parameter in this test sce-
nario was the cache hit rate. We configured half of the
RRs stored in external server 1 with a Time-to-live (TTL)
of 1 second so that it would be highly unlikely to be
reused in the cache. If the caching server received a
query whose answer had expired during the test period,
the caching server queried the external server again. We
then prepared various test query patterns for specific hit
rates by mixing the names with the shorter TTL and the
other names in an appropriate ratio.

Our primary target of cache hit rate was 80% hits. This
number was based on a statistic analysis of an existing
busy caching server that had a large number of clients.
We also used other query data that caused the hit rates
from 50% to 90% for comparison.

Figure 6 shows the evaluation result for the caching
server configuration with the primary target of cache hit
rate. While the new BIND9 implementation scaled well
compared to the target performance, and it could answer
more queries with four threads than BIND8, this was not
fully satisfactory in that it needed all four threads (pro-
cessors) to outperform BIND8.

It should be noted, however, that BIND9 with one
thread could only handle 43% of queries that BIND8
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could answer. This means that the fundamental reason
for the poorer performance is the base processing ability
with a single thread, as explained in Section 6.1.2, rather
than bottlenecks in the multi-thread support. It should be
more reasonable to consider improving the base perfor-
mance first in order to achieve competitive performance
with multiple threads in this case.
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Figure 6: Evaluation Results for a caching server with
80% cache hits.

Table 1 summarizes the results of the same evalu-
ation with various cache hit rates. It generally indi-
cates the same result as shown in Figure 6 regardless
of the hit rates: the new BIND9 implementation scaled
well with multiple threads, but the resulting performance
compared to BIND8 was not enough due to poorer base
performance.

Rate BIND8 BIND9 (new) with threads
(%) 1 2 3 4
90 41393 20569 31287 42826 51686

(50%) (76%) (103%) (125%)
80 36647 15915 25595 33809 40697

(43%) (70%) (92%) (111%)
70 32660 13388 21638 27561 33269

(41%) (66%) (84%) (102%)
60 29862 10296 18059 22834 28100

(35%) (60%) (76%) (94%)
50 29676 9641 15610 19713 24391

(32%) (53%) (66%) (82%)

Table 1: A summary of performance evaluation on
caching server implementations with various cache hit
rates (the left-most column). The numbers for the
BIND8 and BIND9 columns indicate the maximum
number of queries that the corresponding implementa-
tion could handle per second. The percentage numbers
for the BIND9 columns are the ratio to the correspond-
ing result of BIND8. The results of BIND9 better than
BIND8 are highlighted in a bold font.

6.1.6 Comparison with Alternatives

We also performed additional tests with some of the
above configurations for comparing several implemen-
tation options. The primary goal in these tests was to see
whether the standard rwlocks can be used as a practical
alternative as discussed in Section 4.3.1.

Figure 7 shows a summary of the performance com-
parison. All the optimization types utilize the portable
technique of separate memory contexts described in Sec-
tion 4.1. Note that optimization types (3) and (4) do
not rely on hardware dependent atomic operations and
are more portable than others. It should also be noted
that database entries are protected by mutex locks, not
rwlocks, in this type of optimization because the use of
rwlocks for the database entries needs faster operations
on reference counters as we explained in Section 5.1.

Figure 7 provides several lessons regarding the trade-
offs between the optimization techniques.

First, the difference between cases (A) and (B) shows
the efficiency of the standard rwlocks varies among dif-
ferent implementations when only reader locks are nec-
essary in the typical case. This means a portable appli-
cation running on various systems that requires higher
performance cannot always rely on the standard rwlock
implementation.

Secondly, the result of case (A) indicates that simply
using efficient rwlocks may not be enough in terms of
total performance. In fact, the difference between op-
timization types (1) and (2) shows the standard rwlock
library is as efficient as our customized version. The
comparison between these two and optimization type (3),
however, proves that we still need the help of atomic op-
erations to achieve the required performance. One pos-
sible explanation of the difference is that type (3) had
to use normal mutex locks shared in a small bucket for
protecting access to database entries, causing heavy con-
tentions. However, the comparison between types (3)
and (4) rather proves that this is likely due to the unbal-
anced query pattern to the server as explained in Section
6.1.3.

Since the major benefit of implementation (3) is bet-
ter portability by avoiding machine dependent opera-
tions while realizing better performance, this result in-
dicates that attempting to use standard rwlocks cannot
completely achieve that goal.

Finally, test cases (C) and (D) seem to show it is not
very advantageous to use efficient rwlocks, whether they
are based on atomic operations or the standard imple-
mentation. In fact, even optimization type (4) worked
nearly as efficient as type (1). This is likely because
efficient rwlocks were less effective in this case due to
the more frequent write operations and because access to
cache database entries was less contentious thanks to the
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Figure 7: Performance comparison between various types of optimization for the root and caching servers on Linux
and Solaris. Optimization types (1) to (3) are common to all the test cases: (1) is the proposed version in this paper; (2)
utilizes the standard rwlocks (Section 4.3.1) and faster operations on reference counters; (3) uses the standard rwlocks
and normal reference counters. For the root server configuration, optimization type (4) uses a larger lock bucket for
zone databases but does not rely on other optimizations, while type (4) for the caching server configuration does not
benefit from any optimization.
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larger lock bucket.
It should be noted, however, that the actual query pat-

tern may change the result. We generated the query input
by randomly and equally choosing names from a large
set in these tests, which means query names were well-
distributed and less likely to cause contention when ac-
quiring locks. If the real query pattern is more unbal-
anced as we saw in the root server case, it may cause se-
vere contention that can make a more visible difference
in the response performance depending on the rwlock
implementation. In fact, we believe this to be the case
even for a caching server. For example, the host names
of popular search engines stored in the cache database
may be queried much more frequently than others. We
need further tests with input data which better emulates
the real traffic in order to get a definitive conclusion.

6.1.7 Effect of Kernel Optimization

Finally, we verified whether the kernel optimization for
FreeBSD described in Section 5.3 made a notable dif-
ference with actual query traffic. In addition to the opti-
mized version of BIND9, we used NLnet Labs’ NSD[11]
for this test. Unlike BIND9, NSD forks multiple pro-
cesses for concurrent operation, all of which share a sin-
gle UDP socket. By using NSD, we were able to elim-
inate the possibility of thread-related bottlenecks alto-
gether.

Figure 8 shows the evaluation results with the root
server configuration with or without the lock for the UDP
socket output buffer. We omitted the results of the other
authoritative server scenarios, but they generally indi-
cated the same conclusion. We also did not show the
caching server case because the possible performance
was not so high to reveal the kernel bottleneck.

The evaluation results clearly show that the unneces-
sary lock was a severe bottleneck for a high-performance
application that shares a single UDP socket among mul-
tiple threads or processes. In particular, the result for
NSD indicates the bottleneck can even degrade the per-
formance with a larger number of processes.

While the performance of NSD was saturated with
three or more processors, it was not specific to FreeBSD;
we saw similar results on Linux and Solaris. We did not
figure out the reason for this, but speculated this was due
to some lower-level bottlenecks such as in the physical
network interface or in memory access contentions.

We did not directly compare the performance between
BIND9 and NSD in this test. In fact, the comparison
would not make much sense since NSD concentrates
on achieving higher response performance by omitting
some richer functionality that BIND9 can provide. We
will give a qualitative comparison between these two im-
plementations in Section 7.

6.2 Memory Footprint
There is no protocol dictated upper limit of the size of a
DNS zone. In fact, some top level zones contain more
than 10 million RRs. As a result, the size of DNS zone
databases for a server implementation can be huge. For
implementations that store the databases in-memory, in-
cluding BIND, run-time memory footprint is thus criti-
cal.

Our implementation adds a new structure field to a set
of RRs for faster operations on reference counters, and
could increase the memory footprint proportional to the
number of the sets, which is typically proportional to the
number of RRs. Additionally, we use the efficient ver-
sion of rwlocks for more data objects than the original
implementation did. Since a rwlock generally requires
more memory than the normal lock, this could also be a
source of larger memory footprint.

We therefore assessed the needed memory for some
typical cases which require more memory: a case of a
huge zone and a case of 10,000 zones, which were ac-
tually the second and third “static” configurations de-
scribed in Section 6.1.1.

Table 2 summarizes the results. Against our expecta-
tion, the new implementation showed even better results
than the old one in terms of memory footprint. We thus
enabled BIND9’s internal memory allocator (see Sec-
tion 4.1) for the old implementation as well, and com-
pared the results, which are also included in Table 2. It
likely indicates the internal allocator recycles memory
fragments effectively and reduces the total memory con-
sumption. This also means that the use of internal alloca-
tor in our approach makes up for the additional memory
consumption used in reducing the lock overhead.

FreeBSD(32bit) Linux(64bit)
Config Old New Old New
“.net” 762(562) 583 907(802) 811
10K zones 174(143) 164 230(200) 221

Table 2: Run-time memory footprint of authoritative
servers of the old and new BIND9 implementations (in
MB). Numbers surrounded by parentheses are the foot-
prints for the old implementation enabling internal mem-
ory allocator.

7 Related Work

A major subject of our work is to make synchroniza-
tion among multiple threads more efficient. This is a
well-understood research topic, and, indeed, the efficient
reader-writer lock implementation we described in Sec-
tion 4.3 was based on a simple and “naive” algorithm
mentioned in old work[9].
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As summarized in [1], the current trend of this re-
search area is to pursue scalability with a much larger
number of processors, especially using the notion of lo-
cal spinning. From a practical point of view, however,
the scalability aimed for in the theoretical field is far
more than enough. In fact, even 4-way machines are not
common in such practical areas as DNS operation. We
showed in the previous section that our approach scaled
well up to the reasonable upper limit.

Meanwhile, such scalable solutions tend to need more
complex data structures, requiring more memory, and in
some cases more atomic operations. Since some of the
data objects we want to protect are sensitive to mem-
ory consumption, complex data structures are not really
appropriate even if those provide highly scalable perfor-
mance. Also, requiring more primitive operations dam-
ages portability, which is not acceptable from a practical
point of view.

Whereas we adopted the built-in memory allocator
of the BIND9 implementation for managing temporary
work space as explained in Section 4.1, there are other
scalable allocators intended for multithreaded applica-
tions such as Hoard[3]. It utilizes per-thread heaps to
which a set of memory blocks are assigned as a dedicated
memory pool for the corresponding threads. The use of
per-thread heaps helps avoid “false sharing” (where mul-
tiple threads share data on the same CPU cache), yet it
limits memory consumption regardless of the number of
processors by recycling unused blocks depending on the
total usage. In theory, Hoard is better than the BIND9
allocator since the latter can cause false sharing when
multiple threads share a single memory context.

However, when we repeated the evaluation tests with
BIND9, linking Hoard as well as enabling other opti-
mizations3, we found that it actually performed slightly
worse than BIND9’s internal allocator: the former ran
13.1% slower than the latter in the scenario of a caching
server with 50% cache hits, which should be the sever-
est test case for a memory allocator. This was probably
because the scalability advantage of Hoard did not out-
weigh its internal complexity; we will have to evaluate
the performance with a larger number of processors for
fair comparison.

Regarding server implementations, the Apache HTTP
server[14] uses atomic operations for incrementing and
decrementing reference counters. To the best of our
knowledge, however, specific performance evaluation
has not been publicly provided. It is also not clear
whether the introduction of the atomic operations was
based on performance analysis. On the other hand, we
first identified operations on reference counters were ac-
tually a severe bottleneck through profiling, and showed
it could be resolved by introducing an atomic operation.

NSD[11] is another example of high performance

DNS server. It makes the query processing fast by pre-
computing the image of response packets for typical
queries at initialization time, assuming “static” zone con-
figurations. NSD can also benefit from multiple proces-
sors by forking multiple processes for concurrent oper-
ation. Indeed, it scales well with multiple processors as
we saw in Section 6.1.7. However, it has its own draw-
backs. Since each process has an independent copy of
data in memory, NSD cannot allow a part of a zone to
be dynamically modified via the DNS dynamic update
protocol or act as a caching server. Additionally, this
approach is not suitable for managing a huge zone be-
cause the total memory footprint needed is proportional
to the number of processors. Overall, the difference be-
tween BIND9 and NSD is a design tradeoff between
richer functionality such as the support for dynamic up-
date and higher possible performance in some limited en-
vironments.

8 Conclusions and Future Work

We explored several practical approaches for improving
the responsiveness of the ISC BIND9 DNS server with
multiple threads. We first identified major bottlenecks
occurring due to overhead related to thread synchroniza-
tion through intensive profiling. We then eliminated all
the bottlenecks by giving separate work areas to threads
using the notion of shared memory contexts, introduc-
ing faster operations on reference counters, and imple-
menting efficient reader-writer locks (rwlocks). While
some of the solutions developed depended on atomic op-
erations specific to hardware architecture, which are less
portable, the resulting implementation still supported the
same platforms as before through abstract APIs. We
confirmed our implementation scaled well with up to
four AMD processors under various configurations from
authoritative-only to caching, and with or without allow-
ing dynamic update requests.

Our primary contribution is performance improve-
ments in BIND9, a long-standing issue with that version
which has prevented wider deployment. We also hope, as
a consequence of these results, that this will promote de-
ployment of new protocol features which previous major
versions of BIND do not support, such as DNSSEC.

While the approaches we adopted specifically targeted
one particular implementation, we believe our approach
includes several lessons that can also help develop other
thread-based applications. First, even the seemingly
naive approach for identifying bottlenecks in fact re-
vealed major issues to be fixed as shown in Section 3.
Secondly, the fact that operations on reference coun-
ters were a major bottleneck is probably not specific to
BIND9, since these are inherently necessary for objects
shared by multiple threads. Thus, our approach to im-
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prove the performance for this simple and particular case
will help other applications. Finally, the efficient imple-
mentation of rwlocks and the framework of shared mem-
ory pools can easily be provided as a separate library, not
just a subroutine specific to BIND9, and help improve
performance of other applications such as HTTP servers
or other general database systems than DNS.

We also identified a bottleneck in the UDP output pro-
cessing of the FreeBSD kernel through our attempt of
improving and evaluating the target application and pro-
vided a possible fix to the problem. Other applications
that benefit from the techniques we provided in this pa-
per may also be able to reveal other bottlenecks hidden
inside the system so far.

Even though we proved the effectiveness of our ap-
proach through pragmatic evaluation, there may be is-
sues in the implementation which can only be identified
with further experiments in the field. In particular, we
need feedback on other machine architectures than that
we used in Section 6, especially about scalability with a
large number of processors, to assess the cost of emula-
tion mentioned in Section 5.2. A larger number of pro-
cessors may also reveal performance issues in the mem-
ory allocator, and will give a more reasonable compari-
son with a scalable allocator such as Hoard.

Some tuning parameters we introduced are currently
an arbitrary choice (Sections 4.1 and 5.1), and we will
need to evaluate their effectiveness. We also need more
realistic tests for the caching server configuration in or-
der to determine the most reasonable optimization tech-
nique regarding both performance and portability, as we
discussed in Section 6.1.6. We will continue working
on those areas, identifying and solving issues specific to
such cases.
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Notes
1We originally began this work with a different OS and machine ar-

chitecture, but we showed newer results for consistency with the eval-
uation environment described in later sections.

2The version we used is described in the web page of authors of [9].
3We did this test with Solaris 10, which was the only platform we

successfully linked the Hoard library to BIND9.
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