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Abstract

Despite constant improvements in fabrication technology, hardware
components are consuming more power than ever. With the ever-
increasing demand for higher performance in highly-integrated sys-
tems, and as battery technology falls further behind, managing en-
ergy is becoming critically important to various embedded and mo-
bile systems. In this paper, we propose and implement power-aware
virtual memory to reduce the energy consumed by the memory in re-
sponse to workloads becoming increasingly data-centric. We can use
the power management features in current memory technology to put
individual memory devices into low power modes dynamically un-
der software control to reduce the power dissipation. However, it is
imperative that any techniques employed weigh memory energy sav-
ings against any potential energy increases in other system compo-
nents due to performance degradation of the memory. Using a novel
power-aware virtual memory implementation, we estimate a signifi-
cant reduction in memory power dissipation, from 4.1 W to 0.5–2.7
W, based on Rambus memory specifications, while running various
real-world applications in a working Linux system. Unfortunately,
due to a hardware bug in the chipset, direct power measurement is
currently not possible. Applying more advanced techniques, we can
reduce power dissipation further to 0.2–1.7 W, depending on the ac-
tual workload, with negligible effects on performance. We also show
this work is applicable to other memory architectures, and is orthog-
onal to previously-proposed hardware-controlled power-management
techniques, so it can be applied simultaneously to further enhance en-
ergy conservation in a variety of platforms.

1 Introduction

Limiting the energy consumption in mobile/embedded sys-
tems such as laptops, personal digital assistants (PDAs) and
cellular phones is becoming increasingly important as they be-
come widely used and accepted. With this large user commu-
nity and a highly competitive market comes the inevitable de-
mand for integrating more features and increased performance
into small devices, which, in turn, comes at a cost of increased
power dissipation. Products compete based on form factors
(smaller and lighter is better) as well as additional features and
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improved user experience, provided by fast processors, copi-
ous memory, resource-demanding software, and power-hungry
hardware, thus making energy a precious resource. With
hardware continuously improving in performance and price,
vendors are able to build systems with higher-performance
and higher-power components trying to meet users’ ever-
increasing demands and compete for customers. However, this
results in systems that are over-provisioned with components
that provide more capacity, more throughput, and more pro-
cessing power than needed for the typical workload, and as
a result, it is becoming more difficult to maintain long battery
life in these devices. To make the situation worse, battery tech-
nology is improving at a much slower pace than hardware tech-
nology, making the gap between energy supply and demand
increasingly larger. To deal with this emerging energy crisis,
power management is becoming a more critical task than ever
before.

Current hardware technologies allow various system com-
ponents (e.g., microprocessor, memory, hard disk) to operate
at different power levels and corresponding performance lev-
els. Previous research has shown that by judiciously exploiting
these power levels, depending on the workload, it is possible to
have energy-limited systems built from high-performance and
high-peak-power components with a minimal impact on the
battery life of the device. The trick is to manage these power
levels for each component intelligently based on the actual
workload. For idle/normal workloads, some hardware com-
ponents can be put at lower power levels or even be turned off.
On the other hand, during peak workloads, the relevant hard-
ware components are powered up to optimize for performance
and provide responsive, high-quality service to users. Work-
loads on mobile systems such as laptops or PDAs are typically
interactive, e.g., text editing, emailing, web surfing, or present-
ing PowerPoint slides, and due to the slow response time of hu-
man users, there are ample opportunities [13] to conserve en-
ergy by reducing power levels in various system components
without any user-perceived performance degradation. During
short intervals of high workload, e.g., switching slides, or re-
computing a spreadsheet, the relevant system components can
be briefly brought back to the higher-performance/power lev-
els, effectively giving the user the benefits of both low-power
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and high-performance in a single system. However, due to
non-negligible transitioning delays of some hardware compo-
nents, performance/energy may suffer if not handled properly.

A large body of previous research concentrates on reduc-
ing the power dissipation of microprocessors due to their high
peak-power. Using existing techniques, a Mobile Pentium 4
processor dissipates only 1–2 W on average when running
typical office applications despite having a high 30 W peak-
power [17]. From a software perspective, further effort to re-
duce power in microprocessors is likely to yield only a dimin-
ishing marginal return. On the other hand, there has been rela-
tively little work done on reducing power used by the memory.
As applications are becoming more data-centric, more power
is needed to sustain a higher-capacity/performance memory
system. Unlike microprocessors, a fairly substantial amount of
power is continuously dissipated by the memory in the back-
ground independent of the current workload. Therefore, the
energy consumed by the memory is usually as much as, and
sometimes more than, that of the microprocessor in a system.
Implementing Power-Aware Virtual Memory (PAVM) allows
us to significantly reduce power dissipated by the memory. In
the rest of the paper, we describe our experiences in designing
and implementing PAVM in a working system.

Our contributions in this paper are summarized as follows.

� Design of a PAVM system that reduces the overall power
dissipation by minimizing the energy footprint of each
process in a system.

� Exploration of techniques to reconfigure page allocations
dynamically to yield additional energy savings by further
reducing per-process energy footprint.

� Use of the Non-Uniform Memory Access (NUMA) tech-
niques, in a novel way, as an abstraction layer to manage
memory nodes in reducing power.

� Characterization of the memory usage pattern of pro-
cesses in a Linux operating system, which allows PAVM
to effectively manage all system memory including ker-
nel memory, dynamically-loaded libraries, user process’s
own private pages, and their interactions.

� Implementation of PAVM in a real, working system (run-
ning Linux kernel 2.4.18) to evaluate the effectiveness of
our techniques on various SDRAM architectures includ-
ing SDR, DDR and RDRAM when running real-world
applications.

The rest of the paper is organized as follows. Section 2
provides some background information on various memory
technologies. Section 3 describes our initial design of PAVM,
while Section 4 describes the limitations of this prototype de-
sign and the necessary modifications needed to handle the
complexity of memory management and task interactions in
a real, working implementation. Section 5 presents detailed
experimentation results. In Section 6, we discuss the related
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Figure 1: Interaction of memory with the rest of the system.

work. Finally, additional remarks about PAVM and conclusion
are given in Sections 7 and 8, respectively.

2 Background

To understand how to reduce power in memory, we must first
understand the current memory technologies and the interac-
tions between memory and the rest of the system.

Since 1980, processor speeds have been improving at an an-
nual rate of 80%, while Dynamic Random Access Memory
(DRAM) only improved at an annual rate of 7% [39]. Even
with a cache hierarchy sitting between the memory and the
processor, hiding some of the latencies, the performance gap
between the memory and the processor is continuously widen-
ing. Memory also interacts with various other system compo-
nents, such as hard disks, video adapters, and communication
devices that use DMA to transfer data as shown in Figure 1.
Therefore, memory performance has a significant impact on
the overall system performance. Since power reduction is
only possible when the memory is operating at lower perfor-
mance levels, it is critical to implement power-management
techniques so that the power reduction in memory justifies any
performance degradation, or even power increase, in other sys-
tem components.

DRAM memory consists of large arrays of cells, each of
which uses a transistor-capacitor pair to store a single bit as
shown in Figure 2. To counter current leakage, each capac-
itor must be periodically refreshed to retain its bit informa-
tion, making memory a continuous energy consumer. Because
DRAM fabrication uses advanced process technologies that al-
low high-capacitance and low-leakage circuits, this refresh oc-
curs relatively infrequently, and is not the largest consumer of
DRAM power. Due to the large arrays with very long, highly-
loaded internal bus lines, and high degree of parallel opera-
tions, significant energy is consumed by row decoders, col-
umn decoders, sense amplifiers, and external bus drivers. To
reduce power, when a device is not actively being accessed, we
can put it into lower power levels by disabling some or all of
these subcomponents. However, when it is accessed again, a
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Figure 2: An overview of DRAM architecture with a magnified view
of a single DRAM cell composed of a transistor-capacitor pair.

performance penalty is incurred for transitioning from a low-
power mode to an active mode by re-enabling these compo-
nents. This is due to the time needed to power up bus and
sense amplifiers, and synchronize with the external clock, so
this time penalty is called a resynchronization cost. This non-
negligible resynchronization cost is the source of performance
degradation when power management is not carefully imple-
mented.

The above holds true for all Synchronous DRAM
(SDRAM) architectures including the single-data-rate (SDR),
the double-data-rate (DDR), and the recently-introduced Ram-
bus (RDRAM) architectures. However, for our energy-
conservation purposes, RDRAM differs from the rest by al-
lowing a finer-grained unit of control in power management.
In this paper, we consider all three memory types, and show
that a finer-grained control can save a significant amount of
additional energy over the coarser-grained traditional memory
architectures. We now look more closely at these memory ar-
chitectures with respect to power dissipation.

2.1 SDRAM Architectures

All three types of memory — SDR, DDR, and RDRAM —
are physically organized as modules, composed of multiple
devices, each of which is an individually-packaged integrated
circuit. The traditional SDR and DDR architectures use wide
(64 or 72-bits) data buses at relatively low clock rates (typi-
cally, 100 or 133 MHz), and require all devices on the same
module to operate in parallel.

In comparison, Rambus DRAM technology [33] transfers
data on a narrower 16-bit data channel, operating at twice the

Power Level Power Active Components

Attention 313 Refresh, clock, row, col decoder
Standby 225 Refresh, clock, row decoder
Nap 11 Refresh, clock
Powerdown 7 Refresh

Table 1: Power dissipation (in mW) and active components used for
a typical RDRAM device in various power levels.

Attention

Nap PowerdownStandby

225 ns

20 ns 20 ns

22510 ns

20 ns
3 ns

Read/Write

20 ns

Figure 3: Possible power states for an RDRAM device. The tran-
sition time (in nanosecond) between two states is shown on the edge
which connects them.

clock rate of 400 Mhz, to provide an extremely high through-
put to better match the bandwidth needs of modern micropro-
cessors. By using a narrow data bus, only a single device in the
module needs to be actively transferring data at a time. This
results in a lower power dissipation than for SDR or DDR,
where all the devices in the module are activated in parallel to
fill the wider bus. Furthermore, since they are not accessed in
parallel, the devices in an RDRAM module can be in differ-
ent power states, giving us a device-granular control in power
management, in contrast to the traditional SDRAM architec-
tures which can only provide module-granular control. Due
to this finer-grained level of control, we will primarily focus
on Rambus memory, although our approach is also applicable
to SDR and DDR architectures, as we will show in Section 5.6.

There are four power levels of interest defined in the
RDRAM specification, listed in decreasing order by power
dissipation: Attention, Standby, Nap, and Powerdown. De-
vices are put into lower power levels by disabling the auxiliary
subcomponents as discussed previously. For example, while in
Attention mode, the self-refresh circuitry and the row/column
decoders are active, and the internal clock is kept in-sync with
the external clock generator, whereas in Powerdown mode,
only the self-refresh circuitry is active to prevent data loss.
The details of these power levels and the power dissipation
of each are shown in Table 1. However, since read or write
operations can only be performed on a memory device when
it is in Attention mode, a resynchronization cost is incurred to
return a device to Attention mode if it is in any lower power
states. The possible state transitions and the corresponding
resynchronization costs are shown in Figure 3.

Current RDRAM memory controllers already have a rudi-
mentary form of power-saving policy built-in. Instead of
having all devices in Attention mode, the memory controller
puts all devices except for the one currently being accessed
in Standby mode. Due to the small resynchronization time
and the large power difference between Standby and Attention
modes, power is significantly reduced with almost no perfor-
mance loss. Using PAVM, we will show that an additional 59–
94% power reduction can be achieved by exploiting the Nap
mode with only a negligible performance overhead. Due to the
large difference in resynchronization time and the small dif-
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ference in power between Powerdown and Nap modes, Pow-
erdown mode is rarely more suitable for use in dynamic power
management than Nap mode, as is verified in [9]. So, in this
paper, we do not consider Powerdown mode.

3 Design

Prior research on reducing memory power dissipation mainly
focuses on power management at a very low hardware level,
where memory controllers are responsible for monitoring ac-
tivity on each memory device and switching devices to lower
power states based on various policies for detecting periods
of inactivity. This has the benefit of being transparent to the
running software, but as the controller is totally unaware of
the processes that are using the memory on the system, per-
forming power management at such a low level can often lead
to poor decisions at a cost of decreased performance. In this
paper, we elevate this decision making to the operating system
level, where more information is readily available to make bet-
ter transitioning decisions to minimize performance degrada-
tion and reap greater energy savings.

Before we delve into the design details of PAVM, we first
introduce the concept of a memory node. We assume that the
system memory is partitioned into one or more nodes, where a
single node is the smallest unit of memory that can be power-
managed independently of other memory. In SDR and DDR,
therefore, a node corresponds to a memory module, which
contains multiple memory devices, while for RDRAM, it cor-
responds to a single device within a module. This concept of
a node generalizes the unit of control available for perform-
ing memory power management operations. We now describe
how to manage the nodes to reduce power used by the memory.

3.1 Tracking Active Nodes

Since each node’s power level can be separately controlled, to-
tal memory power can be reduced by selectively setting nodes
to operate at lower power levels. However, selecting which
nodes to put into lower power modes is critical to both system
performance and power dissipation, since accessing a node in
a low-power mode will incur resynchronization costs, stall ex-
ecution, and, as a result, may increase energy consumption,
offsetting any prior savings.

To avoid such costs, we need to ensure that all the nodes
a process may access, i.e., its active nodes, are kept in high-
power state. More specifically, we define a node to be an active
node of process

�
if and only if at least one page from the node

is mapped into process
�
’s address space, and we denote the

set of active nodes for
�

as � � . By promoting the nodes in � �
to Standby mode (high-power) and demoting all other nodes
(i.e., those in � � ) to Nap mode (low-power) when process

�
is

executing, we can reduce power while ensuring that process

�
suffers no performance degradation due to the increased la-

tency of nodes in low-power states.

Of course, this assumes that � � can be managed to accu-
rately reflect the active nodes for process

�
. Previous related

research [4] used repeated page faults and page table scans
to track the active set, but this involves very expensive, high
overhead operations. To track the active set with minimal over-
heads, for each process we keep an array of counters, each of
which is associated with a node in the system. The kernel is
modified such that on all possible execution paths in which a
page is allocated for, or mapped into, process

�
’s address space,

the counter associated with the node containing this page is in-
cremented. Similarly, when a page is unmapped, the counter
is decremented. From these counters, � � is trivially derived:
a node is in � � if and only if process

�
’s counter for the node

is greater than zero. The overhead of maintaining � is only
one extra instruction per mapping/unmapping operation, and
is therefore negligible.

3.2 Reducing Active Set Size

Performing power management based on � ’s, we can ensure
that processes do not suffer any performance losses. However,
this does not guarantee energy savings. In particular, if the size
of the active set, � � � , for each process is close to the total num-
ber of nodes in the system, power is not significantly reduced.
So, to further reduce power dissipated by the memory, we need
to minimize the total number of active nodes used per process
for all processes in the system. This can be formally expressed
as a minimization problem. Specifically, we want to minimize
the summation, ( � � � � � � � 	 � �

all processes), where the num-
ber of active nodes, � � � � , for each process

�
is weighted by its

CPU utilization (fraction of processing capacity/time spent ex-
ecuting the process), denoted by � � . Allocating pages for all
processes among the nodes to minimize this sum is a difficult
problem even with a static set of tasks, let alone in a dynamic
system.

For simplicity, we assume that an approximate solution can
be obtained by minimizing the number of active nodes for each
process. To this end, a simple heuristic can be applied using
the concept of a preferred node and maintaining a set of pre-
ferred nodes, � � , for each process

�
. All processes start with

an empty set � . When a process
�

allocates its first page, this
page is taken from the node with the most free memory avail-
able, which is then added to � � . Future memory allocations
by this process are first tried on nodes in � � . If all nodes in
� � are full, the allocation is again made from the node which
currently has the most free memory available, and this new
node is then added to � � . By using this worst-fit algorithm to
generate � , each process’s memory footprint is packed into a
small number of nodes, thereby decreasing each process’s en-
ergy footprint.
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3.3 A NUMA Management Layer

Implementing PAVM based on the above approaches is not
easy on modern operating systems, where virtual memory
(VM) is extensively used. Under the VM abstraction, all pro-
cesses and most of the OS only need to be aware of their own
virtual address spaces, and can be totally oblivious to the ac-
tual physical pages used. Effectively, the VM decouples page
allocation requests from the underlying physical page alloca-
tor, hiding much of the complexities of memory management
from the higher layers. Similarly, the decoupling of layers
works in the other direction as well — the physical page allo-
cator does not distinguish from which process a page request
originates, and simply returns a random physical page, treating
all memory uniformly. When performing power management
on memory nodes, however, we cannot treat all memory as
equivalent, since accessing a node in low-power state will in-
cur increased latencies and overheads, and the physical mem-
ory address of allocated pages critically affects each process’s
energy footprint. Therefore, we need to eliminate this decou-
pling and make the page allocator conscious of the process
requesting pages, so it can nonuniformly allocate pages based
on � � to minimize � � � � for each process i.

This unequal treatment of sections of memory due to laten-
cies and overheads for access is not limited to power-managed
memory. Rather, it is a distinguishing characteristic of Non-
Uniform Memory Access (NUMA) architectures, where there
is a distinction between low-latency local memory and high-
latency remote memory. In a traditional NUMA system, the
notion of a node is more general than what we defined previ-
ously and can encompass a set of processors, memory pools,
and I/O buses. The physical location of the pages used by
a process is critical to its performance since intra- and inter-
node memory access times can differ by a few orders of mag-
nitude. Therefore, a strong emphasis has been placed on al-
locating and keeping the working set of a process localized to
the local node.

In this work, by considering a node simply as a section
of memory with a single common access time, for which the
power mode can be set independently of other nodes, we can
employ a NUMA management layer to simplify the nonuni-
form treatment of the physical memory. With a NUMA layer
in place below the VM system, physical memory is partitioned
into multiple nodes. Each node has a separate physical page
allocator, to which page allocation requests are redirected by
the NUMA layer. The VM is modified such that, when it re-
quests a page on behalf of process i, it passes a hint (e.g., � � ) to
the NUMA layer indicating the preferred node(s) from which
the physical page should be allocated. If this optional hint is
given, the NUMA layer simply invokes the physical page al-
locator that corresponds to the hinted node. If the allocation
fails, � � must be expanded as discussed previously. By using a
NUMA layer, we can implement PAVM with preferential node
allocation without having to re-implement complex low-level
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Figure 4: Cumulative distribution of context switch times.

physical page allocators.

3.4 Hiding Latency

Although the methods discussed so far ensure that a process
experiences no performance loss during its execution, there
still remains the issue of resynchronization latencies when
transitioning power states of the nodes before a process is ex-
ecuted. As mentioned earlier, with RDRAM, switching a de-
vice from Nap to Standby mode requires 225 ns, which is not a
very long time, but is nontrivial, as it would be incurred on ev-
ery context switch. If this latency is not properly handled and
hidden, it could, as a result of increased runtimes, erode the en-
ergy savings and undermine the techniques described above.

One possible solution is that at every scheduling point, we
find not only the best process

�
to run, but also the second

best process
�
. Before making a context switch to process

�
,

we transition the union of the nodes in � � and � � to Standby
mode. The idea here is that with a high probability, at the next
scheduling point, we will either continue execution of process�

or switch to process
�
. Effectively, the execution time of

the current executing process will mask the resynchronization
latency for the next process. Of course, the cost here is that
more nodes need to be in Standby mode than needed for the
current process, incurring greater energy costs, but, with a high
probability, performance degrading latencies are eliminated.

A second solution is more elegant, has lower computational
and energy overheads, and uses the context switching time to
naturally mask resynchronization latencies. This is based on
the fact that context switching takes time, due to loading new
page tables and modifying internal kernel data structures, even
before the next process’s memory pages are touched. We in-
strumented the Linux 2.4.18 kernel to measure the portion of
context switching time in the scheduler function after deciding
which process to execute next, but before beginning its execu-
tion. The cumulative distribution of context switch times on
a Pentium 4 processor clocked at 1.6 GHz is shown in Fig-
ure 4. From the figure, we can see that over 90% of all context
switches take longer than 225 ns, and therefore, can fully mask
the resynchronization latency for transitioning nodes from Nap
to Standby mode. The sharp increase in the cumulative distri-
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bution function between 175 and 225 ns indicates that we only
pay a few tens of nanoseconds for the other less than 10% of
context switches. This approach, therefore, hides most of the
latency without incurring additional energy penalties.

With faster processors in the future, the cumulative distri-
bution function of context switch times shifts left, making the
second solution less attractive as the latencies will less likely
be masked. The first solution proposed is more general and
may be applied without any hardware constraints, but at a
higher energy overhead. In reality, however, even as proces-
sor frequencies are rapidly increasing, context switch times
improve rather slowly, so the second solution is viable under
most circumstances.

4 Implementation

In this section, we describe our experiences in implementing
and deploying PAVM in a real system. Due to complexities in
real systems, a direct realization of the PAVM design described
earlier does not perform up to our original expectations. Fur-
ther investigation into how memory is used and managed in
the Linux operating system reveals insights that we use to re-
fine our original system and succeed in conserving a substan-
tial amount of memory energy under the complex real-world
environments.

4.1 Initial Implementation

Our first attempt to reduce memory power dissipation is a di-
rect implementation of the PAVM design described in Sec-
tion 3 within the Linux operating system. We extend the task
structure to include the needed counters to keep track of the
active node set, � � , for each process

�
. As soon as the next-

to-run process is determined in the scheduling function, but
before switching contexts, the nodes in � of that process are
transitioned to Standby mode, and the rest are transitioned to
Nap mode. This way, power is reduced, the resynchronization
time is masked by the context switch, and the process does not
experience any performance loss.

We also modify page allocation to use the preferred set, � ,
to reduce the size of the active sets. Linux relies on the buddy
system [20] to handle the underlying physical page allocations.
Like most other page allocators, it treats all memory equally,
and is only responsible for returning a free page if one is avail-
able, so the physical location of the returned page is generally
nondeterministic. For our purpose, the physical location of the
returned page is not only critical to the performance but also
to the energy footprint of the requesting process. Instead of
adding more complexity to an already-complicated buddy sys-
tem, a NUMA management layer is placed between the buddy
system and the VM, to handle the preferential treatment of
nodes.

The NUMA management layer logically partitions all phys-

ical memory into multiple nodes and manages memory at a
node granularity. The Linux kernel already has some node-
specific data structures defined to accommodate architectures
with NUMA support. To make the NUMA layer aware of the
nodes in the system, we populate these structures with the node
geometry, which includes the number of nodes in the system
as well as the size of each node. As this information is needed
before the physical page allocator (i.e., the buddy system) is
instantiated, determining the node geometry is one of the first
things we do at system initialization. On almost all architec-
tures, node geometry can be obtained by probing a set of in-
ternal registers on the memory controller. On our testbed with
512 MB of RDRAM, we are able to correctly detect the 16
individual nodes, each consisting of a single 256 Mbit device.
Node detection for other memory architectures can be done
similarly.

Unfortunately, NUMA support for x86 in Linux is not com-
plete. In particular, since the x86 architecture is strictly non-
NUMA, some architecture-dependent kernel code was written
with the underlying assumption of having only a single node.
We remove these hard-coded assumptions and add multi-node
support for x86. With this, page allocation is now a two-step
process: (i) determine from which node to allocate, and (ii) do
the actual allocation within that node. Node selection is imple-
mented trivially by using a hint, passed from the VM layer, in-
dicating the preferred node(s). If no hint is given, the behavior
defaults to sequential allocation. The second step is handled
simply by instantiating a separate buddy system on each node.

With the NUMA layer in place, the VM is modified such
that with all page allocation requests, it passes � of the re-
questing process down to the NUMA layer as a hint. This en-
sures that allocations tend to localize in a minimal number of
nodes for each process. In addition, on all possible execution
paths, we ensure that the VM updates the appropriate counters
to accurately bookkeep � and � for each process with minimal
overheads, as discussed in Section 3.

4.2 Shared Memory Issues

Having debugged the new implementation, and ensured the
system is stable with the new page allocation method, we
evaluate PAVM’s effectiveness at reducing energy footprints
of processes. We expect that the active node set, � , for each
task will tend to localize to the task’s preferred node set, � .
However, this is far from what we see.

Table 2 shows a partial snapshot of the processes in a run-
ning system, and, for each process

�
, indicates the nodes in sets

� � and � � , as well as the number of pages allocated on each
node.1 It is clear from the snapshot that each process

�
has a

large set of active nodes, where � � � � is much larger than the
corresponding � � � � . This causes a significantly larger energy

1We only show a partial list of processes running in the system due to space
limitation, but other processes behave similarly.
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Process � �

syslog 14 0(3) 8(5) 9(51) 10(1) 11(1) 13(3) 14(76)
login 11 0(12) 8(7) 9(112) 11(102) 12(5) 14(20) 15(1)
startx 13 0(21) 7(12) 8(3) 9(7) 10(12) 11(25) 13(131) 14(43)
X 12 0(125) 7(23) 8(47) 9(76) 10(223) 11(19) 12(1928) 13(82)

14(77) 15(182)
sawfish 10 0(180) 7(5) 8(12) 9(1) 10(278) 13(25) 14(5) 15(233)
vim 10,15 0(12) 9(218) 10(5322) 14(22) 15(4322)
. . . . . . . . .

Table 2: A snapshot of processes’ node usage pattern using the initial
version of PAVM. The number in parenthesis besides each active node
indicates the number of pages the corresponding process is currently
using on that node. Recall that our system has 16 nodes, denoted as
0, 1, . . . , 15, each contains 256 Mbits (or 8192 4-KB pages).

footprint for each process than what we have originally an-
ticipated. Nevertheless, since most pages are allocated in the
preferred nodes, and none of the processes use all nodes in the
system, we still consider this a working system that provides
opportunities to put nodes into low-power modes and conserve
energy. However, it is not as effective as we would like, due to
the fact that for each process, there is a set of pages scattered
across a large number of nodes.

To understand this “scattering” effect, we need to investigate
how memory is used in the system. In most systems, a majority
of the system memory is occupied by user processes. In turn,
most of these pages are used to hold memory-mapped files,
which include binary images of processes, dynamically-loaded
libraries (DLL), as well as memory-mapped data files. To re-
duce the size of the executable binaries on disk and the pro-
cesses’ cores in memory, DLLs are extensively used in Linux
and most other modern operating systems. The scattering ef-
fect we observe is a result of the extensive use of DLLs com-
bined with the behavior of the kernel-controlled page cache.

The page cache is used to buffer blocks previously read from
the disk, so on subsequent accesses, they can be served without
going to the disk, greatly reducing file access latencies. When
a process requests a block that is already in the page cache,
the kernel simply maps that page to the requesting process’s
address space without allocating a new page. Since the block
may have been previously requested by any arbitrary process,
it can be on any arbitrary node, resulting in an increased mem-
ory footprint for the process. Unfortunately, this is not limited
to shared data files, but also to DLLs, as these are basically
treated as memory-mapped, read-only files. The pages used
for DLLs are lazily loaded, through demand paging. So, when
two processes with disjoint preferred nodes access the same
library, the pages will scatter across the union of the two pre-
ferred node sets, depending on the access pattern of the pro-
cesses and which process first incurred the page-fault to load a
particular portion of the library into the page cache.

In the following sections, we describe the incremental
changes we make to reduce the memory/energy footprint for
each process by using DLL aggregation and page-migration
techniques. We then discuss how to reduce overhead of these
new techniques.

Process � �

syslog 14 0(108) 1(2) 11(13) 14(17)
login 11 0(148) 1(4) 11(98) 15(9)
startx 13 0(217) 1(12) 13(25)
X 12 0(125) 1(417) 9(76) 11(793) 12(928) 13(169) 14(15)
sawfish 10 0(193) 1(281) 10(179) 13(25) 14(11) 15(50)
vim 10,15 0(12) 1(240) 10(5322) 15(4322)
. . . . . . . . .

Table 3: Effect of aggregating pages used by DLLs.

4.3 Revision #1: DLL Aggregation

Due to the many benefits of using dynamically-loaded libraries
(e.g., libc), most, if not all processes make use of them, ei-
ther explicitly or implicitly. Therefore, a substantial number
of pages within each process’s address space may be shared
through the use of DLLs. As discussed above, this sharing in-
evitably causes pages to be littered across memory, resulting
in a drastic size-increase of � � for each process

�
.

The cause of this scattering effect is that we are trying to
load library pages into the preferred nodes of processes which
initiated read-in from disk, as if these were private pages. To
alleviate the scattering effect on the library pages, we need to
treat them separately in the NUMA management layer. We
implement this simply by ignoring the hint ( � ) that is passed
down from the VM layer, and instead, resorting to a sequen-
tial first-touch policy, where we try to allocate pages linearly
starting with node 0, and fill up each node before moving onto
the next node. This ensures that all DLL pages are aggregated
together, rather than scattered across a large number of nodes.
Table 3 shows a snapshot of the same set of processes under
the same workload as in Table 2, but with DLL aggregation
employed.

As expected, aggregating DLL pages reduces the number of
active nodes per process. However, a new problem is intro-
duced. Due to the extensive use of DLLs, by grouping pages
used for libraries onto the earlier nodes, we allocate a large
number of pages onto these nodes and quickly fill them. As
a result, processes need several of these low address nodes in
their active sets to access all of the needed libraries. In the
two snapshots shown, this is clearly apparent: after aggrega-
tion (Table 3), both nodes 0 and 1 are mapped in all of the
process active sets, whereas only node 0 was needed without
aggregation (Table 2). With many libraries loaded, we would
use up these earlier nodes fairly quickly, and may increase the
memory footprint of processes. We explain this in more details
in the next section and also describe how to alleviate the extra
burden on these earlier nodes.

4.4 Revision #2: Page Migration

Even after aggregating library pages, there is still some scatter-
ing of pages across nodes outside of � for each process. Some
of this is due to actual sharing of pages, but the rest is due to
previous sharing and residual effects of past file accesses in
the page cache. Furthermore, even though aggregating all li-
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Process � �

syslog 14 0(15) 14(125)
login 11 0(76) 11(183)
startx 13 0(172) 13(82)
X 12 0(225) 1(2) 12(2220)
sawfish 10 0(207) 1(56) 10(436)
vim 10,15 0(12) 1(240) 10(5322) 15(4322)
. . . . . . . . .

Table 4: Effect of library aggregation with page migration.

brary pages ensures shared pages are kept in a few nodes, not
all libraries are shared, or remain shared as the system execu-
tion progresses. It is better to keep these pages in the preferred
nodes of the processes that are actively using them, rather than
polluting nodes that are used for library aggregation and in-
creasing the energy footprints of all processes. We can address
all of these by using page migration.

In NUMA systems, page migration is used to keep the work-
ing set of a process local to the execution node in order to
reduce average access latency and improve performance, par-
ticularly when the running processes are migrated to remote
nodes for load-balancing purposes. In the context of PAVM,
there is no concept of process migration, or remote and local
nodes, but we can use the page-migration technique to local-
ize the working set of a process to a fewer number of nodes
and overcome the scattering effect of shared pages and items
in the page cache. This will allow us to have more nodes in
low-power states, thereby conserving more energy.

In our implementation, page migration is handled by a ker-
nel thread called kmigrated running in the background. As
with other Linux kernel threads, it wakes up periodically (ev-
ery 3 seconds). Every time it wakes up, it first checks to see if
the system is busy, and if so, it goes back to sleep to avoid caus-
ing performance degradation to the running processes. Other-
wise, it scans the pages used by each process and starts mi-
grating pages that meet certain conditions. We further limit
any performance cost by setting a limit on the number of pages
that may be migrated at each invocation of kmigrated to avoid
spikes in memory traffic. Effectively, by avoiding performance
overheads, we only pay a fixed energy cost for each page mi-
grated.

A page is migrated if any of the following conditions holds.

� If a page is a process’s private page (i.e., is used only
by that process), and it is not on a node in that process’s
preferred set, � , then the page is migrated to any node in
� . This will not affect the size of the active set, � , of other
processes.

� If a page is shared between multiple processes, and the
node that it resides on is outside of at least one of these
processes’ preferred sets (i.e.,

�� �
� � ), then the page is

migrated to an earlier node so it can be aggregated with
the other shared pages, if and only if this migration does
not cause the size of � to increase for any of the processes
sharing the page.

Migrating a process’s private page is straightforward. We
simply allocate a new page from any node in � of that process,
copy the contents from the old page to the new page, redirect
the corresponding page table entry in that process’s page table
to point to the new page, and finally free the old page.

Migrating a shared page is more difficult. First, from the
physical address of the page alone, we need to quickly deter-
mine which processes are sharing this page so we can check
if it meets the migration criterion given above. Second, after
copying the page, we need a quick way to find the page ta-
ble entry for each of the sharing processes, so we can remap
the entries to point to the new page. If any of the above two
conditions cannot be met, an expensive complete scan of the
page tables of all processes is needed for migrating each shared
page. Unfortunately, in the default Linux 2.4.18 kernel, neither
requirement is met.

To our aid, Van Riel [34] has recently released the rmap
kernel patch, a reverse mapping facility that meets both re-
quirements nicely, and is included in the default kernel of the
RedHat 7.3 Linux distribution. With rmap, if a page is used
by at least one process, it will have a chain of back pointers
(pte chain) that indicates all page table entries among all pro-
cesses that point to this page (meets the second requirement).
In turn, for each page table containing the above page table en-
tries, there is a back pointer indicating the process that uses this
page mapping, satisfying the first requirement. So, when try-
ing to migrate a shared page, we first allocate a new page, and
find all the processes sharing this page to determine whether
migrating this page will cause memory footprint to increase
for any of the processes. If not, we copy the contents from the
old page to the new page, replace all page entries that point
to the old page with ones pointing to the new page, update
the reverse mappings in the new page, and finally free the old
page.

With kmigrated running, processes use much fewer nodes
than in the initial version of the implementation, as shown in
the snapshot in Table 4. In turn, memory power dissipation
is significantly reduced for each process. However, for each
page migrated, we incur a fixed energy cost for performing the
memory-to-memory copies.

4.5 Revision #3: Reducing Migration Over-
head

Although page migration greatly reduces the energy footprints
of processes, it triggers additional memory activity, which may
undermine the energy savings obtained. Thus, we must con-
sider ways to limit the actual number of migrations to keep its
benefits without incurring too much of energy cost. In this sec-
tion, we propose two solutions to reduce the number of page
migrations.

Solution 1: The DLL aggregation technique described pre-
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Application Interval Light Poweruser Multimedia Description

X+GNOME continuous x x x runs X server using the default GNOME desktop environment
Mozilla 15 seconds x x retrieves and displays webpages from randomly pre-generated URLs
XMMS continuous x x plays a stream of mp3 files
text editing 60 seconds x x modifies a tex file, runs latex, bibtex, dvips, and displays it in ghostview
gcc 10 minutes x compiles Linux-2.4.18 kernel and kernel modules
Xine continuous x plays an MPEG4-encoded movie in full-screen mode

Table 5: Description of the applications used in Light, Poweruser and Multimedia workloads.

viously assumes libraries tend to be shared. Any library that
is not shared will later be migrated to the process preferred
nodes. This is not efficient for those applications that use pro-
prietary dynamic libraries. We can keep track of the processes
that cause a large number of page migrations, and then classify
them further as private-page dominated and shared-page dom-
inated. A process is private-page dominated when the num-
ber of private pages migrated is much larger than the migrated
shared pages. It indicates that the pages this process uses are
less likely to be shared, meaning that we should allocate pages
on this process’s preferred node and not automatically aggre-
gate the library pages it uses.

On the other hand, if a process is shared-page dominated, it
means that many shared pages were wrongfully migrated ini-
tially and later migrated back. For these processes, we want to
inhibit the number of page migrations for shared pages to pre-
vent future migrations to correct the initial migration decision.

Solution 2: It is widely known that processes are short-lived.
Process lifetime is similar to what is shown in Figure 5 [27],
where only 2% of all processes live more than 30 seconds.
Instead of performing page migration for all processes, we
only migrate pages on behalf of long-lived processes, since
the energy spent on migrating pages for short-lived processes
does not justify the resulting energy savings. Note that the
implementation of kmigrated implicitly avoids migrating all
processes, as it checks the system at most once every 3 sec-
onds, and only when the system is not busy, thus avoiding most
short-lived processes.
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Figure 5: Cumulative distribution function of process life times.

5 Evaluation Results

Thus far, we have described how PAVM has been designed,
implemented, and later evolved to improve energy efficiency
of memory. In this section, we compare the effectiveness of the
various power-management techniques implemented in PAVM
with existing techniques to reduce memory’s energy consump-
tion. We first describe our experimental setup and test work-
loads, and then present extensive experimental results.

5.1 Experimental Workloads

Our goal in this section is to evaluate the effectiveness of
PAVM when running real-world applications in a working
system, and see how it compares to some other power-
management policies. All workloads are executed on a Pen-
tium 4 PC, with 512 MB of RDRAM (16 devices), running
Linux 2.4.18 kernel. We define three types of workloads:
Light, Poweruser, and Multimedia. These workloads are com-
posed of different sets of user applications as shown in Table 5.
The applications are not meant to be comprehensive, but rather
found to be representative of the type of workloads used most
often by us and our colleagues on mobile platforms.

Our representative Light workload consists of web brows-
ing, with some e-mailing and word processing, while listen-
ing to mp3 music in the background, all run in a windowed,
graphical environment. This type of workload is most com-
monly used on mobile platforms, and the workload is charac-
terized as mostly idle. However, some users (Powerusers), due
to the nature of their work (e.g., graphics designing, program-
ming), utilize and stress their systems more. Their workloads
can be characterized by repeated periods of low system uti-
lization (designing, coding) followed by periods of high sys-
tem utilization (rendering, compiling). To simulate this type of
workload, we add periodic Linux kernel compilations to gen-
erate periods of heavy load on top of the Light workload. With
a growing number of multimedia-rich applications, users may
impose even heavier workloads on their mobile systems (e.g.,
3D gaming, playing video). Multimedia workloads keep the
system in a high utilization state continuously for a long period
of time. To simulate this and keep workloads consistent across
different experiments, we play an MPEG4-encoded movie us-
ing the Xine video player in full-screen mode.
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� �
Total elapsed time in the system� �
Total elapsed idle time in the system� �� 	 � Total time that node j operates in Standby mode
while process i is active� �� 	 � Total time that node j operates in Nap mode
while process i is active

Activity factor of memory transactions2�
Set of all processes in the system� �
Power dissipation of a node in Read/Write mode� � Power dissipation of a node in Standby mode� � Power dissipation of a node in Nap mode�
Set of all nodes in the system

Table 6: Logged data and static parameters for calculating energy
consumption.

5.2 Evaluation Methodology

Our PAVM implementation is currently fully operational, and
has all the means to communicate with the RDRAM memory
controller (i82850 chipset) on our Pentium 4 testbed to man-
age power by controlling the power state of individual nodes.
However, due to a hardware bug found in the chipset [16], the
system will hang when instructed to put a node in Nap mode.
As a result, this prevents us from directly measuring the actual
energy saved, e.g., with a digital power meter. However, by
logging detailed information about the state of processes and
the state of the system, combined with the information from
memory device’s datasheet, we can calculate fairly accurately
how much energy would be consumed.

Specifically, to accurately calculate energy consumption,
we need to log the operating times and memory use charac-
teristics shown in the top portion of Table 6 from the running
system. We also need some static system/memory parameters,
shown in the bottom portion of Table 6, to complete the energy
calculation.

Using these parameters, we can compute the energy con-
sumed with the following equation:

� � � � � � �
� � �  ! # � % &

� ( ) &
� ( +

, - /
� 1 � # / % - 3

� 1 � # 3 5

% 6 8  9 :  ! = 8 # > : # / = @ (1)

where # �
� # 3 or # / , depending on the power-management

scheme used (see next section). This equation consists of three
terms. The first is the energy consumed by the memory while
the system is idle, and is simply the product of the number
of nodes, total idle time, and either # 3 or # / , depending on
whether the nodes are kept in Nap or Standby modes when sys-
tem is idle. The second term computes the energy for keeping

2The activity factor, B , is obtained by dividing the number of memory
transactions by the maximum possible number of memory transactions during
non-idle time, C � D C �

. The dividend is obtained from performance monitor-
ing registers available on most modern processors, and the divisor is derived
from the memory device’s datasheet.

nodes in Nap and Standby modes while the system is not idle.
This is a double summation over all processes and all nodes,
where we weight the total time a particular process keeps a
particular node in Nap and Standby modes by # 3 and # / ,
respectively. The last term reflects the additional energy re-
quired to actually read/write data from/to a memory device in
Standby mode, and is a product of the total non-idle time, the
additional power dissipated in Read/Write mode over Standby,
and an activity factor, 6 , that gives the total number of mem-
ory transactions as a fraction of the maximum number possible
when a device is kept in Read/Write mode (i.e., peak memory
bandwidth).

5.3 Comparison of Basic Techniques

In this section, we compare three basic memory power-
management techniques: the default built-in power-
management policy implemented in current RDRAM
memory controllers (Base), a simple On/Off technique, and
our initial PAVM implementation. Recall from Section 2 that,
under the Base policy, the controller keeps devices in Standby
mode, and quickly switches them to Attention mode when
accessed. The On/Off technique simply involves putting
all nodes into Nap mode upon detecting system is idle, and
restoring all nodes to Standby when any process is ready to
run. It requires minimal kernel modifications to implement,
and is worth considering here for its simplicity. PAVM, as
described in Section 4.1, is compared with these two methods.

As the Base policy always keeps nodes in Standby, while
the other two put all nodes into Nap mode when the system
is idle, we use # �

� # / for Base and # �
� # 3 for the other

policies when computing energy with Eq. 1. As neither Base
nor On/Off uses Nap mode while processes are running, the
second term in Eq. 1 simplifies to � � � 8  9 :  ! = # / for these
two policies.

To show how these power-management policies perform in
real systems, we run the three workloads described earlier. The
results are shown in Figures 6(a–c) for Light, Poweruser, and
Multimedia workloads, respectively. Each graph shows cu-
mulative energy consumed over time, normalized with respect
to the Base policy. As one can see, for Light and Poweruser
workloads, the simple On/Off policy performs well since it can
exploit the large amount of idle time in the system to put nodes
into Nap mode. With the Multimedia workload, idle time in
the system is minuscule, and therefore, the On/Off policy ap-
proaches the Base policy at the end of the workload. PAVM,
on the other hand, not only exploits idle time, but also reduces
memory power dissipation when processes are actively run-
ning. Compared to the On/Off policy, it can save an additional
48–66%, 51–63%, 30–62% of energy for Light, Poweruser,
and Multimedia workloads, respectively.
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Figure 6: Cumulative energy for PAVM and On/Off policies, normalized to that of Base policy when running Light, Poweruser, and
Multimedia workloads.
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Figure 7: Cumulative energy for PAVM with library aggregation (PAVMr1) and PAVM with both library aggregation and page migration
(PAVMr2), normalized to that of the initial PAVM implementation.

Light Poweruser Multimedia

Base 4100 mW 4118 mW 4230 mW
On/Off 892 mW 2324 mW 3991 mW
PAVM 465 mW 986 mW 2687 mW

PAVMr1 397 mW 791 mW 2442 mW
PAVMr2 237 mW 646 mW 1725 mW

Table 7: Average memory power consumption for the different
power-management policies, running various workloads over a one
hour period.

5.4 Comparison of Advanced Techniques

Although the initial implementation of PAVM does very well
compared to other basic techniques, we can conserve even
more energy using more aggressive policies. In this sec-
tion, we compare three versions of PAVM: the initial imple-
mentation of PAVM, revision 1 that uses library aggregation
(PAVMr1), and revision 2 that also includes page migration
(PAVMr2). Both of the aggressive policies try to keep nodes in
the Nap mode longer, i.e., reducing �

- /
� 1 � in the second term

of Eq. (1), to realize significant additional energy savings.

We repeat the set of workloads under PAVMr1 and PAVMr2
policies, and the resulting energy consumption is plotted in
Figures 7(a-c), normalized to that of the initial PAVM imple-
mentation. PAVMr1 saves an additional 0–20% and PAVMr2

saves an additional 25–50% of the energy relative to the ini-
tial implementation. It is interesting to note the jump at the
10-minute mark in the Poweruser workload for PAVMr2. This
is the point at which the periodic Linux kernel compilation
first runs. Since kernel compilation creates many short-lived
processes that start and complete between invocations of kmi-
grated, page migration does not help these processes, although
it continues to be effective for the long-lived ones. There-
fore, the benefit of page migration diminishes if short-lived
processes dominate in the system.

The absolute average power dissipated for all of the power
management techniques is summarized in Table 7. The Base
system tends to draw close to a constant amount of power,
since all nodes stay in Standby mode, with some small in-
creases corresponding to the greater number of memory trans-
actions in the Poweruser and Multimedia workloads. The en-
ergy savings realized vary greatly with the workload, and up to
94% reduction is seen with a lightly-loaded system. However,
even with the very heavy Multimedia workload, 59% memory
power reduction is realized.

5.5 Page-Migration Overhead

There is a significant energy improvement for PAVMr2 over
PAVM, but this comes at a cost of page-migration overheads.
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Figure 8: Effects of DDR’s physical memory configuration on power dissipation under PAVMr2 when running Light, Poweruser and
Multimedia workloads. Cumulative energy is normalized to the DDR Base policy.

Since we migrate pages only when the system is idle, avoid-
ing interference with active processes, there is no direct per-
formance overhead, and only an additional energy penalty is
imposed for each page migrated. However, due to the periodic
invocation of kmigrated and the check for system idle, there
is an implicit limitation of migration to only the longer-lived
processes. In Section 4.5, we have discussed other possible
solutions to limit any overheads.

By logging page migration traffic, we determined that mi-
gration, with only the implicit limitation, accounts for only
2.7%, 0.8% and 0.8% of the total memory traffic for Light,
Poweruser, and Multimedia workloads, respectively. If we ad-
just Figures 7(a-c) assuming maximal overhead reduction, we
see no perceivable differences, so explicit attempts to reduce
these overheads are not fruitful. Due to the significant energy
savings and a fairly low overhead observed, page migration is
beneficial in almost all circumstances.

5.6 Other Memory Architectures

We have discussed our power-management techniques primar-
ily in the context of RDRAM architecture, but they are also ap-
plicable to other SDRAM architectures that support multiple
operating power levels. In Figures 8(a-c), energy consump-
tion is shown when running the same set of workloads dis-
cussed above, assuming a 4-node DDR memory configuration
using PAVMr2. The cumulative energy is normalized against
the default hardware-implemented policy for DDR. We still
obtain significant energy savings, but not as much as with the
previously-described RDRAM configuration.

There are two reasons for this. First, the power difference
is much smaller between the DDR modes that correspond to
RDRAM’s Standby and Nap modes. Therefore, for DDR,
putting nodes in “Nap” mode shows a smaller relative energy
savings. Second, and more importantly, the notion of a node is
coarser-grained for DDR than RDRAM. As discussed earlier,
power management for DDR can only be done at the module-
level, whereas in RDRAM, power can be adjusted at a device-
level granularity, resulting in a much larger number of nodes.

To show the effect that the number of nodes in the system
has on energy savings, in Figure 8, we also compare energy
consumption assuming 1-node and 16-node DDR configura-
tions. For a 1-node configuration, PAVM basically degener-
ates to the On/Off policy, since the only node must be active
for all processes. As the number of nodes increases and the
size of each node decreases, PAVM has finer-grained power
management control, and yields greater energy savings. Once
the number of nodes is increased beyond a certain point, we
would expect decreasing, and possibly negative, marginal re-
turns due to operational overheads of managing a large number
of nodes. Finding the sweet spot that provides the maximum
energy savings is system-/memory- dependent and beyond the
scope of this paper. However, we believe that the 8- to 16-node
granularity provided in most RDRAM configurations is not far
from this sweet spot for typical mobile workloads. Further-
more, assuming that 4 nodes are available in a DDR system is
probably optimistic, since in real systems, we are more likely
to see 1-node and 2-node configurations, especially on mobile
platforms. The results for SDR is similar to DDR, and due to
the space limitation, are not shown here.

6 Related Work

Conserving energy in mobile and embedded systems is becom-
ing an active area of research as hardware components are be-
coming more power-hungry than ever, and as battery technol-
ogy is not able keep up with the growing demands. By exploit-
ing the ability of modern hardware components to operate at
multiple power levels, recent research has demonstrated that
a significant amount of energy can be conserved. Due to the
high-peak power demands of the processor, a large body of
work has focused on reducing processor energy consumption.
Weiser et al. [38] first demonstrated the effectiveness of using
Dynamic Voltage Scaling (DVS) to reduce power dissipation
in processors. Later work [2, 11, 14, 15, 25, 29–32] further ex-
plored the effectiveness of DVS techniques in both real-time
and general-purpose systems.

There is also a large body of work that focused on reducing
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power in other system components, including wireless com-
munication [10, 18, 21, 36], disk drives [6, 7, 22, 24], flash [5,
28], cache [1, 19, 37], and main memory [3, 4, 8, 9, 23], while
others [12, 26, 35, 40] explored system-level approaches to ex-
tend/target the battery lifetime of systems, as opposed to sav-
ing energy for individual components.

Among the works dealing with main memory energy, in [8,
23], Lebeck et al. studied the effects of various static and dy-
namic memory-controller policies to reduce power dissipated
by the memory using extensive simulations. However, they
assumed having additional hardware support to do very fine-
grained idle time detection for each device so the controller
can correlate this idle time with a power state for each de-
vice. In a later work, they used a stochastic Petri Nets ap-
proach to explore more complex policies [9]. Our work dif-
fers significantly in not assuming any additional hardware sup-
port or a particular memory architecture. Moreover, by ele-
vating the decision-making to the OS level, we can use in-
formation known to the OS to conserve more energy without
degrading performance. Finally, we have fully implemented
a power-aware VM system that handles the complexities of a
real, working system, and demonstrated its effectiveness when
running real-world applications.

Delaluz et al. [3] took a compiler-directed approach, where
power-state transition instructions are automatically inserted
into compiled code based on offline profiling. The major draw-
back of this approach is that the compiler only works with one
program at a time and has no information about other pro-
cesses that may be present at runtime. Therefore, it needs
to be either less aggressive or else it can trigger large per-
formance and energy overheads when used in a multitasking
system. This approach, however, is appropriate for DSP-like
platforms where single-application systems are common.

Delaluz et al. [4] later showed a simple scheduler-based
power-management policy. The basic idea is similar to our
work, but is of much more limited scope. In our work, much
effort is put into making the underlying physical page alloca-
tor to allocate pages by collaborating with the VM through a
NUMA management layer so the energy footprint is reduced
for each process, whereas they rely on the default page alloca-
tion and VM behaviors. As we have seen in Section 4.2, a sub-
stantial amount of power-saving opportunities remain unex-
ploited even with our rudimentary implementation of PAVM,
let alone when randomly allocating pages using the default
page allocator. In [23], it was also noted that the default
page allocation behavior has a detrimental impact on the en-
ergy footprints of processes. Second, we have explored ad-
vanced techniques such as library aggregation and page mi-
gration which are necessary for reducing memory footprints
when complex sharing between processes in real operating
systems is involved. Finally, in their work, the active nodes
are determined using page faults and repeated scans of pro-
cess page tables. Although this ensures only the truly active
nodes are detected, it is intrusive and involves high operational

overheads. In contrast, we take every precaution to avoid per-
formance overheads and hide any unavoidable latencies in our
implementation, and the end result is a PAVM system that can
save a significant amount of energy with only a very small per-
formance overhead.

7 Discussion

In the current implementation, there are two limitations that
we do not fully address. First, we do not consider direct mem-
ory access (DMA) by other hardware components on nodes
that may be in reduced power states, which may result in per-
formance degradation. This can be mitigated by ensuring that
DMA uses only pages within a pre-defined physical memory
range (e.g., the first node), which, due to the use of library
aggregation, is almost always in Standby mode.3

Second, kernel threads that run in the background may touch
random pages belonging to any process in the system. Since
these maintenance threads are invoked fairly infrequently, a
simple solution is to treat these as special processes and turn on
all nodes when they are invoked to avoid performance degra-
dation.

8 Conclusion and Future Work

Due to better processing technology and a highly competitive
market, systems are equipped with bigger-capacity and higher-
performance main memory as workloads are becoming more
data-centric. As a result, power dissipated by the memory is
becoming increasingly significant. In this paper, we have pre-
sented the design and analysis of power-aware virtual memory
(PAVM) to reduce total memory energy expenditure by man-
aging power states of individual memory nodes. We have also
shown a working implementation of PAVM in the Linux ker-
nel, and described how it was later evolved to handle complex
memory sharing among multiple processes and between pro-
cesses and the kernel in a modern operating system.

By performing extensive experiments with real applications,
we are able to show that even with a rudimentary version of
PAVM, we can save 34–89% of the energy normally consumed
in a 16-device RDRAM memory configuration. By applying
more advanced techniques such as DLL aggregation and page
migration in PAVM, we are able to reduce energy dissipation
by an additional 25–50%. We have also shown the applica-
bility of this approach for other SDRAM architectures such as
DDR and SDR, which can also benefit greatly under PAVM.

We have used a NUMA abstraction to organize and man-
age memory in our PAVM implementation, and have bor-
rowed some NUMA concepts such as the notion of a node

3Note that due to limitations in older ISA hardware, Linux for x86 already
has support to limit DMA transactions to the first 16 MB of memory (i.e.,
within the first node).
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and the page-migration technique. In the future, we would
like to explore if other NUMA techniques, such as page repli-
cation, can be effective in the context of energy conserva-
tion. In addition, we would also like to investigate the in-
teractions between OS-controlled and hardware-implemented
power-management policies to further decrease energy con-
sumption of memory.

References
[1] R. Bahar, G. Albera, and S. Manne. Power and performance tradeoffs

using various caching strategies. In International Symposium on Low
Power Electronic Design, 1998.

[2] T. D. Burd and R. W. Brodersen. Energy efficient CMOS microprocessor
design. In Trevor N. Mudge and Bruce D. Shriver, editors, Proceedings
of the 28th Annual Hawaii International Conference on System Sciences.
Volume 1: Architecture, pages 288–297. IEEE Computer Society Press,
1995.

[3] V. Delaluz and et al. Dram energy management using software and
hardware directed power mode control. In International Symposium on
High-Performance Computer Architecture, 2001.

[4] V. Delaluz and et al. Scheduler-based dram energy power management.
In Design Automation Conference 39, 2002.

[5] Fred Douglis, Ramon Caceres, M. Frans Kaashoek, Kai Li, Brian Marsh,
and Joshua A. Tauber. Storage alternatives for mobile computers. In
Operating Systems Design and Implementation, pages 25–37, 1994.

[6] Fred Douglis, P. Krishnan, and Brian Marsh. Thwarting the power-
hungry disk. In USENIX Winter, pages 292–306, 1994.

[7] Fred Douglis, Padmanabhan Krishnan, and Brian Bershad. Adaptive
disk spin-down policies for mobile computers. In Proc. 2nd USENIX
Symp. on Mobile and Location-Independent Computing, 1995.

[8] X. Fan, C. S. Ellis, and A. R. Lebeck. Memory controller policies for
dram power management. In International Symposium on Low Power
Electronics and Design, 2001.

[9] X. Fan, C. S. Ellis, and A. R. Lebeck. Modeling of dram power control
policies using deterministic and stochastic petri nets. In Workshop on
Power-Aware Computer Systems, 2002.

[10] Laura Marie Feeney and Martin Nilsson. Investigating the energy con-
sumption of a wireless network interface in an ad hoc networking envi-
ronment. In IEEE INFOCOM, 2001.

[11] Krisztian Flautner, Steve Reinhardt, and Trevor Mudge. Automatic
performance-setting for dynamic voltage scaling. In Proceedings of the
7th Conference on Mobile Computing and Networking MOBICOM’01,
2001.

[12] Jason Flinn and M. Satyanarayanan. Energy-aware adaptation for mo-
bile applications. In Symposium on Operating Systems Principles, pages
48–63, 1999.

[13] Richard A. Golding, Peter Bosch, Carl Staelin, Tim Sullivan, and John
Wilkes. Idleness is not sloth. In USENIX Winter, pages 201–212, 1995.

[14] K. Govil, E. Chan, and H. Wassermann. Comparing algorithms for dy-
namic speed-setting of a low-power CPU. In Proceedings of the 1st Con-
ference on Mobile Computing and Networking MOBICOM’95, 1995.

[15] Flavius Gruian. Hard real-time scheduling for low energy using stochas-
tic data and DVS processors. In Proceedings of the International Sym-
posium on Low-Power Electronics and Design ISLPED’01, 2001.

[16] Intel. http://www.intel.com/design/chipsets/specupdt/.

[17] Intel. http://www.intel.com/design/mobile/perfbref/250725.htm.

[18] Christine E. Jones, Krishna M. Sivalingam, Prathima Agrawal, and Jyh-
Cheng Chen. A survey of energy efficient network protocols for wireless
networks. Wireless Networks, 7(4):343–358, 2001.

[19] M. Kamble and K. Ghose. Energy-efficiency of vlsi caches: A com-
parative study. In Proc. of International Conference on VLSI Design,
1997.

[20] Donald E. Knuth. The art of computer programming. volume 1, pages
435–455, 1968.

[21] Robin Kravets and P. Krishnan. Power management techniques for mo-
bile communications. In Proceedings of the 4th Conference on Mobile
Computing and Networking MOBICOM’98, 1998.

[22] P. Krishnan, P. Long, and J. Vitter. Adaptive disk spin-down via opti-
mal rent-to-buy in probabilistic environments. In Proc. of International
Conference on Machine Learning, pages 322–330, 1995.

[23] Alvin R. Lebeck and et al. Power aware page allocation. In Archi-
tectural Support for Programming Languages and Operating Systems,
pages 105–116, 2000.

[24] Kester Li, Roger Kumpf, Paul Horton, and Thomas E. Anderson. A
quantitative analysis of disk drive power management in portable com-
puters. In USENIX Winter, pages 279–291, 1994.

[25] Jacob Lorch and Alan J. Smith. Improving dynamic voltage scaling
algorithms with PACE. In Proceedings of the ACM SIGMETRICS 2001
Conference, pages 50–61, 2001.

[26] Yung-Hsiang Lu, Luca Benini, and Giovanni De Micheli. Operating-
system directed power reduction. In International Symposium on Low
Power Electronics and Design, pages 37–42, 2000.

[27] Yung-Hsiang Lu, Luca Benini, and Giovanni De Michelli. Power-aware
operating systems for interactive systems, 2002.

[28] B. Marsh, F. Douglis, and P. Krishnan. Flash memory file caching for
mobile computers. In To appare in Proceedings of the 27th Hawaii Con-
ference on Systems Science, 1994.

[29] D. Mosse, H. Aydin, B. Childers, and R. Melhem. Compiler-assisted dy-
namic power-aware scheduling for real-time applications. In Workshop
on Compilers and Operating Systems for Low-Power, 2000.

[30] Trevor Pering, Tom Burd, and R. Brodersen. Voltage scheduling in
the lpARM microprocessor system. In Proceedings of the International
Symposium on Low-Power Electronics and Design ISLPED’00, 2000.

[31] Padmanabhan Pillai and Kang G. Shin. Real-time dynamic voltage scal-
ing for low-power embedded operating systems. In 18th ACM Sympo-
sium on Operating Systems Principles, 2001.

[32] Johan Pouwelse, Koen Langendoen, and Henk Sips. Dynamic voltage
scaling on a low-power microprocessor. In Proceedings of the 7th Con-
ference on Mobile Computing and Networking MOBICOM’01, 2001.

[33] Rambus. http://www.rambus.com/technology/quickfind documents.sht
ml#datasheets.

[34] Rik V. Riel. http://www.surreal.com.

[35] Tajana Simunic, Luca Benini, Peter Glynn, and Giovanni De Micheli.
Dynamic power management for portable systems. In International
Conference on Mobile Computing and Networking, pages 11–19, 2000.

[36] M. Stemm and R. H. Katz. Measuring and reducing energy consump-
tion of network interfaces in hand-held devices. IEICE Transactions
on Communications, vol.E80-B, no.8, p. 1125-31, E80-B(8):1125–31,
1997.

[37] C. Su and A. Despain. Cache design tradeoffs for power and perfor-
mance optimization: A case study. In Proc. of the International Sympo-
sium on Low Power Design, pages 63–68, 1995.

[38] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling
for reduced CPU energy. In Proceedings of the First Symposium on
Operating Systems Design and Implementation (OSDI), pages 13–23,
1994.

[39] W. Wulf and Sally McKee. Hitting the memory wall: Implications of
the obvious. Computer Architecture News, 23(1):20–24, 1995.

[40] H. Zeng, X. Fan, C. Ellis, A. Lebeck, and A. Vahdat. Ecosystem: Man-
aging energy as a first class operating system resource. In International
Conference on Archtectural Support for Programming Languages and
Operating Systems, 2002.


