
USENIX Association

Proceedings of the
FREENIX Track:

2003 USENIX Annual
Technical Conference

San Antonio, Texas, USA
June 9-14, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 91

In-Place Rsync: File Synchronization for Mobile and Wireless Devices
David Rasch and Randal Burns

Department of Computer Science
Johns Hopkins University
{rasch,randal}@cs.jhu.edu

Abstract
The open-source rsync utility reduces the time and

bandwidth required to update a file across a network.
Rsync uses an interactive protocol that detects changes
in a file and sends only the changed data [18, 19]. We
have modified rsync so that it operates on space con-
strained devices. Files on the target host are updated
in the same storage the current version of the file occu-
pies. Space-constrained devices cannot use traditional
rsync because it requires memory or storage for both the
old and new version of the file. Examples include syn-
chronizing files on cellular phones and handheld PCs,
which have small memories. The in-place rsync algo-
rithm encodes the compressed representation of a file in
a graph, which is then topologically sorted to achieve
the in-place property. We compare the performance of
in-place rsync to rsync and conclude that in-place rsync
degrades performance minimally.

1 Introduction
Rsync [18, 19] makes efficient file synchronization a re-
ality. It enables administrators to propagate changes to
files or directory trees. To save bandwidth and time,
rsync moves a minimum amount of data by identifying
common regions between a source and target file. When
synchronizing files, rsync sends only the portions of the
file that have changed and copies unchanged data from
the previous version already on the target. Faster and
more efficient methods for synchronizing copies make
it easier to manage distributed replicas.

Despite rsync’s efficiency, its shortcomings some-
times preclude its use. We address one specific short-
coming. Each time rsync synchronizes a file, it reserves
temporary space in which it constructs the new file ver-
sion. Rsync maintains two copies (one new, one old) on
the target for the duration of the transfer. Rsync can-
not be used without sufficient temporary space for two
copies of a file.

The construction of the new target file in temporary
space often renders rsync unusable on mobile devices
with limited memory. A popular device by Palm con-
tains only 16MB of memory. For the Palm to keep
enough temporary space available might require up to

8MB free (Figure 1). Insufficient space often excludes
the Palm from performing traditional rsync and forces a
transfer of the entire file. Ironically, handheld systems,
compact and convenient machines that can benefit from
an efficient propagation of updates, cannot always af-
ford the space overhead of rsync.

Rsync cannot backup or replicate block devices. Al-
though the benefits of compression make rsync well-
suited to the task, systems rarely have spare block de-
vices on which to put temporary data.

We have modified rsync so that it performs file syn-
chronization tasks with in-place reconstruction. We call
this in-place rsync or ip-rsync. Instead of using tempo-
rary space, the changes to the target file take place in
the space already occupied by the current version. This
tool can be used to synchronize devices where space is
limited.

In-place reconstruction eliminates the need for addi-
tional storage by using the space already occupied by
the file [2, 3]. In-place reconstruction seems trivial, but
the process must account for hazards that arise when
moving a block of data from its original location in the
old file to its location in the new file – an operation
called a COPY command. Not only does each COPY read
a block of the file, but it also overwrites k bytes. Over-
written regions cannot be used in future COPY com-
mands because they no longer contain the original data.

The goals of the ip-rsync algorithm include: (1) pre-
vent the copying of corrupted data, which has been pre-
viously written by another COPY operation; and, (2)
minimize compression loss. To prevent the copying of
corrupted data, ip-rsync identifies COPY commands that
write into regions from which other COPY commands
read and then performs the read operation (on the origi-
nal data) before executing the write. It is not always pos-
sible to reorder COPY commands to avoid all conflicts.
In this case, ip-rsync discards the conflicting COPY op-
eration. The data corresponding to the COPY are sent
from the host to the target. Sending the additional data,
instead of copying from the file already on the target,
reduces compression and increases the time needed to
synchronize files. Ip-rsync implements several heuris-
tics for selecting COPY commands to eliminate that min-

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association92

9MB 9MB
(b)

(a)

16MB

16MB

3MB 3MB

Ft F ′
t

F ′
tFt

Figure 1: With 16MB of memory: (a) There is enough space for the file Ft (3MB) and a temporary copy F ′
t . (b) There is

insufficient space for a temporary copy F ′
t of Ft (9MB) and rsync cannot be performed.

imize compression loss.
We describe the in-place rsync utility as an extension

to rsync. We start with an overview of the rsync algo-
rithm and a discussion of its performance optimizations.
We follow with our algorithm for performing rsync in-
place and a discussion of the effect of in-place recon-
struction on the algorithm’s optimizations.

2 Background
Ip-rsync builds on the rsync algorithm for propagat-
ing changes between two files located at different sites
[18, 19]. Rsync is widely used for backup and restore,
as well as file transfer. Rsync finds blocks of data that
occur in both the target file and the source file. It saves
bandwidth and transfer time when updating the target
file by not sending blocks from the source file that exist
already in the target file. Rsync operates on a fixed block
size in a single pass, or round, over the files. A multi-
round version of rsync (mrsync) increases compression
by taking multiple passes over files, halving the block
size in each subsequent round [9]. Multi-round rsync
detects common sections of the files at a fine granularity.
However, in multi-round rsync, the sender (source) does
not send unmatched data until all rounds are complete.
In this way, multi-round rsync loses much of the bene-
fit of of the interleaved transfer found in rsync. Rsync
transmits unmatched data while searching within the file
for matching data. Rsync outperforms mrsync when
the similarities and differences between files consist of
large sequences. Mrsync performs well when files con-
sist of short matching sequences separated by small dif-
ferences. Mrsync is more suitable in lower-bandwidth
networks in which transfer time dominates. Although
our in-place algorithm is suitable for multi-round rsync,
we did not implement an ip-mrsync because of mrsync’s
limited adoption.

The concepts of rsync influence the design of many
distributed systems. In particular, the combination of
a weak and strong checksum has been used in a low-
bandwidth file system [12], migrating virtual computers
[15], and a transactional object store [16].

Rsync has much in common with delta compres-
sion. Both encode changes between files using COPY
and ADD commands. Delta compression differs in its
semantics because it compares two files that are col-
located, rather than two files separated by a network.
Algorithms for delta compression are based on hashing
[1, 10, 13] or extensions to Lempel-Ziv compression [4,
6, 8]. The problem of compactly representing versions
as a small set of changes was introduced by Tichy as
the string-to-string correction problem with block move
[17].

In-place reconstruction has been previously ad-
dressed for delta compression [2, 3]. The problem
and solution are similar to ip-rsync, because they both
reorder the execution of commands to avoid conflicting
COPY commands.

We feel that in-place reconstruction is more widely
applicable in rsync than in delta compression. In-place
delta compression can transmit data to a resource lim-
ited device. However, it precludes a resource limited
sender because it requires both versions of a file to gen-
erate a delta encoding. Rsync allows versions to be
synchronized between two resource-constrained devices
and, therefore, may be used in peer-to-peer and server-
less applications.

3 Design
Rsync synchronizes two files, bringing an old version
of a file on the target up to date with a new version of a
file on the source. Rsync sends as few bytes as possible
by detecting common sections of the two versions and
using the common data in the old version when building
the new version. To detect the common sections, the tar-
get generates a weak and strong checksum for blocks in
the target file. The target transfers the checksums to the
source. On the source, rsync stores the weak checksums
in a hash table. The checksums take approximately 100
times less space and bandwidth than the file. The source
file is scanned, calculating the weak checksum at each
offset. Rsync probes the hash table with each checksum.
Upon finding a matching checksum, a strong checksum

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 93

Source Target

Generator
1. Sum blocks
2. Send sums

8. Apply commands

Receiver

9. Truncate file
10. Send done

Sender

3. Build hash table
4. Scan source

6. Sort dep. graph
7. Send commands

5. Detect deps.

Figure 2: The rsync process triangle with the sequence
of steps necessary for an ip-rsync transfer.

is computed and compared. Matching strong checksums
indicate matching data with high probability. Rsync en-
codes matched data as a COPY command. The COPY
encodes an action on the target that duplicates data from
the reference file in the updated file. The algorithm en-
codes unmatched data as an ADD command, which in-
cludes the data to be added. The target receives encod-
ings from the source. Encodings describe the new file
sequentially (from first byte to last) so that the target can
reconstruct the new version in a single pass. The use of a
weak and strong checksum saves computation by allow-
ing the source to generate and compute a strong check-
sum only when the weak checksum already matches.
Also, the chosen weak checksum saves computation by
rolling from offset n to offset n+1 without recomputing
the checksum based on all k bytes [7]. Rolling check-
sums observe that strings of length k at offsets n and
n + 1 differ in only two bytes – the first byte of the
string starting at n and the last byte of the string starting
at n+1. The algorithm computes a rolling checksum for
offset n + 1 by subtracting the contribution of the first
byte of the checksum at offset n and adding the contri-
bution of the last byte of checksum at offset n + 1.

3.1 Algorithm
The rsync implementation uses a programming con-
struct referred to as a process triangle that defines three
processes, one on the source and two on the target (Fig-
ure 2). The generator process runs on the target and
generates the checksums for the target file (Ft) that get
sent to the sender process (G ⇒ S). The sender scans
the source file (Fs) for the sums it receives and transmits

the results to the receiver process (S ⇒ R). The re-
ceiver applies the delta commands and notifies the gen-
erator if a file needs to be resent (R ⇒ G). The gener-
ator and receiver processes run independently on sepa-
rate files concurrently and proceed independently.

Rsync transmits ADD and COPY commands in the or-
der in which they were detected during a sequential scan
of the source file. The target applies the commands in
the order received. No destination offsets need to be
specified for COPY and ADD commands. The algorithm
calculates the destination offset from the previous desti-
nation offset and the length of the previous command.

With ip-rsync, the commands undergo a reordering
step to facilitate corruption-free, in-place reconstruc-
tion. As such, the transmission of the ADD and COPY
commands in a non-sequential order requires the ex-
plicit specification of a destination offset with each com-
mand. The destination offset allows commands to be
applied in any order at the target. The extra data in the
ip-rsync codeword adds a small overhead to the band-
width requirements.

Ip-rsync takes the following actions to synchronize
a file (the bold text indicate where ip-rsync and rsync
differ):

1. Generator: Generate weak and strong checksums
for each block in the reference target file.

2. Generator: Send checksums to the sender.

3. Sender: Build a hash table from the checksums re-
ceived.

4. Sender: Scan the source file for matches. Buffer
all COPY and ADD commands.

5. Sender: Construct a dependency graph among
COPY commands.

6. Sender: Topologically sort the dependency
graph, breaking cycles as they are detected.

7. Sender: Send sorted COPY commands, followed
by ADD commands, to the receiver.

8. Receiver: Apply commands when received. For
each command, seek to the given offset, and either
copy data or insert the included data.

9. Receiver: Truncate the file if it decreased in size.

10. Receiver: Alert the generator of the file’s comple-
tion.

In detecting and resolving dependencies, ip-rsync
sacrifices some concurrency. The sender conducts an
analysis of all COPY commands prior to transmitting
any commands to the receiver. This causes ip-rsync to
wait until all COPY commands are found and analyzed
before transmitting data. Traditional rsync overlaps de-
tecting and transmitting matches by sending data to the

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association94

Target (reference version)

Source

C2C1

C3

C1 C2 C3

Figure 3: An example of a file synchronization and the associated dependency graph. The blocks on the target will move from
their original location (bottom) to match their location on the source (top). To paraphrase the graph, C3 must be completed before
C1 or C2 since the destination of these blocks will corrupt the source for C3; i.e., perform C3 first so that C1 or C2 do not
overwrite its source data.

receiver immediately. The sender detects dependencies
among all COPY commands and waits for the discovery
of all commands before reordering.

3.2 A Simple Example

We now digress to a simple, yet flawed algorithm, which
one might propose as an alternative to the in-place rsync
algorithm. The following algorithm is a trivial modifi-
cation to rsync. Its flaw results in significant compres-
sion loss. This example motivates the need for the com-
plexity (buffering and dependency detection) of our so-
lution. The simple algorithm runs rsync and employs
the following heuristic: if any COPY command refers to
a block location which precedes the current write off-
set, then that block has been overwritten with new data
and can no longer be used for COPY commands. The
lost data is resent over the network link as an ADD com-
mand. The advantage of this algorithm is the similarity
to the original algorithm and its ability to overlap I/O
with the computation of checksums.

This simple algorithm is sensitive to changes which
insert data into the source file. Such changes cause the
simple algorithm to generate many ADD commands, re-
sulting in large compression losses. Consider synchro-
nizing a pair of files that are identical except that the
source file has some data (as few as 1 or 2 bytes) in-
serted at the beginning. These few bytes prevent any
data from being copied.

Reordering commands is necessary in spite of the rar-
ity of cycles in dependency graphs. To evaluate the
value of ordering, we look at compression in the naive
algorithm. Run on our data set, the simple algorithm
uses ADD commands to replace 52% of the COPY com-
mands. Each ADD sends k extra bytes over the net-
work link. This naive algorithm cuts compression in
half when compared with traditional rsync. Our final al-
gorithm’s complexity proves necessary to avoid a dras-
tic loss in compression.

3.3 Encoding Dependencies
Our final implementation of ip-rsync uses a graph-based
algorithm that detects and resolves dependencies, pre-
venting corruption of the target file. This comes at the
cost of a delay to generate and process the conflicts, los-
ing some of the benefit of overlapping network transfer
with checksum generation.

In ip-rsync, the generator (steps 1 and 2) mirrors the
corresponding actions of traditional rsync. The process
which builds the hash table in step 3 also remains un-
modified. However, during the scan in step 4, ip-rsync’s
sender buffers ADD and COPY commands in memory,
instead of sending them immediately. Buffering all
commands allows ip-rsync to detect dependencies and
reorder commands prior to sending data.

Buffering COPY and ADD commands consumes much
less space than traditional rsync requires. For a COPY
command, ip-rsync needs space to store the source
block and the target offset only. ADD commands re-
quire an extra field for the length of the data. The algo-
rithm does not store the raw data for ADD commands in
memory. Rather, ip-rsync stores the meta-data in mem-
ory and reads data directly from the source file when
sending an ADD command.

The algorithm constructs a directed graph in which
edges represent ordering constraints among commands
(Figure 3). A topological sort of the graph determines an
execution order for processing COPY commands on the
target. When a total topological ordering proves impos-
sible because of cycles in the graph, ip-rsync converts
nodes that copy data in the file to commands that add
the data explicitly. This results in lost compression. We
later describe several heuristics for breaking cycles.

The source puts buffered nodes into a structure that
points to the COPY command and contains fields nec-
essary for dependency detection, topological sorting,
transmission to the receiver, and deallocation. The fields
of the graph node are a pointer to the COPY command
that the node represents, a “visited” field used to encode

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 95

Algorithm 3.1: DFS(graph)

procedure VISIT(node)
if not node.V ISITED

then




node.V ISITED ← true
for each edge ← EDGES(node)

do VISIT(TARGET(edge))

main
for each node ← NODES(graph)

do VISIT(node)

Figure 4: Pseudo-code for depth-first search. Initially
nodes are in the UNVISITED state.

Algorithm 3.2: MODIFIED-DFS(graph)

procedure VISIT(node)
if node.STACK

then
{

node.DELETED ← true
DELETE(node)

if not node.V ISITED

then




node.STACK ← true
for each edge ← EDGES(node)

do VISIT(TARGET(edge))
node.V ISITED ← true

main
for each node ← NODES(graph)

do VISIT(node)

Figure 5: Modified depth-first search.

states during topological sort, a reference counter for
deallocation, a pointer to the next node in topological
order (initially NULL), and finally a pointer to the first
in a linked list of outgoing edges.

The sender also buffers ADD commands. ADD com-
mands are self-describing and, therefore, require no data
from the old version. As a result, ADD commands need
no reordering.

After all commands have been buffered, the COPY
graph is passed to a dependency-detection function (step
5). This function detects all dependencies with an
O(n lg n) algorithm, where n is equal to the number
of bytes in the larger of the source file or the target file
[2]. Each generated edge has two fields: the target node,
and a pointer to the next outgoing edge from the source.
With the full graph constructed, the sender topologically
sorts the nodes using a modified depth first search (DFS)
algorithm.

The algorithm used to topologically sort the graph in
step 6 modifies DFS to make it operate on graphs that
contain cycles. We present pseudo-code for depth-first

search (Figure 4) and the modified depth-first search
used in our algorithm (Figure 5). DFS (for acyclic
graphs) is a “stack” algorithm, pushing nodes onto a
stack as they are visited. In DFS, nodes take on two
states – UNVISITED and VISITED. A node remains UN-
VISITED until the algorithm pops it off the STACK dur-
ing its traversal. The algorithm marks the completed
node VISITED. Modified-DFS for topological sort uses
an additional STACK state to record the order in which
the algorithm visits each node. The STACK state helps
detect and break cycles. Modified-DFS also adds a
DELETED state to encode nodes that have been deleted.
Just as in DFS, each node begins UNVISITED. Anal-
ogous to DFS, the algorithm calls Visit on each node.
Visiting a node places it on the stack and marks it in
the STACK state. Subsequently, the algorithm Visits
any neighbors of the node that are not VISITED or
DELETED. When done with the neighbors, the algo-
rithm removes the node from the stack, marks the node
VISITED and places it on the front of an output list.
If the Visit procedure finds a neighbor already marked
STACK, a cycle exists in the graph. The algorithm
marks this node DELETED, which breaks the cycle.
A compensating ADD command is created in place of
the DELETED COPY. The topological sort algorithm
is O(V + E) as it examines each vertex at least once
and traverses every edge. We will examine alternative
metrics and procedures for resolving cycles in the next
section.

Ip-rsync sends the COPY commands to the target in
topologically sorted order. Upon sending a COPY com-
mand, it deallocates the corresponding node along with
its remaining edges. After sending all COPY commands,
ip-rsync sends ADD commands according to the ADD
list, including the ADD commands that correspond to
deleted COPY commands (step 7). If necessary, the tar-
get truncates the file to the new size and the synchro-
nization is complete.

3.4 Cycle Breaking
Any cycles found in the dependency graph represent a
set of COPY commands that mutually depend on each
others’ completion. The only ways to find a valid order-
ing of the COPY commands in a cycle are to remove an
edge of the cycle or remove a node (COPY command)
entirely.

The cycle breaking method described in the previous
section deletes an entire node to resolve a cyclic depen-
dency. To compensate, the sender sends an ADD com-
mand with the data that should have been copied by the
original command. This deletion costs k bytes of com-
pression. The sender marks the node as deleted and the
process continues. In-place delta compression [2] uses

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association96

another metric that finds and deletes the smallest COPY
command in a cycle in order to minimize compression
loss. Ip-rsync need not distinguish between nodes based
on size. Rsync has a fixed block size; all COPY com-
mands have the same length.

We implement an alternative method for breaking cy-
cles. This “trimming” method removes an edge of the
cycle, rather than a node. An edge occurs when the read
region of one COPY overlaps the write region of another
COPY. The edge is eliminated by shrinking one COPY
command, so that it no longer overlaps with the other
COPY. An ADD command is generated that covers the
trimmed region. We call this trimming a node, because
it reduces the read and write regions described by the
node. Trimming preserves some of the benefit of ex-
isting COPY commands when breaking cycles. When
ip-rsync with trimming detects a cycle, it scans through
all nodes in that cycle. The scan examines the overlap
between each pair of nodes. It trims the dependency
with the least overlap. The goal of this policy is to mini-
mize compression loss. After trimming a node, ip-rsync
checks existing edges pointing to the trimmed node to
ensure that dependencies have not changed. It is possi-
ble that the trimmed node no longer conflicts (overlaps)
with other nodes in its edge list.

To preserve the format and encoding of COPY com-
mands, the algorithm does not change a COPY com-
mand when trimming the corresponding graph node. In-
stead, the algorithm allows the COPY command to write
corrupt data and repairs the corrupt bytes with an ADD
command. This preserves the fixed-size block used by
rsync. During the transmission phase, no changes are
made to the protocol and the target copies the full block
for a trimmed node, which includes corrupted bytes in
the overlapping region. The ADD command generated
when trimming the node repairs the corrupted data.

4 Performance
Our experimental results compare ip-rsync to traditional
rsync and evaluate different policies for breaking cycles
found in ip-rsync graphs. Results indicate that ip-rsync
degrades performance in bandwidth constrained envi-
ronments, which we expect since it always transmits
more data over the network. However, when factors
other than bandwidth limit performance, our tests show
that in-place rsync outperforms traditional rsync. Al-
though ip-rsync requires extra computation, it reduces
disk writes and file-system block allocations.

Our experimental data set provides an exam-
ple of files used on handhelds that need to be
updated over wireless networks. The data set con-
sists of 1523 pairs of versioned files obtained from
http://www.handhelds.org/. The files include

a variety of kernel binaries and compiled programs that
are intended to be downloaded to handheld computers.
The files in our dataset target the same audience and
devices that ip-rsync benefits the most. To collect
data, we downloaded the software archive and ran
scripts that search the archive for multiple versions of
the same files. The original and processed data are
available from the Hopkins Storage Systems lab at
http://hssl.cs.jhu.edu/ipdata/.

In our experiments, we synchronize each pair of
versions with rsync and in-place rsync. For in-place
rsync, we compare two different cycle breaking meth-
ods: “delete node” that deletes the final node found in a
cycle and “trim node” that trims the least possible num-
ber of bytes in each detected cycle.

Ip-rsync incurs some compression loss from encod-
ing overhead. In-place rsync adds four bytes to each
twelve byte codeword in order to encode offsets in the
target file. These four bytes have a very different ef-
fect on compression and on bandwidth overhead. We
illustrate this point with a simple worst-case example in
which all commands are COPY commands. This results
in negligible compression loss: 4 bytes degrade com-
pression by 0.55% in the default 700 byte block. How-
ever, the 4 bytes increase the bandwidth by 33% – 16
bytes per COPY codeword as opposed to 12 bytes. The
overall bandwidth overhead of in-place rsync in our ex-
periments is less than 5%, much less than the 33% worst
case bound. Data transferred in ADD commands domi-
nates bandwidth, which mitigates overhead from code-
words.

Overall, ip-rsync achieves compression almost identi-
cal to rsync. In addition to encoding overheads, ip-rsync
loses compression when eliminating cyclic dependen-
cies. With the delete-node policy, the compression lost
by ip-rsync compared to rsync was 0.543%. The trim-
node policy cost 0.545% in compression. The differ-
ence is negligible. The overall increase in transmitted
data averages 0.544% of the size of the original file.

In-place rsync pays for its decreased parallelism and
compression with longer transfer times at low band-
widths. For low bandwidths, the in-place algorithm
spends 10% more time in the scanning and command
transmission steps combined than the original rsync al-
gorithm requires to complete the parallel hash search
and command transmission phase. The extra time spent
in these steps is fundamental to algorithms that reorder
commands and is therefore unavoidable.

The performance of ip-rsync scales almost identically
to that of rsync (Figure 6). Only at the smallest band-
widths can the effect of transferring the offset with each
command be seen. Otherwise, ip-rsync has negligible
latency and bandwidth overhead.

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 97

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2048 4096 8192 16384 32768

Ti
m

e(
s)

/s
ec

Bytes/sec

traditional rsync
ip-rsync delete nodes

ip-rsync trim nodes

Figure 6: The graph shows transfer times of the entire dataset
at different bandwidths using rsync and ip-rsync with two cy-
cle breaking heuristics. Ip-rsync performs more slowly for
bandwidth-limited transfers. Rsync incurs extra overhead in
the ext2 file system when allocating space in the temporary
file and, as a result, ip-rsync outperforms rsync at higher band-
widths. The cycle breaking strategies make no noticeable dif-
ference in transfer time.

Although ip-rsync loses parallelism within a single
file, it preserves parallelism across many files. Ip-rsync
(and rsync) overlap the transmission of one file with
scanning in a subsequent file. Our results show that
overlapped execution is the dominant form of paral-
lelism. In one instance of a bandwidth-limited transfer,
the entire ip-rsync synchronization took 300 seconds
and rsync required 290 seconds. The ip-rsync algorithm
transmitted an extra 312,304 bytes, which accounts for
the increase in end-to-end time. The standard deviation
of the compression loss per file (the average compres-
sion loss of is 0.544%) was only 0.8%.

The overhead that arises from decreased parallelism
is negligible. Comparing rsync and ip-rsync on a single
file would indicate a greater performance loss. How-
ever, parallelism lost within a single file is recovered
when overlapping multiple files.

While developing ip-rsync, we expected that rsync
would outperform ip-rsync in all cases. We believed
this because the changes to the algorithm include no im-
provements in bandwidth, memory usage, or process-
ing. Also, rsync allows for more parallelism between
the source and target.

When I/O limits performance (as opposed to band-
width), ip-rsync outperforms rsync by 2-3% (see Figure
6 at bandwidths greater than 20,000). We account for
the decrease in speed by considering the areas where
ip-rsync reduces overhead. Ip-rsync performs fewer
file-system block allocations using FFS-like file sys-
tems [11] that update data in-place. Our tests used the

ext2 file system. However, a copy-on-write file system
[5, 14] would negate these benefits, as every write allo-
cates a new file system block. In our further discussion,
we refer to our trials on ext2. By eliminating the need
for temporary space, ip-rsync allocates space only as re-
quired to increase the file size. In contrast, rsync allo-
cates all blocks in the temporary file, then deallocates
the original blocks. The time required to allocate space
for a temporary copy for a traditional rsync balances
out the decreased parallelism and compression. Further-
more, ip-rsync requires fewer disk writes when files are
changed slightly. Ip-rsync can ignore COPY commands
which have the same source and destination. Traditional
rsync must copy all blocks regardless of whether they
remain at the same offset in the file.

Buffering ADD and COPY commands for in-place
rsync requires extra memory, but utilizes far less space
than that required by rsync. The amount of extra mem-
ory scales with file size, but is much smaller than that
of a temporary copy. On average, the extra memory
needed is only 3.1% of file size, with a standard devi-
ation of 2.9%. The method for cycle breaking by trim-
ming nodes required 3.2% of the file size in data mem-
ory, while the delete node algorithm required only 3.0%.
The buffering of in-place rsync can be problematic in
resource-limited environments. Although we attempt to
minimize the space required, it is possible that the algo-
rithm can exceed available memory. We plan to imple-
ment the windowing techniques described in section 6.1
to address this problem.

5 Implementation
Adding in-place reconstruction to rsync changes the
operation and the usage of the rsync utility in minor
ways. In-place reconstruction affects interfaces, error
handling, and the information and statistics that rsync
generates.

Because ip-rsync updates a single copy of the data
on the target, it changes the operational semantics of
the tool, particularly when errors occur. Modifications
to the file at the target cannot be isolated from a pro-
cess reading data concurrently. New failure and recov-
ery scenarios occur; incomplete synchronizations leave
a partially updated file on the target that cannot be re-
covered to either the old or the new version.

5.1 Error Handling
Ip-rsync loses the atomic update property of rsync.
Rsync creates a temporary file that contains the up-
dated version. When the update completes, rsync calls
rename() which unlinks and atomically replaces the
existing version of the file. Processes with an open han-
dle to the old file continue to read the old data until they

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association98

reopen the file. New processes open the new version of
the file. When operating on a single version, ip-rsync
makes many intermediate changes to a file. The old ver-
sion of the data is irrecoverably modified. Even if ip-
rsync completes successfully, inconsistent views of data
may occur during its operation; applications reading the
file concurrently with an update by ip-rsync may read
from both the old and new version.

To avoid these inconsistent views, ip-rsync opens files
exclusively (rsync opens files in shared mode by de-
fault). If another process/application has the file open,
ip-rsync fails, leaving the original file intact. If another
process attempts to open the file during an ip-rsync ses-
sion, the process either fails to open the file or blocks
awaiting ip-rsync’s completion. The outcome depends
on the arguments to open() and operating system se-
mantics.

If a failure occurs during synchronization, ip-rsync
may leave the target file in an inconsistent state. This
occurs when the network, receiver process or sender
process fails after the receiver has written data. If the
receiver process fails, no recovery action can be taken.
Rsync leaves a temporary file in the file system and ip-
rsync leaves an incompletely synchronized file. The in-
consistent file left by ip-rsync does not present a prob-
lem upon restart; the source contains the new version of
the data which is synchronized in a new ip-rsync session
against the inconsistent data. If the sender or network
fails, the receiver process continues to run and may take
recovery action. Rsync merely removes the temporary
file, preserving the state of the file prior to synchroniza-
tion. Ip-rsync cannot recover the original state.

We balance several factors when deciding how ip-
rsync should handle inconsistent files. Options include:
(1) deleting the file at the receiver and (2) leaving the
inconsistent file in the file system. The first approach
prevents the application from reading inconsistent data,
but discards a file that contains data that makes a sub-
sequent rsync complete quickly. The second approach
has the opposite properties, allowing inconsistent data
to be read, but preserving the file for faster synchro-
nization. We realize both benefits by having ip-rsync
rename the corrupt file, creating a hidden recovery file
that contains the inconsistent data. The original file is
effectively deleted so that applications cannot access in-
consistent data under the old file name. However, the re-
covery file is available to be used in a subsequent rsync
session. When ip-rsync uses the recovery file, it updates
the recovery file in-place and then renames the hidden
file to the original file name. Renaming the recovery file
avoids producing two copies of the file, which might ex-
ceed to storage capacity of the target. The recovery file
is not implemented in our current release.

5.2 Usage
Ip-rsync is available at the Hopkins Storage Sys-
tems Lab Web site and can be downloaded
and compiled in a manner identical to rsync
(http://hssl.cs.jhu.edu/iprsync/). Our
modifications introduce no additional dependencies to
the build process of ip-rsync.

Making use of ip-rsync should be pose no problems
for anyone familiar with the use of rsync. Ip-rsync ac-
cepts all command-line arguments of rsync with a few
additions. To enable in-place reconstruction you must
specify -i on the command line. This directs rsync to
reconstruct the file in-place rather than using temporary
space. The --stats option now displays statistics rel-
evant to ip-rsync. The statistics include memory over-
head, bandwidth overhead, and compression loss due to
in-place reconstruction.

To synchronize a file using in-place reconstruction
across the network, a user invokes rsync with the source
file and the destination file: rsync -i source.txt

host.example.com:/path/to/dest.txt. A few
messages will appear noting the progress of the syn-
chronization and indicating its successful completion.

Ip-rsync’s in-place reconstruction is not compatible
with previous versions of rsync. Thus, both hosts in-
volved in the transfer must support in-place reconstruc-
tion. Ip-rsync maintains backward compatibility and
will synchronize with a peer running rsync.

6 Future Work
Ip-rsync requires more detailed experiments in order
to quantify tradeoffs between compression and paral-
lelism and to identify further opportunities for optimiza-
tion. Rsync itself is highly optimized for parallel ex-
ecution within a single file and between multiple files
[19]. Rsync is widely used because it works so well.
We intend to follow this example. Although we have
identified unfinished work items (in windowing and er-
ror recovery), the most important future work will feed
experimental results back into the design of ip-rsync.

Even though we designed ip-rsync for mobile and
wireless devices, our experiments reveal that ip-rsync
works well in higher-bandwidth networks as well. They
show that for bandwidths greater than 20,000 KB/sec,
ip-rsync actually outperforms rsync. This result im-
plies that ip-rsync would perform well for synchroniz-
ing block devices. In-place reconstruction is necessary
because block devices are large (much larger than mem-
ory) and there is not spare capacity to write a temporary
copy of a whole block device. Experiments need to be
conducted to validate these claims.

Reduced concurrency within a single file degrades
performance in ip-rsync. In our current experiments,

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 99

much of this loss is regained through the semi-parallel
transfer of multiple files; sending the data of a file while
scanning for matching data in another file. However,
rsync is commonly used to synchronize single files.
More detailed experiments that examine performance
when transferring single files will isolate performance
losses from reduced parallelism. and indicate ip-rsync’s
suitability for single file transfer. Such experiments are
essential to understand the benefit of reduced I/O in ip-
rsync. When combined with semi-parallel execution,
the gains of reducing I/O can make ip-rsync outperform
rsync. Experiments on single files would allow us to
measure the relative value of reduced I/O when com-
pared with semi-parallel transfer.

6.1 Windowing
Ip-rsync runs out of space when the size of the buffered
commands exceed the available space. Although
buffered commands are much smaller than the original
data, the algorithm must gracefully handle cases in
which the buffered commands exhaust the available
storage. This problem arises frequently when syn-
chronizing block storage devices that may be orders of
magnitude larger than a system’s memory.

There is no trivial way to address buffer overflow by
pruning the buffered commands and the graph they in-
duce, nor by completing some commands early. Ip-
rsync must retain all commands until the encoding is
complete. Otherwise, if the algorithm were to discard
a command, then dependencies between the discarded
and subsequent commands remain undetected. Unde-
tected dependencies cause an incomplete ordering and
corrupt data.

We have designed, but not implemented, an over-
lapped windowing technique to address buffer overflow
that organizes a file into multiple regions each of which
are processed independently. It is an on-line process in
which variable sized independent windows are created
as ip-rsync approaches its memory limit. The read re-
gions of the windows may overlap, but the write regions
are disjoint.

During synchronization, the ip-rsync sender encodes
data in an active window, which it uses until it exhausts
memory. The active window has a start offset and goes
to the highest byte in the file. When ip-rsync does not
reach the memory limit, synchronization completes in
a single window. When the memory limit is reached,
the sender stops encoding data and completes process-
ing on the buffered commands, i.e., commands are topo-
logically sorted and sent to the receiver where they are
applied. The buffered commands are discarded and pro-
cessing begins in the next window, starting at the first
un-encoded byte.

Ip-rsync defines independent windows based on
read/write dependency information. The algorithm
encodes commands that read data in the active window
only.

Windowing can be expressed equivalently as rewrit-
ing the dependency graph used by ip-rsync. When the
graph becomes too large, the buffered graph is rewrit-
ten as a single node that writes data to the region start-
ing at offset 0 and ending at the highest encoded offset.
Furthermore, the algorithm cannot reorder this rewritten
node with respect to the subsequent commands, because
the command that the node represents has already been
completed.

The implementation of windowing offers an oppor-
tunity to further parallelize ip-rsync. Our current win-
dowing design (described above) minimizes compres-
sion loss by transferring as much of the file as possi-
ble in a single window; frequently this means the whole
file when memory is not exhausted. We have identified
two alternative windowing designs that increase paral-
lelism in exchange for compression. One design parti-
tions the files into fixed-size windows before scanning.
Then, ip-rsync operates on each window independently,
treating each window as a separate pair of files and over-
lapping transfer between windows. This approach does
degrade compression, because blocks that match in dif-
ferent windows cannot be encoded. Another design for
large files implements two active windows that are sized
dynamically. One at the front of the file and one at
the end of the file. This allows two processes to exe-
cute concurrently on the same file. When the algorithm
exhausts memory, one window (or both windows) are
completed to reclaim space. The algorithm completes
when the windows collide in the middle of the file. An
experimental comparison of different windowing poli-
cies will help us understand compression versus paral-
lelism tradeoffs in large files.

Overlapped windowing is somewhat similar to the
windowing technique used in delta compression [8], in
which files are partitioned into non-overlapping regions.
Delta compression defines codeword formats for win-
dows, but does not specify how they are constructed
or evaluated. Overlapping windowing differs from the
rolling window techniques commonly used in data com-
pression. The “Lempel-Ziv” family of algorithms uses a
fixed-sized buffer, discarding the oldest strings, in order
to bound the amount of space used by the string library.
Rolling windows create a compression versus memory
tradeoff — there are no correctness implications and the
file is not “partitioned”.

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association100

7 Conclusions
We have described the design, implementation, and
performance of in-place rsync for synchronizing files
among mobile and wireless devices. Ip-rsync is a modi-
fication to the open-source rsync utility so that files may
be updated in-place: in the memory or storage that the
current version occupies. The algorithms of ip-rsync use
a graphical representation of the operations in an rsync
encoding to detect when in-place updates would cor-
rupt data, and then topologically sorts these operations
to avoid such conflicts. When compared with rsync,
ip-rsync loses 0.5% compression from encoding over-
heads and breaking cyclic dependencies. Ip-rsync in-
creases transfer time in bandwidth-constrained environ-
ments, but can increase performance in I/O constrained
environments by avoiding the creation of a temporary
file.

Although in-place reconstruction can degrade both
compression and transfer time, it makes file synchro-
nization available in space-constrained environments
where rsync alone does not function. The benefits of
file synchronization can be brought to mobile and wire-
less devices in exchange for minor performance losses.

References
[1] M. Ajtai, R. Burns, R. Fagin, D. D. E. Long, and

L. Stockmeyer. Compactly encoding unstructured in-
put with differential compression. Journal of the ACM,
49(3), 2002.

[2] R. Burns and D. D. E. Long. In-place reconstruction of
delta compressed files. In Proceedings of the Symposium
on Principles of Distributed Computing, 1998.

[3] R. Burns, L. Stockmeyer, and D. D. E. Long. In-place
reconstruction of version differences. IEEE Transactions
on Knowledge and Data Engineering (to appear), 2003.

[4] M. C. Chan and T. Y. C. Woo. Cache-based compaction:
A new technique for optimizing web transfer. In Pro-
ceedings of the IEEE INFOCOM Conference, 1999.

[5] D. Hitz, J. Lau, and M. Malcom. File system design
for an NFS file server appliance. In Proceedings of the
USENIX Winter Conference, 1994.

[6] J. J. Hunt, K.-P. Vo, and W. F. Tichy. An empirical study
of delta algorithms. In Proceedings of the 6th Workshop
on Software Configuration Management, March 1996.

[7] R. M. Karp and M. O. Rabin. Efficient randomized
pattern-matching algorithms. IBM Journal of Research
and Development, 31(2):249–260, 1987.

[8] D. G. Korn and K.-P. Vo. Engineering a differencing and
compression data format. In Proceedings of the USENIX
Annual Technical Conference, 2002.

[9] J. Langford. Multiround Rsync. Technical Report
Available at www.cs.cmu.edu/∼jcl/research/mrsync/-
mrsync.ps, Dept. of Computer Science, Carnegie-
Mellon University, 2001.

[10] J. MacDonald. Versioned file archiving, compression,
and distribution. Technical Report Available at http://-
www.cs.berkeley.edu/∼jmacd/, UC Berkeley, 2000.

[11] M. K. McKusick, W. N. Joy, J. Leffler, and R. S. Fabry.
A fast file system for UNIX. ACM Transactions on Com-
puter Systems, 2(3), 1984.

[12] A. Muthitacharoen, B. Chen, and D. Mazieres. A low-
bandwidth network file system. In Proceedings of the
Symposium on Operating Systems Principles, 2001.

[13] C. Reichenberger. Delta storage for arbitrary non-text
files. In Proceedings of the 3rd International Workshop
on Software Configuration Management, 1991.

[14] M. Rosenblum and J. K. Ousterhout. The design and im-
plementation of a log-structured file system. ACM Trans-
actions on Computer Systems, 10(1), 1992.

[15] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S.
Lam, and M. Rosenblum. Optimizing the migration of
virtual computers. In Proceedings of the 5th Sympo-
sium on Operating Systems Design and Implementation,
2002.

[16] Z. H. Stephen, S. M. Blackburn, L. Kirby, and J. Zig-
man. Platypus: Design and implementation of a flex-
ible high performance object store. In Proceedings of
the 9th International Workshop on Persistent Object Sys-
tems, 2000.

[17] W. F. Tichy. The string-to-string correction problem with
block move. ACM Transactions on Computer Systems,
2(4), November 1984.

[18] A. Tridgell. Efficient Algorithms for Sorting and Syn-
chronization. PhD thesis, Australian National Univer-
sity, 1999.

[19] A. Tridgell and P. Mackeras. The Rsync algorithm.
Technical Report Available at http://samba.anu.edu.au-
/rsync/tech report/tech report.html, Australian National
University, 1998.

