
The following paper was originally published in the

Proceedings of the 3rd USENIX Windows NT Symposium
Seattle, Washington, USA, July 12–13, 1999

M I L L E N N I U M S O R T : A C L U S T E R - B A S E D
A P P L I C A T I O N F O R W I N D O W S N T U S I N G

D C O M , R I V E R P R I M I T I V E S , A N D T H E
V I R T U A L I N T E R F A C E A R C H I T E C T U R E

Philip Buonadonna, Joshua Coates, Spencer Low, and David E. Culler

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association
All Rights Reserved

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.

USENIX acknowledges all trademarks herein.

The 16x2 x86 Processor PC Cluster

• Dual 400Mhz Pentium II
• 256 MB SDRAM / 100Mhz Memory Bus
• 33Mhz 32-Bit PCI Bus / Ultra2 LVD SCSI
• 2x9.1GB Disk Storage
• Switched Fast Ethernet / Myrinet M2F
• Windows NT 4.0 Terminal Server Edition

Abstract

We present the design and results of Millennium Sort, a
distributed sorting application built using three layers of
technology: extensible River System primitives, the
Virtual Interface Architecture (VIA) and the Distributed
Component Object Model (DCOM). The Millennium
Sort application is a vehicle for exploring the issues of
commercial cluster technologies and distributed
development on commodity node clusters. We discuss
the architecture and design of the River System
primitives, VIA and DCOM. Performance results are
discussed, including the latest Datamation Sort record
time of 1.18 seconds achieved by a 16-node Pentium-II
cluster.

1. Introduction

One of the most dynamic properties of
computing clusters is the set of new technologies and
methods for how to build, use and evaluate them. The
relentless pursuit to “build a better cluster” offers a
large design space of interesting concepts and
challenging problems to tackle. A direct method to
investigate such issues is to build a cluster-based
application and assess the tools and technologies used
behind it.

The principal goal of the Millennium Sort
project is to study new commercial technologies for
utilizing cluster resources and the use of commodity
development tools in the context of a database oriented
application (sorting). The technologies we employ
include the Distributed Component Object Model
(DCOM), the River System, and the Virtual Interface
Architecture (VIA)[12]. Specifically, we seek to:
1) Explore the feasibility of using DCOM as a parallel
remote execution system, 2) Demonstrate the
extensibility of River System primitives to data
management applications, 3) Investigate the use of the
VI Architecture in distributed I/O systems, and 4)
Evaluate the use of commodity hardware and software
programming tools for distributed application
development on PC clusters running Windows NT. In
short, we explore the viability of building a high
performance distributed system based on emerging

commercial technology and available tools. This allows
us to focus on component composition rather than just
component design. We demonstrate an implementation
of a sorting application that breaks the world record for
the Datamation sorting benchmark [3] that was
previously set by NOWSort [8] on the Berkeley
Network of Workstations (NOW) [1].

The remainder of this report is divided into
four sections, three of which detail the technical aspects
of the overall system; the fourth offers a reflection on
the experience as a whole. Section 2 provides
background on the Windows NT cluster used for
Millennium Sort and outlines the distributed sorting
problem. In section 3 we present the individual
component technologies of Millennium Sort (DCOM,
River, and VIA) and the integration of these
technologies to form the application. Section 4 details
the performance of the sort in terms of the component
technologies. In section 5 we discuss the project in
retrospect and comment on our experience with
developing a distributed application for an NT cluster.
We conclude in section 6 with proposals for future
work.

2. Background

The hardware used to run the sort is a
homogenous 16-node PC cluster (Figure 1) priced at
~$5800/node, including the Myrinet switch. By
comparison, NOWSort used a 32-node Sun Ultrasparc
workstation cluster at a cost of approximately $18,000
per-node [8]. The cluster has two principal
interconnects: the Myrinet M2F System Area Network

Figure 1: The cluster configuration used for
Millennium Sort.

Millennium Sort:
A Cluster-Based Application for Windows NT using

 DCOM, River Primitives and the Virtual Interface Architecture

Philip Buonadonna, Joshua Coates, Spencer Low, David E. Culler
Computer Science Division

University of California, Berkeley
{philipb, jcoates, culler}@cs.berkeley.edu, lowtek@millennium.berkeley.edu

(SAN) [15] and fast Ethernet connected through a
Nortel Networks Accelar 1200 series switch. The
Myrinet SAN supports the VI Architecture
implementation used for the sorting application. It
consists of a programmable network interface that
allows emulation of VI capable hardware in a flexible
system that can be instrumented. The Ethernet was used
to evaluate a Winsock based version of the sort as well

as provide communication services not available in the
VI Architecture implementation. Since bandwidth is a
primary concern with data-intensive distributed
applications, we assessed the maximum and sustained
throughput of various cluster node components (see
Table 1). For the VI based sort, the disk is the obvious
bottleneck in the system, which prompted us to stripe
the two disks into a single ~23MB/sec volume on each
node. For the Winsock based sort, the Ethernet becomes
the limiting component.

The distributed sorting problem provides an
aggressive space to examine and evaluate clusters. The
performance of the sorting application depends on the
I/O and network as well as the computational limits of
the CPU. While our goal was not to conduct distributed
sorting research per se, we use the sorting task to drive
a study of the different technologies implemented
around a well-known algorithm, and the cluster
development tools used therein.

The Millennium Sort implements a one-pass,
disk-to-disk distributed sort (Figure 2). At the start,
unsorted data (keys & records) reside on the disk of
each of the computing nodes. Upon invocation, each of

the nodes simultaneously reads the data from the disk,
partitions it according to a predetermined rule, and
sends the data to the other computing nodes. The
partitioning rule is typically a range of keys to a
particular node. At the same time, each node receives
data from the other nodes. Once all data has been read
and distributed, each node sorts the data and writes the
output back to disk. The total elapsed sort time is

measured from the beginning of invocation (i.e.
includes time to startup the application on each node)
until all the data is written back to disk and the
application exits. The sort is one-pass: the data set fits
into available physical memory on each node of the
cluster. To compare our implementation against known
results, we use the Datamation sorting benchmark
specification. This test measures the performance of a
disk-to-disk sort of 1 million 100-byte records each
with a random 10-byte key. Past results of this
benchmark are available at [19]. The most recent
performance record for the Datamation sort was 2.41
seconds on 32 nodes of the U.C. Berkeley NOW [8].
We demonstrate that Millennium Sort achieves twice
this performance on the 16-node cluster described.

3. Architecture and Design of Millennium
Sort

The Millennium Sort application is developed
around three principal technologies: Microsoft DCOM,
the River System, and the Virtual Interface
Architecture. In this section we describe each of these
technologies and how they integrated into the sort
program.

3.1. Catapult and DCOM
In order to facilitate the development and use

of cluster-based applications, it is important to have
some method of remote execution and job control [5].
In line with our goals of surveying industry-developed
technology, we chose to use the distributed version of
the Microsoft Component Object Model (COM)[4].
COM is a software development specification and a set
of binary standards that allow interaction and
communication amongst heterogeneous software
objects. Distributed COM (DCOM) is the extension of

MEM Bus PCI Bus SCSI Bus Disk Network
(Ethernet)

Network
(Myrinet)

MB/sec
Peak

800 133 80 21 12 150

MB/sec
Sustained

640* 105* 64 14/23 10 120

Table 1: Bandwidth of cluster node components. Note that the effective disk bandwidth is
actually ~23 MB/sec after striping across two disks. (* 80% estimate of peak)

Figure 2: The generalized one-pass distributed sort
algorithm.

Sort() Sort() Sort()

the COM paradigm to take advantage of distributed
network resources using a single programming interface
(Figure 3). While DCOM is not specific to the
Windows family of operating systems, Windows NT
4.0 has built in DCOM to support essential system
services. For this project, we developed a DCOM
based, distributed execution tool that supports
invocation of generic command line programs:
Catapult.

Catapult is composed of a DCOM object (a
COM server executable) and a command line
executable. The DCOM object is an agent, which
resides on each node of the cluster and acts to service
remote execution requests in a manner analogous to the
UNIX rshd. The Catapult executable acts as the
primary tool for invoking and controlling the remote
programs. Prior to using Catapult, an administrative
install of the DCOM agent on each node must be
performed by copying the Catapult agent binary to each
local disk and installing the DCOM object ClassID (a
128-bit Globally Unique Identifier) into the registry.
The Catapult executable contains a command line
option to do this remotely by using NT’s default
administrative network shares and the Remote Registry
API.

To launch a distributed task, the Catapult
command is issued on a user's local workstation,
passing in the name of the application image and a list
of nodes as arguments (e.g. >catapult -e
"hostname.exe" mm1 mm2 mm3 mm4). For each
node, the local Catapult executable spawns a new
thread and requests an instance of the remote DCOM
object be created. The DCOM instantiation request is
received by the always-available NT RPC service
running on the remote node. The RPC service
references the DCOM object’s ClassID in the NT
Registry to find the path to the local DCOM object
binary. The binary is executed (as the local user’s
identity) and a DCOM object is instantiated. Note that
the DCOM agent binary is not actually running prior to
its instantiation. The instance of the Catapult DCOM
agent invokes the executable passed in at the command
line. Afterwards, the agent executes a series of data
methods that redirect the processes’ stdout, stdin and
stderr back to that node’s associated thread on the
user’s workstation. This allows a certain amount, albeit
cluttered, interactivity that is useful with certain types

of remote jobs, as well as debugging distributed
applications.

By using DCOM to implement Catapult, we
are able to run remote executables on standard NT
installations with minimal administrative overhead.
Instead of requiring a separate dedicated daemon or
dedicated resources, we use the NT RPC service as an
inetd, only creating our process when called upon.
Since DCOM is basically object RPC, we are able to
avoid writing complex socket and stream parsing code,
forgoing it for simple functions and a small amount of
IDL (Interface Definition Language).

Since Catapult supports generic command line
executables, the Catapult “remote execution platform”
had useful applications right from its inception. An
early application was to automate the already existing
command line process of reloading the NIC firmware
on the NT cluster. We did not require special Catapult-
enhanced applications (e.g. new DCOM based
applications), thus eliminating another variable in
debugging sessions. A Catapult execution may be
simulated through direct invocation from a system
console or remote NT session, removing Catapult from
the loop and allowing the use of interactive debuggers.

3.2. The River System

The River System is a distributed dataflow
programming model which allows an application to Put
and Get records to and from a distributed data queue.
The distributed queue partitions data based on
application specific rules. The River programming
metaphor treats data as a fluid that flows from Sources
to Sinks, which accumulate in the distributed queue of
the River (Figure 4). This model is stream-based and
allows direct integration with certain types of I/O
intensive, distributed applications.

Distributed dataflow models that extend the
stream-based metaphor of ‘Data Rivers’ are not a new

Figure 4: Basic model of the River paradigm. An
application Gets and Puts data to and from a
distributed queue (the River) which manages
distributed source and sink data streams.

SinksSources

River

Application

Figure 3: The DCOM Architecture.

Protocol
Stack

Protocol
Stack

Client Remote
Object

NetworkNode A Node B

RPC

COM

RPC

COM

concept [2,7]. Typical distributed dataflow systems read
records off of disk, partition them, either statically or
dynamically across a cluster, and send the data through
a specific network interface. We believe that the type,
as well as the transformation applied to the data, should
be orthogonal to the dataflow subsystem. This
extensibility is realized through River System
primitives. These primitives can be composed to
describe application specific dataflows.

To understand the construction of an
application using River System primitives, it is
necessary to define the basic primitive types:

Source – An object that produces and possibly
transforms data. Typically associated with a
particular sink that the source deposits its data into.

Sink – An object that consumes and possibly
transforms data. Typically receives data from a
Source object or application via the SinkRecord()
or SinkBuffer() methods.

Buffer – A memory object that contains a pointer to
heap allocated memory.

MemPool – A data structure that manages Buffer
objects, based on a simple queue structure.

These four primitives can be extended to meet
specific I/O or application requirements without
sacrificing the advantages of the dataflow model. For
Millennium Sort these extensions included:

Disk Source & Disk Sink – Sources and sinks
tailored for asynchronous disk I/O.

Net Source & Net Sink - Sources and sinks that
managed network data transfers. These were
implemented for both VI based and Socket based
communication.

DiskMemPool – This type of MemPool creates and
manages buffers that contain memory allocated in
multiples of the disk sector size.

ViaMemPool - A special MemPool that included
memory registration management for the VI based
sort.

PartitionSink – A sink used to partition data in
order to send specific types of data to specific types
of sinks. For Millenium Sort, the data was
partitioned lexicographically by the key in each
record.

RiverSink – A sink that acts as the River System’s

interface to the application. An application would
Get or Put records to the RiverSink. The RiverSink
acts as a central data repository for the other sinks
and sources in the system.

Figure 5 illustrates the overall interaction of
the extended sources and sinks in Millennium Sort. The
arrows indicate the logical path of data in the system.
Upon activation, the system begins to first “pump” data
from the Disk Sources into the River. As the River
receives the data, it flows through the partitioner, which
is a component of the River (1). The partitioner sends
the data to its destination based on a function of the
record key. Records destined for the local node get
added to the queue within the River. Records that are
destined for a remote node get sent to the appropriate
Net Sink (2).

As this process continues, the River queue
begins to fill with records from the local Disk Source,
as well as incoming Net Sources (3). As the queue fills,
the Get requests of the Sort Core empty the queue. This
process continues until the Disk and Net Sources run
dry, and the River queue is empty. Records are sorted
and dumped back into the River with a Put request,
which is then sunk to the Disk Sinks (4). The
application waits for the Disk Sink to complete the final
disk write, and then exits.

3.3. VI Architecture

The Virtual Interface (VI) Architecture [12] is
a high performance communications infrastructure that
supports memory-to-memory network transfers
between user processes across a cluster. The
architecture is intended as a standard for user-level
networking where applications have direct access to
network hardware. Network resources are virtualized
across user programs at the network interface level and

Figure 5: Illustration of dataflow in Millennium
Sort.

RIVER

Sort Core

Get Put

Partitioner

Net Sources Net Sinks

Disk Sources Disk Sinks

Node

1

2
3

4

OS intervention is eliminated from the critical
communications path. The system has four principal
components: VI Providers, VI Consumers, Virtual
Interfaces, and Completion Queues (Figure 6). The
design begins with the VI Provider, which includes a VI
capable NIC and an OS Kernel Agent. The principal
requirement for a VIA NIC is that it has resources that
can be memory mapped directly into a user process
address space (the doorbells). The Kernel Agent,
essentially a superset of a device driver, performs the
command and control functions that require operating
system intervention such as device commands, memory
registration and connection management. The VI
Consumer component consists of the user application(s)
and the User Agent, or Virtual Interface Provider
Library (VIPL). The User Agent provides the API and
necessary user-level support for the VI Provider
implementation.

The Virtual Interface itself is the primary
abstraction for the users protected, direct channel to the
network hardware. Each VI consists of a pair of work
queues, send and receive, their associated doorbell
resources and the users registered memory regions. The
work queues are a FIFO list of descriptors that mark a
region of registered memory to transfer data to or from.
Network data transfers are initiated by posting a
descriptor in the appropriate work queue and writing a
token in the queue’s associated doorbell (i.e. “ring” the
doorbell). The architecture supports both matched send-
receive and Remote DMA (RDMA) communication
semantics with either unreliable or reliable service
models. When the network interface completes an
operation, it sets a status mark in the descriptor that can
be detected by user polling or through an event.

VI's are connection-oriented and support
personalized communication with a single remote VI.

This one-to-one connection model may require a large
number of VIs per user to achieve full connectivity
between nodes in a cluster. To provide scalable
performance, Completion Queues maybe used to
provide a single monitoring point for network data
completions. VIs are assigned to completion queues at
the granularity of the individual work queue. A
completion of a descriptor places a token in the
completion queue, which may be detected by either
polling or through an event.

3.3.1. The Berkeley VIA Implementation

To better understand the design internals of the
VI Architecture and their impact on application and
cluster performance, we use our own implementation
instead of an off-the-shelf product. The VIA
implementation used in Millennium Sort is an
enhancement of the Berkeley VIA implementation [14]
that adds memory registration and increased VI/user
support. The end goal of these additions is to provide a
VI Architecture implementation that may be readily
used by a greater variety of applications and that allows
a deeper investigation into the transport itself.

The first functional component added was
memory registration and virtual address translation.
Prior to conducting VI communication, a user process
must identify memory segments that will be used for
data transfer. Memory registration locks the pages of a
virtually contiguous memory region into physical
memory, builds the necessary data objects to enable
virtual-to-physical translations on the VI NIC, and
assigns a name (memory handle) to the registered
region. Our challenge was to build a
registration/translation mechanism that scaled well with

Application

VI User Agent

O
pe

n,
 C

on
ne

ct
,

R
eg

is
te

r
M

em
or

y

Descriptor Read, Write

VI-Capable NIC

Sockets, MPI,
Legacy, etc.

Host

NIC

Requests
Completed

VI VI C
S S S C

O
M
P

R R R
VI

D
oo

rb
el

ls

VIA Kernel
Driver

Figure 6: The Virtual Interface Architecture and its components.

limited resources and exhibited satisfactory
performance. The result was a super-sized (1024 entry)
translation lookaside buffer (TLB) on the NIC. At
memory registration, the kernel agent pins the memory
region into physical RAM, builds a list of the
corresponding page frame numbers and passes the
physical address of the beginning of the list to the
network interface. The NIC stores a collection of these
page list pointers in a directory maintained for each VI
user process. All subsequent communication operations
between the user process and NIC are conducted using
user virtual addresses. Data transfers are broken into
page-size segments and a TLB lookup performed for
each segment. TLB misses are processed using the page
directory pointer for that registered region. The benefit
of this system is that memory registration scales with
available host resources instead of limited NIC
resources.

Expanded VI/user support was the next
important functional addition to the VIA
implementation. In the prototype, a memory allocation
equivalent to the host page size is used to hold a single
pair of doorbell registers. This mechanism was
overhauled to exploit the unused space in the rest of the
page. The new implementation provides 256, 128-bit
doorbell pairs per page sized unit. Each doorbell page is
mapped to the requesting users address space upon
creation of the first VI. Since the host page size is the
minimum granularity of protection for the memory
system, it is possible for interference to occur between
an individual user’s VIs. However, any damage will be
limited to that user and should be preventable if
doorbell access is done through the provided User
Agent.

For Millennium Sort, the VI Architecture
implementation was only used to support data transfer
during the sort. Other inter-node communication (i.e.
DCOM calls and barriers) utilized protocols over Fast
Ethernet. Other work has been done to implement

DCOM over VIA which has shown to improve
performance in remote method invocation [13].

4. Performance

The overall performance of Millennium Sort
depends on the performance of each component. The
application is built upon VIA, extended River System
primitives and a parallel remote execution application
based on DCOM.

4.1. VIA Performance

Assessing VIAv2 performance is important as
a precursor to application performance when layered
over the architecture. We found that VIAv2 functioned
with only slightly degraded performance relative to the
previous implementation (VIAv1) in acute
measurements with no noticeable performance loss in
the sort application. The performance of VIAv2 is
compared against the VIAv1 prototype using one-way
message timing and bandwidth benchmarks. The results
are presented in Figure 7.

The one way message time is a measure of the
average time it takes for a message of a given size to be
transmitted from a source node and received by a
remote node. It is measured by doing a series of ping-
pong tests in which a message of arbitrary size is sent to
a remote node that then reflects that same message back
to the originator. The resulting round-trip time (RTT) is
divided by two to yield the one way time. We
performed this test under three principal conditions.
The first was where the TLB misses only on the first
use of the VI and, thereafter, exhibits a 100% hit rate.
The second condition (Stride) involved a host data
buffer which is larger than the address space spanned
by the TLB. The benchmark traverses this buffer when
making network data transfers thus, depending on the
message size, forces various miss rates in the TLB. This

Figure 7 : One-way message timing and streaming performance for VIAv2 in comparison with
the previous implementation. 'Stride' refers to the case where the test traverses a data buffer
larger than the span of the TLB. 'Miss' refers to a 100% TLB miss rate in all cases.

Streaming Performance

0

100

200

300

400

500

600

1 10 100 1000 10000 100000
Message Size (Bytes)

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

VIA1
VIA2
VIA2 Stride
VIA2 Miss

One-Way Message Timing Comparison

0

20

40

60

80

100

120

140

1 10 100 1000 10000
Message Size (Bytes)

R
T

T
/2

 (u
se

c)
VIAv1
VIAv2
VIA2 Stride
VIA2 Miss

situation is designed to closely approximate the usage
pattern of a user process transferring data to/from a
large block of registered memory. The last condition
(Miss) forced a 100% miss rate in the TLB. It is
interesting to note that the performance difference
between the large buffer and the near 100% TLB cases
is minimal. This suggests that the TLB mechanism
extends well to several types of network memory access
patterns.

The second metric evaluated for the new
implementation was streaming performance. This
benchmark measures the net throughput capable when
messages are sent successively from a source VI to a
sink with no pause in between. We performed this test
for the same three conditions as in the one-way timings.
For message sizes above approximately 20KB, the
throughput achieves the maximum possible value for
the network interface, roughly 64MB/sec. (NOTE:
while the Myrinet physical layer can achieve 150
MB/sec, the maximum rate is half this value since the
VI firmware copies data to its onboard buffer before
transmission). Again different TLB performance cases
do not significantly impact the bandwidth of the
interface.

4.2. River System Performance

The resulting performance of the River System
extensions used for Millennium Sort exceeded our
expectations for both the VI and Winsock based
systems. Figure 8 presents the sort results for the VI
Architecture based sort using the Standard Template
Library qsort routine. The sort times are broken down
into the major stages of the sort application: Overhead,
Read and distribute, Sort and Write. The Read sequence
consists of reading the data from a Disk Source,
partitioning it in the River, and distributing it to the
appropriate nodes through Net Sinks while
simultaneously receiving data from Net Sources. The

Write sequence is simply the time it takes to write data
to disk via the Disk Sink. The overhead sequence is
derived from the difference of total execution time of
the application, from launch to completion, and time
spent actually reading, sorting and writing. The
overhead operations consist of: application launch via
Catapult, blocking on a Winsock based barrier, and data
structure/memory initialization.

On 16 nodes, the sort completed the
Datamation benchmark in 1.3 seconds and achieved its
best time of 1.18 seconds using a hand coded radix sort
in place of the STL qsort. This record-breaking time
surpassed the previous Datamation record of 2.41
seconds [8].

Figure 9 provides a side-by-side comparison of
the VI based sort with the WinSock/Ethernet based sort.
The overhead component is consistently higher with the
WinSock implementation, increasing from 480ms to
1.2sec. This increase in overhead results from the
complex mechanisms required to establish the
necessary socket connections. Surprisingly, the
Winsock Millennium Sort also broke the previous
record with an elapsed time of 2.21 seconds (again
using a radix sort core).

4.3. DCOM Performance

In Catapult, DCOM calls to a node are made from
within a separate thread created for that node, both in
the client and server code. In effect, all DCOM calls
between nodes are asynchronous within the application
as a whole. Of the overhead, approximately half is
incurred by Catapult as the application scales to 16
nodes. Initial tests of a ‘null’ Catapult executions
(startup and teardown of a ‘null’ process) showed times
of ~180 msecs on a single node, which scaled to ~220
msecs on 16 nodes. The NT Resource Kit contains a
DCOM benchmarking program, which shows that a
single ‘null’ remote method invocation on our cluster is

Figure 8: VI based sort performance. The numbers
on top of each bar represent relative speedup.

Datamation Sort Results (STL Sort)

0

2

4

6

8

10

2 4 6 8 10 12 14 16
Nodes

T
im

e
(se

c)

Write
Sort
Read
Overhead

1

2.0

2.7
3.4 4.0 4.5 4.8 5.2

VIA / Winsock Comparison

0

2

4

6

8

10

2 4 6 8 10 12 14 16
Nodes

T
im

e
(m

se
c)

Write
Sort
Read
Overhead

V
IA

W
in

so
ck

Figure 9: Side-by-side comparison of VI and
WinSock based sort performance.

approximately 400 µsecs. We believe that with further
optimizations it is possible to achieve even faster
startup times for Catapult processes.

5. Retrospectives

The improvements in the performance of
Millennium Sort with respect to previous results are
attributable to three principal causes. The first of these
lies with the raw hardware resources available. The
computing nodes of the cluster are dual processor
machines with a CPU clock cycle of 400 MHz as
compared to the 167 MHz, uni-processor workstations
used to establish the previous Datamation sort. This
hardware advantage minimizes time spent in the core of
the sort and boosts performance of OS related
communications. The second source of improvement
relates to the use of the Catapult/DCOM combination as
the distributed execution system. Previous distributed
sorting systems spent over half the total sort time on
remote invocation alone [8]. From our measurements,
the DCOM system incurred startup overhead less than
1/5th the total sort time. This improvement in remote
execution alone accounts for the majority of the overall
performance gain. The last source of improvement
results from the use of the VI Architecture based
networking. The implementation supports large
message sizes (up to 100KB) with zero-copy.
Additionally, the low overhead of the VI based sort
contributed to better performance scaling as the number
of nodes increased.

Aside from the performance results of
Millennium Sort, the insight provided into the different
technologies and commodity tools is extensive.

Tools. The tools used in the development and
evaluation of Millennium Sort included Visual Studio
6.0 and some utilities of the NT Resource Kit. The
Visual Studio application provided a clean,
straightforward environment for coding and compiling,
but lacked in the ability to do distributed debugging. It
was not possible to connect to arbitrary remote
instances of the DCOM agent or sort executable for
debugging purposes. Instead, we were forced to
manually debug on a collection of nodes using
Terminal Server remote sessions. By contrast, the
resource kit utilities were well adapted to cluster-
oriented use. Most notable among these was PerfMon,
which allows an administrator to view the behavior of
objects such as processors, memory, cache, threads and
processes. Each of these objects has an associated set of
counters that provide information about device usage,
queue lengths, delays, and throughput. PerfMon is
capable of monitoring a collection of nodes
simultaneously from a single workstation. This tool
proved to be invaluable for performance analysis and

debugging of the system. It is easy to use, and requires
no special installation or explicit collaboration from
remote nodes.

Operating System. The Windows NT 4.0 Terminal
Server Edition (TSE) operating system offered an
excellent environment for clustering. TSE is a multi-
user version of Windows NT that provides access to a
machine through remote windows sessions. With minor
exceptions, this allowed us to use and administer the
cluster nodes without a continuous local console. The
administrative tools included with the TSE are well
suited for cluster resource management. The TSE
Administration program provides the means to monitor
and administer node status and running processes at a
cluster-wide level, allowing us to kill deadlocked jobs
during debugging. TSE also includes a command line
'kill' utility that can be used in scripts to terminate a
series of jobs on the cluster.

DCOM. While Catapult performed well compared to
previous cluster execution systems, our overall
evaluation is somewhat mixed. The DCOM based
environment is robust and possesses built in
mechanisms to recover from individual program
crashes or global terminations (i.e. Ctrl-C). However, to
maintain portability, DCOM defines a wide range of
security parameters that are set on a per-machine basis.
It is difficult to determine an exact setting of these
parameters that would allow a wide variety of
distributed applications to run without compromising
security. Perhaps the most significant drawback of
DCOM over Windows NT RPC is the lack of a full
interactive logon to the remote machine. Credentials
passed through the NT RPC service permit only a fast
network or "null" logon that does not notify the
Windows Networking redirector for access to remote
file system volumes. There does not appear to be an
interactive logon toggle available in the DCOM API.
Complete Interactive logons would require the DCOM
agent to be designed as an NT service running under the
privileged LocalSystem account and for the user’s
username and password to be separately transported to
the DCOM agent. Lack of redirector access requires
applications invoked by catapult to be separately
installed on the local disk of each node. This
complicates the development process in which frequent
revisions to the application occur.

VIA. The memory registration system of the VI
Architecture required complicated memory
management schemes within the user application.
Windows NT does not allow large sections of memory
to be registered in a single operation due to limited
amounts of physically contiguous memory available for
address translation structures. Additionally, registering

more than 80% of available physical memory yields
undesirable and sometime pathologic (i.e. system
crashes) operating system response. In Millennium
Sort, we designed a simple windowing system that
registered smaller amounts (‘windows’) of memory for
receiving data from the network. Our results suggest
that this method of registration improves application
stability when registering large amounts of address
space.

River. We find the most valuable aspect of the River
system is the ease of extending River primitives. For
instance, in order for Millennium Sort to use the VI
Architecture, special operations have to be performed
periodically on the memory used for buffering data. By
extending the MemPool object, a VIAMemPool object
is created which handles memory registration windows.
This would have been difficult or impossible to
integrate with a non-extensible river system without
rewriting large portions of the system. In order to build
the Winsock version of the application we only needed
to modify the Net Source/Sink classes. These
modifications required just a few hours time.

6. Future Work

The obvious next step in the Millennium Sort
work is to implement a two-pass sort and continue
refining our understanding of the technologies that it is
composed from. A two-pass sort will allow us to run
sustained sorts that will further stress test the system.
Our DCOM remote execution system, Catapult,
requires further performance optimizations. The
extensibility of the River System through primitives
worked well, but it needs to be packaged into a library,
perhaps with useful primitive extensions. Lastly,
although the addition of virtual memory translation to
VIAv2 works and performs well, VIAv2 requires a
reexamination of how it extends the memory interface
to the programmer.

7. Acknowledgements

Support for this project was provided by the Microsoft
Corporation, especially Jim Gray and Joe Barrera of
Microsoft Research, and by Intel's Technology 2000
grant program. As well, support was provided by the
National Science Foundation SimMillennium Grant
(EIA-9802069), the National Science Foundation
Infrastructure Grant (CDA 94-01156) and the Defense
Advanced Research Projects Administration Grant
(F30602-95-C-0014).

References

[1] T. E. Anderson, D. E. Culler, D. A. Patterson. “A
case for NOW (Networks of Workstations).” IEEE
Micro, vol. 15, (no. 1), February 1995, p. 54-64.

[2] R. H. Arpaci-Dusseau, E. A. Anderson, N. Treuhaft,
D. E. Culler, J. M. Hellerstein, D. A. Patterson, K.
Yelick, “Cluster I/O with River: Making the Fast Case
Common.” to appear in IOPADS '99, Atlanta, Georgia,
May 1999

[3] Anon. Et al. “A Measure of Transaction Processing
Power.” Datamation, 31(7):112-118, 1985

[4] G. Eddon, H. Eddon. “Inside Distributed COM”,
Microsoft Press, Remond, WA 1998

[5] D. P. Ghormley, D. Petrou, S. H. Rodrigues, A. M.
Vahdat, T. E. Anderson. “GLUnix: A Global Layer
Unix for a Network of Workstations”, Software
Practice and Experience, vol.28, (no.9), Wiley, 25 July
1998. p.929-61.

[6] E. Riedel, C. van Ingen, J. Gray, “Sequential I/O on
Windows NT 4.0 – Achieving Top Performance”,
Proceedings of the 2nd USENIX Windows NT
Symposium, 3-5 August 1998, Seattle, WA, pp. 1-10.

[7] T. Barclay, R. Barnes, J. Gray, P. Sundaresan.
“Loading Databases Using Dataflow Parallelsim”,
SIGMOD RECORD, Vol 23, (no. 4), December 1994

[8] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E.
Culler, J. M. Hellerstein, D. A. Patterson. “High-
Performance Sorting on Networks of Workstations.”
SIGMOD '97, Tucson, Arizona, May 1997

[9] A. C. Dusseau, K. E. Schauser, R. P. Martin, "Fast
Parallel Sorting Under LogP: Experience with the CM-
5." IEEE Transaction on Parallel and Distributed
Systems, Vol. 7, (no. 8), August 1996

[10] J. Gray, J. Coates, C. Nyberg. “Performance / Price
Sort”, http://www.research.microsoft.com/barc July
1998.

[11] The Millennium Project: A Campus-wide cluster
of clusters. University of California, Berkeley,
Berkeley, CA http://www.millennium.berkeley.edu

[12]“Virtual Interface Architecture Specification.
Version 1.0”, Compaq, Intel and Microsoft
Corporations, Dec 16, 1997, available at
http://www.viarch.org

[13] R.S. Madukkarumukumana, C. Pu, H.V. Shah,
“Harnessing User-Level Networking Architectures for
Distributed Object Computing over High-Speed
Networks”, Proc. of the 2nd USENIX Windows NT
Symposium, Seattle, WA, August 3-5, 1998, pp. 127-
135.

[14] P. Buonadonna, A. Geweke, D. E. Culler. “An
Implementation and Analysis of the Virtual Interface
Architecture”, Proc. of Supercomputing '98, Orlando,
FL, 7-13 November 1998.

[15] N. Boden, D. Cohen, R. Felderman, A. Kulawik,
C. Seitz, J. Seizovic, and Wen-King Su, “Myrinet: A
Gigabit-per-Second Local Area Network.” IEEE Micro,
vol. 15, (no. 1), Feb 1995, pp. 29-36

[16] A. Basu, M. Welsh, T. von Eicken. “Incorporating
Memory Management in User-Level Network
Interfaces”, Hot InterconnectsV, Stanford, CA, August
1997.

[17] C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis, K.
Li. “VMMC-2: Efficient Support for Reliable,
Connection-Oriented Communication.” Hot
Interconnects V, Stanford, CA, August 1997

[18] D. Dunning et al., “The Virtual Interface
Architecture”, IEEE Micro, vol. 18, (no. 2),
Marcg/April 1998, pp. 66-75

[19] J. Gray, Sort Benchmark Home Page,
http://research.microsoft.com/barc/SortBenchmark/

