Check out the new USENIX Web site.

USENIX Home . About USENIX . Events . membership . Publications . Students
USENIX 2005 Annual Technical Conference, General Track — Abstract

Pp. 149–161 of the Proceedings

Building a Reactive Immune System for Software Services

Stelios Sidiroglou, Michael E. Locasto, Stephen W. Boyd, and Angelos D. Keromytis, Columbia University

Abstract

We propose a reactive approach for handling a wide variety of software failures, ranging from remotely exploitable vulnerabilities to more mundane bugs that cause abnormal program termination (e.g., illegal memory dereference) or other recognizable bad behavior (e.g., computational denial of service). Our emphasis is in creating ``self-healing'' software that can protect itself against a recurring fault until a more comprehensive fix is applied.

Briefly, our system monitors an application during its execution using a variety of external software probes, trying to localize (in terms of code regions) observed faults. In future runs of the application, the ``faulty'' region of code will be executed by an instruction-level emulator. The emulator will check for recurrences of previously seen faults before each instruction is executed. When a fault is detected, we recover program execution to a safe control flow. Using the emulator for small pieces of code, as directed by the observed failure, allows us to minimize the performance impact on the immunized application.

We discuss the overall system architecture and a prototype implementation for the x86 platform. We show the effectiveness of our approach against a range of attacks and other software failures in real applications such as Apache, sshd, and Bind. Our preliminary performance evaluation shows that although full emulation can be prohibitively expensive, selective emulation can incur as little as 30% performance overhead relative to an uninstrumented (but failure-prone) instance of Apache. Although this overhead is significant, we believe our work is a promising first step in developing self-healing software.

  • View the full text of this paper in HTML and PDF.
    Click here if you have forgotten your password Until April 2006, you will need your USENIX membership identification in order to access the full papers. The Proceedings are published as a collective work, © 2005 by the USENIX Association. All Rights Reserved. Rights to individual papers remain with the author or the author's employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research purposes. USENIX acknowledges all trademarks within this paper.

  • If you need the latest Adobe Acrobat Reader, you can download it from Adobe's site.
To become a USENIX Member, please see our Membership Information.

?Need help? Use our Contacts page.

Last changed: 2 Mar. 2005 aw
Technical Program
USENIX '05 Home
USENIX home