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Abstract

We have built a 16-way, ccNUMA multiprocessor
prototype to study the feasibility of building large
scale servers out of Standard High Volume (SHV)
components. Using a cache-coherent interconnect,
our prototype combines four 4-processor SMPs
built using 350MHz Intel  Xeon™ processors, yield-
ing a 16-way system with a total of 4 GBytes of
physical memory distributed over the nodes. Such
an environment poses several performance chal-
lenges to Windows NT®, which assumes that
memory is equidistant to all processors. To over-
come these problems, we have implemented an
abstraction called a Resource Set, which allows
threads to specify their execution and memory
affinity across the ccNUMA complex.

We used a suite of parallel applications to evaluate
the scalability and performance of the system. Our
results confirm the feasibility of building ccNUMA
systems out of SHV components, and suggest that
memory allocation affinity should be incorporated
as part of the standard Windows NT API. Also, the
performance degradation due to poor bus band-
width in the current generation of Intel-based proc-
essors often dominates the degradation due to the
latency of remote memory accesses.

1. Introduction
There is an increasing need for powerful servers to
meet the processing demands of modern distributed
systems, transaction processing systems, and Inter-
net data providers. Traditional server systems use
proprietary mainframe computers or other large
computer systems that are powerful and robust,
though expensive. Recently, there has been an
increasing demand for servers built using commod-
ity, off-the-shelf processors and components. In
particular, symmetric-multiprocessor systems
(SMP) that use Intel’s x86 processors and run

Windows NT are in increasing favor due to their
low cost, application software availability, and
success in the personal computer and workstation
markets. However, physical limits impose restric-
tions on the size of SMP systems, and most SMP
systems based on the Intel Pentium® II processor
contain at most 4 processors. 

In order to investigate the feasibility of using these
SHV components to build larger servers, we have
used a cache-coherent interconnect to connect four
4-processor SMP nodes. Each node contains 1
GByte of main memory and four 350MHz Intel
Xeon processors. The resulting system is a cache-
coherent, non-uniform memory access (ccNUMA)
machine, which poses several performance challenges
to Windows NT since it is written to assume that all of
system memory is equidistant to the processors. The
focus of this paper is our addition to Windows NT to
support memory allocation affinity.

Our enhancement to Windows NT 4.0 includes
extending the Basic Input Output System (BIOS)
and Hardware Abstraction Layer (HAL) to present
the operating system with a single system image.
These extensions do not require any modifications
to the NT source code (to which we did not have
access), and allow Windows NT to treat the system
as a single 16-way SMP. The second major compo-
nent of our enhancement is an implementation of a
Resource Set abstraction (RSet), which allows
application programs to control resource allocation
in order to improve performance. The current
implementation of RSets consists of a collection of
Application Program Interfaces (APIs), Dynamic
Link Libraries (DLLs), and a kernel-mode device
driver that allows applications to control where
memory is allocated.

We used RSets to tune a suite of six parallel
programs, and studied the scalability of the applica-
tions under different system configurations. With-
out affinity in memory allocation, several
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applications scale poorly as the system’s size
increases. This result demonstrates that adding
support for memory affinity to Windows NT’s stan-
dard Application Programming Interface (API) and
tuning the application to benefit from this extended
API are necessary for ccNUMA systems such as
ours. However, such tuning may not be necessary if
the machine were to include a remote memory
cache and larger processor caches.

Our results also suggest that the poor bus band-
width (100MHz) of the current generation of Intel-
based SMPs often has more of a detrimental effect
on performance than the latency of accessing
remote memory across the interconnect. This result
is somewhat surprising since one would expect the
latency of the NUMA interconnect to be the major
source of overhead in a ccNUMA system.

Finally, applications that scale well on an SMP
were found to continue to scale reasonably as the
system size was increased, until the configuration
parameters (bus bandwidth, remote memory
latency, and L2 cache sizes) prevented any further
scaling. On the other hand, applications with poor
scalability trends on small systems were predictably
unable to scale better on larger ones.

The remainder of the paper is organized as follows.
Section 2 reviews previous work. Section 3 gives
an overview of our implementation effort. Section 4
describes resource sets. Section 5 presents the
results of the experimental evaluation. Our conclu-
sions are presented in Section 6.

2. Previous Work
Over the years several research ccNUMA machines
have been constructed, such as Alewife [Ale],
DASH [Len] and FLASH [Flash]. These systems
have been built either by constructing processor
and memory nodes from scratch, or by combining
pre-existing hardware using a combination of hard-
ware modifications and interconnection fabrics.
Recent years have seen the introduction of several
affordable, general purpose ccNUMA and scalable
shared-memory implementations such as the Silicon
Graphics Origin™ [SGI], the Sequent NUMA-Q™

[Sting], the Data General Aviion™ NUMALiiNE™

[DG] and the Unisys Cellular MultiProcessor [Uni].
Except for the Origin, all of these systems use Intel
IA-32 processors. The Sequent and Data General
systems are built using standard high-volume
4-processor SMP nodes. The Origin uses the
R10000™ processor and unique memory and I/O
structures within as well as between 2-processor
nodes. Unisys’ Cellular MP also uses a unique

arrangement of 2-processor nodes and claims
uniform access times to memory. Our hardware
prototype is based on an extension of the Fujitsu
Synfinity™ interconnect used in Fujitsu’s team-
server™ [FJST]. 

Until recently, most of the work done on ccNUMA
systems used a variant of UNIX as the operating
system. For instance, SGI Irix™ 6.4 (Cellular Irix™)
supports the ccNUMA features of the Origin while
Sequent has historically had its own implementa-
tion of UNIX known as Dynix/ptx®. To the best of
our knowledge, Microsoft’s direction for scaling
Windows NT[NT] beyond standard SMPs has been
to provide clustering through the Microsoft Cluster
Service[MSCS]. We are also not aware of any existing
or planned support for ccNUMA systems in the stan-
dard release of Windows NT.   However, some of the
recent ccNUMA systems, including the Sequent
NUMA-Q and the Fujitsu teamserver, have
supported NT either as an alternative to UNIX, or
as the primary operating system provided on the
system. Our NT work is based on the Fujitsu imple-
mentation for two-node systems.

Although the Splash [Spl] and Splash-2 [Spl2]
benchmark suites have been widely used in the
academic community to measure multiprocessor
performance [Shrimp, Len], most of the commercial
server vendors have been more concerned about
reporting performance data using the Transaction
Processing Performance Council’s TPC-C and
TPC-D benchmarks [Gray, TPC]. However, while
the TPC benchmarks are good indicators of overall
transaction processing performance, they require a
large investment to set up and execute properly.
For this reason, we have chosen to study a subset of
Splash-2 and other scientific workloads. With the
exception of a few studies on distributed shared
memory systems [Brazos, Sch], most of the
Splash-2 studies reported to date have been carried
out on UNIX systems.

The value of affinity scheduling has been recog-
nized for SMP machines where many systems attempt
to run a thread on the same processor that it ran on last
in the hope of reusing data that is already in the
cache [Vas]. Our affinity implementation may be
viewed as an extension of this notion by colocating
threads with the physical memory that they access.
Although our implementation is indirect (since we
do not have NT source code access), it should be
relatively straightforward for Microsoft to imple-
ment similar functions directly in the NT executive.

The work of the FLASH project on improving data
locality for ccNUMA machines used page



migration and replication rather than affinity allo-
cation to improve memory reference locality [Ver].
The Silicon Graphics Origin adds specialized hard-
ware to support an efficient implementation of page
migration. The Sequent, Data General and Unisys
implementations all split the machine into commu-
nicating partitions, each of which runs a distinct
copy of the operating system.

3. System Overview

3.1 Hardware Overview

We have constructed a 16-processor ccNUMA
system by using a Synfinity interconnect switch to
connect four PentiumII-based, Fujitsu teamserver
SMP nodes. Each node contains four 350 MHz
Intel Xeon processors, each with a 1MB L2 cache,
1 GByte of RAM, a standard set of I/O peripherals,
and a Mesh Coherence Unit (MCU).  The MCU
provides coherent access to the memory and I/O devices
that exist on other nodes. We designed a hardware card
to attach the MCU to the Synfinity switch, which
connects the four nodes together to form the
16-processor system. We configured the switch to
provide 720 MB per second per link per direction
in the prototype. A remote memory access is
approximately 3 times slower than a local one.

The MCU in each node snoops the node’s local
memory bus and uses a directory-based cache
coherence protocol to extend memory coherence
across nodes. The MCUs exchange point-to-point
messages over the switch to access remote memory
and to maintain cache coherence over the entire
system. The MCU defines a 4-node memory map
that effectively partitions a standard 4 GByte physi-
cal address space into 4 areas of 1 GByte each, one
for each of the nodes in a 4-node system. In addi-
tion to memory, memory-mapped I/O and I/O port
addresses are also remapped to allow a processor to
access the memory-mapped I/O and I/O ports of
remote nodes. 

3.2 Enabling NT on a ccNUMA System

We enhanced the BIOS and the NT Hardware
Abstraction Layer (HAL) supplied by Fujitsu in
order to enable Windows NT to run on the
16-processor system (the Fujitsu implementation
could support a maximum of two nodes). When
powered on, the system starts booting as four sepa-
rate SMP systems. After the BIOS code on each
node is executed, the system executes a BIOS
extension (eBIOS) before booting the operating
system. The eBIOS reconfigures the four SMP
nodes into one 16-way ccNUMA system. Our

modifications to the NT HAL support remote inter-
processor interrupts, and provide access to remote
I/O devices and I/O ports by remapping them as
necessary. The combination of the HAL and eBIOS
code presents Windows NT with a machine that
appears to be a 16-processor SMP with 4 gigabytes
of physical memory.

The eBIOS allows the system to be partitioned at
boot time into smaller NUMA systems. For exam-
ple, the eBIOS can partition the system into two
2-node systems, each with 8 processors and 2
GBytes of physical memory. Each partition runs a
distinct copy of Windows NT. Other configurations
for partitioning the 16-way system into separate
systems are also possible. The eBIOS can also
“deactivate” processors in a node at boot time
allowing us to create nodes with fewer processors
for configuration benchmarking purposes. 

4 Supporting Memory Affinity in
NT
Operating systems on SMP architectures try (when
other constraints permit) to schedule threads on the
same processor on which they have previously
executed. Creating an affinity between a thread and
its cache footprint in this manner results in good
cache hit ratios, contributing to an application’s
performance. In addition to supporting such
implicit “bindings”, Windows NT also permits
threads to explicitly specify the subset of proces-
sors on which they should be scheduled for
execution.

If the performance of a ccNUMA system is to scale
as more nodes are added, the operating system must
accommodate the variability in memory access
times across the system. In particular, a thread’s
memory allocation requests must be satisfied such
that the majority of its memory accesses are served
by the node on which it executes. Affinitizing
memory allocations in this manner enables applica-
tions to take full advantage of the system hardware
by reducing interconnect traffic. Indeed, an appli-
cation may suffer in performance if most of its
accesses are to memory residing on remote nodes.

Currently, Windows NT 4.0 considers all of the
physical memory in a system to be equidistant to
the processors. Since the physical memory frames
are indistinguishable, NT does not have any mecha-
nism for affinitizing memory allocations. We have
implemented a solution that works around the
performance penalties of this limitation. Our solu-
tion provides the application with an API permitting it



to exercise control over the physical memory used to
satisfy explicit memory allocation requests. In our expe-
rience, we find a resulting improvement in application
performance suggesting that this kind of support should
become part of the standard API for Windows NT.

Our ccNUMA API is based on a Resource Set
(RSet) abstraction. Intuitively, an RSet groups
several resources in such a way that a thread that is
bound to a resource set consumes resources exclu-
sively from that set. For example, one could specify
an RSet containing the processors and physical
memory available to one node. A thread that is
bound to such an RSet will execute only on proces-
sors in that node, and have its memory allocations
backed only by physical memory on that node.

RSets are flexible. They can combine the resources
in two different nodes, include resources spanning
different nodes, contain a partial set of the
resources on one node, or any other combination
that suits the application needs. Furthermore, they
can be manipulated using union and intersection
operations and can also form hierarchies, whereby
one large RSet is made to contain several smaller
RSets. To simplify the interface, our library
provides a global RSet that contains all resources in
the system. Thus, an application can build addi-
tional RSets by specifying subsets of the global
one. We have implemented the RSet abstraction using
an additional HAL call (through which we find the
resources available in the system) and a combination of
DLLs, backed by an NT kernel-mode device driver.

The RSet implementation provides fine-grained
affinity control. Functions in the API fall into the
following categories:  

• Determining the system configuration.

• Creating and manipulating RSets.

• Allocating virtual memory that is backed by the
physical memory contained in an RSet.

• Binding processes and threads to the processors
in an RSet.

We have implemented the RSet abstraction using a
combination of DLLs, backed by an NT kernel-
mode device driver. Furthermore, we also provide a
higher level API that provides a simplified inter-
face to the RSet abstraction similar to traditional
thread packages. Thus, an application programmer
can use the RSet facility indirectly through the
familiar interface of a thread library, or can access
it directly to exercise greater control.

4.1 Allocating Virtual Memory Based on
an RSet

There is no mechanism in Windows NT to constrain
the set of physical memory pages that should back a
range of virtual memory addresses. We have
provided an interface similar to VirtualAlloc(),
which supports the specification of an RSet. This
interface allocates locked virtual memory that is
backed by system memory as specified by the nodes
identified through memory_rset:

void* NumaVirtualAllocLocked (

void* start_addr,
size_t *pages,
RSet *memory_rset); 

Despite the lack of directed memory allocations in
NT, if one can ensure that the system memory
backing a range of pages satisfies our requirements,
locking the pages in memory forces the mapping to
remain unchanged as long as the application is
active. The challenge is to coerce NT into backing
the virtual pages with memory from the requested
node(s). To accomplish this, we have implemented
the following approach. First, the NumaVirtualAllo-
cLocked routine allocates the number of pages
requested, mapping the virtual addresses into the
caller’s address space. It then increases the working
set size of the calling process by the number of
pages requested and uses VirtualLock() to lock the
range into memory. Next, it passes the address and
length of the virtual memory range to our Numa-
Mem device driver which returns a list of the nodes
whose real memory backs each page. For each page
that is not “correctly” backed, that page is
modified, released, and reallocated. This process
repeats until all pages are correctly backed. The
modify step was added once we observed empiri-
cally that it decreased the likelihood of NT handing
the same page back to us.

The NumaMem device driver translates a given
virtual memory address to its physical address,
determines the node which “owns” that physical
address, and returns that node identifier to the
caller. For improved efficiency, a virtual address
range can be passed to the driver, and a list of node
identifiers (one per virtual page) will be returned.
To enable the mapping between a physical address
and a node identifier (as required by the NumaMem
driver), we have exported an interface from our
HAL implementation which provides not only the
memory-range-to-node-id mapping, but also the
system topology information (e.g. number of nodes,



which processors are in which node, etc.).

The lack of NT source code access or an appropri-
ate NT API dictates that we indirectly manipulate
the page-table structure. As a result, the time
required to set up the memory affinity mappings is
large and unpredictable. Consequently, we would
not advocate this implementation as a permanent
solution to the lack of memory allocation affinity in
Windows NT. Instead, this implementation allows
us to study the potential benefits of including such
support in the system. Our results suggest that this
support should become an integral part of Windows
NT as it moves to scale up to large system
configurations.

A constraint of our approach is that we can only
affinitize memory that is allocated through our API.
Thus, an application must use our API instead of
malloc() in order to allocate affinitized memory. In
addition, we do not have any control over the
placement of the program text, the data+BSS
regions, and the individual thread stacks. These can
be affinitized (or replicated in the case of program
text) easily when memory affinity support is inte-
grated within Windows NT

4.2 Page Coloring

Preliminary experiments on our prototype indicated
that page coloring has a significant impact on
application performance. With physically addressed
caches that are not fully associative, a poor virtual
to physical address space mapping can cause cache
conflicts. Page coloring is a mechanism that can
potentially reduce these conflicts. Each physical
memory page is assigned a “color” such that simi-
larly colored pages map into the same cache region.
By cycling through the available colors when
mapping contiguous virtual memory pages to physi-
cal pages, cache conflicts can be reduced when
spatially close data structures are accessed. A
significant advantage of page coloring is that it
makes application performance predictable.

When virtual memory is committed using the Virtu-
alLock() function, we discovered empirically that
Windows NT backs up the virtual range with a set
of physical pages that are almost perfectly colored.
We wrote our NumaMem driver such that the pages
it returns are perfectly colored. Lacking the ability
to directly manipulate the page-table structure,
NumaMem uses information about the cache size
and the identity of the physical page that backs a
virtual page to iterate until the pages are perfectly
colored.

4.3 Affinity Policies

Using our Windows NT device driver, we have
implemented two different classes of affinity poli-
cies: one for thread execution and one for memory
allocation. The thread affinity policies are:

• Float: This is the default NT policy. Threads
are eligible to run on any processor at any time.
In order to maximize cache reuse, NT tries
(when other constraints permit) to schedule a
thread on the same processor on which it has
previously executed [NT].

• Fill: In this policy, as many threads are bound
to a node as there are processors before we
continue to the next node.

• Round Robin: In this policy, threads are
bound such that the first thread is assigned to
the first node, the second thread to the second
node, and so on in a round robin fashion. 

We have several memory affinity policies,
including:

• Any: The allocated virtual memory is backed
by physical memory from any node in the
system. This differs from the default policy
only in that the virtual memory range is locked.

• Any-striped: This differs from Any in that the
pages in the range are uniformly “striped”
across the nodes in the system.

• Local: The allocated virtual memory is backed
by physical memory local to the node on which
the thread executes.

• Remote: The allocated virtual memory is
backed by physical memory this is not local to
the node on which the thread executes. This
policy allows us to determine an application’s
sensitivity to memory affinity.

Generally, there is no single combination of these
choices that yields the best performance for all the
applications we studied. The next section presents a
performance study using these allocation policies.

5  Experience
To test the effects of using the RSet abstraction to
provide memory affinity support in Windows NT,
we have conducted several experiments to study the
performance of parallel applications on our proto-
type. The application suite consists of four applica-
tions from the Stanford Splash-2 benchmark suite
[Spl, Spl2], a parallel program for matrix multipli-
cation, and an implementation of a successive



over-relaxation algorithm. The six applications are:

• Ocean-contiguous: 4-D 514x514 grids

• Raytrace: balls4 scene, Resolution = 256x256

• 3DFFT: 20 iterations, 64x128x64 3D array

• Water-spatial: 5 steps on 32768 molecules

• Matrix Multiply: 1024x1024 matrices

• Jacobi: 500 iterations on a 2000x600 array

The problem sizes were chosen such that even at 16
processors, the collective caches in the system will
not accommodate the entire application data set.
Note however, that the applications may work for
the majority of their lifetimes with a much smaller
working set.

We have modified each application to make use of
the RSet abstraction. The extent of the modification
depended on the application. For all of the applica-
tions except matrix multiply, the desired memory
affinity could be achieved by just modifying the
memory allocation calls of the key data structures
at the beginning of the program. For matrix multi-
ply, the code had to be rewritten to replicate one of
the multiplier matrices over the entire NUMA
machine complex. In this application, the second
multiplier matrix is accessed by each thread,
making it ineffectual to affinitize it to any particu-
lar node. Thus, in the absence of a remote memory
cache, a large portion of the memory accesses are
to remote memory. Replicating the second matrix
avoids the performance hit.

We executed each of the modified applications on
several system configurations under each of the
policies for thread and memory placement listed in
Section 4.2. Each experiment was repeated several
times to ensure statistical accuracy. The time we
report includes the time for running the application, but
it does not include the time taken for initializing the
memory pools in the NumaMem driver. This is consis-
tent with our goal from the performance study, which is
to identify the potential benefits of including memory
affinity support inside Windows NT. The cost of
initialization of the memory pools in the NumaMem
driver is not relevant to this goal, since we are not advo-
cating this as a technique for memory allocation
anyway. Notice also that the initialization occurs at the
beginning of the program, and before any processing or
memory allocation takes place. Finally, in order to
eliminate any effects of operating system synchro-
nization overheads, all of our applications use user-
level spin locks. 
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Figure 1: Best-case scalability

Figure 1 presents the best speedup that could be
achieved as a function of the number of threads for
each of the six applications. The base single-thread
case was obtained by configuring the machine to
run with a single processor and no remote memory.
This base case corresponds to running the applica-
tion on a uniprocessor machine containing the same
amount of memory as an SMP node in our system,
with the identical type of processor. The individual
data points presented in this figure represent the
best performance for each application and configu-
ration over all thread and memory allocation poli-
cies. No one combination proved to be the best for
all applications and thread configurations. There-
fore, this figure serves to establish an upper bound
on the scalability of our implementation.

Water exhibits the best scaling. This application
has good locality in memory references, and not
much sharing. Moreover, as the configuration grew
larger, the aggregate total size of all L2 caches
could store more of the application’s working set.
This effect also manifests itself in Jacobi, where the
transition from 12 to 16 processors shows better
scaling than from 8 to 12. 

Three other applications (Matmul, Ocean and
Raytrace) continued to improve as the number of
processors increased, but the improvement started
to taper off around 12 processors, due to a combi-
nation of bus bandwidth limitations and the effects
of remote memory access. This phenomenon will be
explained later in greater detail. 

3D-FFT did not scale as well as the others. This
application has substantial sharing among its
threads causing it to scale poorly. Notice that
3D-FFT does not scale well on a single SMP.



Therefore it is reasonable to expect that it would
not scale any better on larger machines.
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Figure 2: NUMA scalabiliy

Figure 2 shows the scalability of the applications
on different ccNUMA configurations. This figure
examines the benefits of implementing Intel-based
multiprocessor machines larger than 4-processor
SMP’s. The baseline for this figure is the case
where four threads execute on a single, standalone
SMP node. The figure shows the scalability for the
applications we studied as we run them on 8-way,
12-way, and 16-way ccNUMA machines. These are
denoted in the figure by 2-node, 3-node, and
4-node, respectively. Each configuration was
executed with as many threads as processors allo-
cated Round Robin, and with memory allocated
Local. Note that the scalability of some applica-
tions does not coincide with the best performance
available. This is because the base case in Figure 2
is four threads running on a single SMP node, while
the 4-thread data point in Figure 1 may correspond
to an entirely different configuration. For instance,
the best performing 4-thread case for Jacobi uses 4
nodes with the threads allocated Round Robin and
Local memory allocation.

Figure 2 shows that NUMA scales approximately
linearly for all applications except Jacobi. Ocean
benefits from the increased collective cache capac-
ity available in the system as nodes are added.
Other applications such as 3D-FFT scale at a lower
rate because of the increased inter-thread data shar-
ing. Jacobi shows the best performance improve-
ment as it scales from the 3-node to the 4-node
configuration, because the aggregation of the L2
caches in the 4-node system can contain the entire
working set of the application.

5.1 Effects of Allocation Policies
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Figure 3: Base scalability: threads float, standard malloc

Figure 3 shows the scalability of the six applica-
tions when left unmodified. In this configuration,
the threads are not bound to particular processors
and memory allocation is done through the standard
operating system mechanism. The results show that
only two applications (Water and Raytrace)
performed well in this configuration. The primary
working sets of these applications fit within the L2
caches of the processors. Furthermore, there is no
substantial sharing of data among threads during
the computation. The remaining four applications
did not scale well. For 3D-FFT and Jacobi,
performance actually degraded when moving from
12-way to 16-way. This figure shows that scalabil-
ity in performance will require application tuning
and operating system support for memory affinity
in ccNUMA machines built out of SHV components
with no remote caches. 

Figures 4 and 5 show the effect of tuning the appli-
cations to use Rsets. Two measurements are shown
for each application, one with the application
unchanged (broken line) and one with the applica-
tion modified to benefit from Rsets (unbroken line).
When the application is run unchanged, it uses
NT’s standard thread and memory allocation poli-
cies. When the application is tuned, it uses RSets to
control thread and memory allocation. The thread
and memory allocation policies used for these
experiments are Round Robin and Local, respec-
tively. The base single-thread case for these meas-
urements was obtained by running the application
with one thread on a single processor machine with
no remote memory.
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Figure 4: Applications exhibiting no affinity effects

Figure 4 shows that for 3D-FFT, Water, and
Raytrace, there is not much to gain by modifying
the application to use Rsets. Raytrace and Water
work well with the caches in the system. Memory
allocation in 3D-FFT is difficult to affinitize
because over time, each thread accesses most of the
application’s data structures. 

For these three applications, NT’s default alloca-
tion policies yield good performance. Even though
the unmodified versions of these applications do
not specify a thread allocation policy, NT tries to
reschedule each thread on the same processor on
which it has recently run, so as to improve affinity
in cache references [NT]. The NT memory alloca-
tor also worked well because we have observed that
it uses page coloring to maximize the L1 and L2
cache performance. Since the primary working sets
of Raytrace and Water fit within the cache espe-
cially in the large configurations, this policy yields
good performance.

Figure 5 shows a different situation, where intelli-
gent use of Rsets by the applications has a substan-
tial impact on performance. When Rsets are not
used, NT’s default allocation policies do not allow
the applications to overcome the effects of costly
remote memory accesses. The difference in
performance depends on the application, but in all
cases, there is a clear gain from intelligently using
Rsets. One can conclude from this figure that on
ccNUMA machines that are architected out of SHV
components with no remote caches, operating
system support and tuning will be necessary to
make these applications perform well. This result
suggests that memory affinity support should

become part of the standard Windows NT API if
NT is to efficiently support this type of
architecture. Although these conclusions depend on
the fact that our system has no remote caches, it is
not clear whether a remote cache will eliminate all
the performance problems caused by NT’s default
memory allocation policies.
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Figure 5: Applications exhibiting affinitization effects.

5.2 Effects of Local Bus Contention

Local bus contention is a serious problem as
modern processors increase in speed. Figure 6
compares the speedup for the six applications in
our suite under 3 different configurations. The
configuration 1N4 was obtained by configuring the
system as a 4-processor SMP, while 4N1 was
obtained by configuring the system as a ccNUMA
architecture with 4 nodes, each containing one
processor. The 2N2 configuration was obtained by
configuring the system as a ccNUMA architecture
with 2 nodes, each containing two processors. Each
configuration has exactly four processors. While
1N4 is a pure SMP system, 4N1 is a pure ccNUMA
system. 2N2 represents a hybrid system. 

The purpose of this experiment is to determine the
impact that the local bus and the inter-node inter-
connect have on application performance. In the
1N4 case, the application threads face the maxi-
mum local bus contention and no interconnect
effects. In the 4N1 case, the threads face the least
local bus and maximum interconnect effects. The
2N2 case lies in between. Each thread was bound to
a processor in this experiment. The memory alloca-
tion policy was local.
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Figure 6: Local bus bandwidth effects.

For Raytrace and Water, there was not much of a
performance difference across the different
configurations. As mentioned earlier, these applica-
tions have small primary working sets that fit
within the L2 caches, and exhibit modest inter-
thread data sharing.

For 3DFFT, the effect of remote memory accesses
dominates, and performance degrades as we move
from an SMP to a ccNUMA architecture. The shar-
ing pattern of this application is such that there is a
continuous exchange of data among the threads. It
is apparent that the bus bandwidth on a single SMP
is adequate for the amount of data to be exchanged.
Note that for this application, a remote cache would
be of little help, because the contents of such a
cache would be continuously invalidated as remote
threads continue to modify the corresponding data. 

For Jacobi, Matrix Multiply, and Ocean, the 2N2
and 4N1 configurations outperformed the SMP one.
The reason is that the SMP case with four threads
encounters significant local bus contention since the
amount of data being accessed requires more bus band-
width than is available with the existing Intel memory
bus architecture. When the applications are modified to
intelligently use RSets,  remote memory accesses on the
ccNUMA configurations have less of an effect. There-
fore, the individual threads benefit from having less
contention on the local bus.

5.3 Effects of Algorithmic Changes

Programs written to run in an SMP system will run
without modifications on a ccNUMA system.
However, it has been argued that NUMA-aware
programs could further exploit the performance
advantages of ccNUMA architectures, for instance

by changing the algorithm used to exploit the char-
acteristics of the NUMA environment (e.g. large
amounts of physical memory). In our experiments,
we have implemented a modified matrix multiplica-
tion algorithm in which the multiplier matrix is
replicated at each node. Interestingly, this is similar
to distributed algorithms that solve the same prob-
lem using message passing. Perhaps this suggests
that transforming message-passing programs to run
on NUMA systems will be more fruitful for
performance tuning applications than just running
existing SMP code. 

6  Conclusion
We have built a 16-processor ccNUMA multiproc-
essor system using SHV 4-processor Intel Xeon
SMPs. Windows NT was designed primarily to run
on small SMP environments in which all processors
have equally fast access to all the system memory.
It therefore faces performance challenges in an
environment where the processor-to-memory speed
varies across a system. To overcome these prob-
lems and enable NT to run in this environment effi-
ciently, we implemented an abstraction called the
Resource Set that allows threads to specify where
memory is to be allocated across a NUMA
complex. Thus, threads can specify that memory
should be allocated from banks that are close to the
processors on which they run. This affinity in
memory allocation can result in several perform-
ance benefits when running parallel applications.
Our results indicate:

• The approach of building ccNUMA architec-
tures out of SHV components is viable. For
five out of six applications we studied,
performance continued to improve in various
degrees as we increased the number of proces-
sors. In general, it seems that in many cases the
penalty of remote memory accesses can either
be masked or does not have much of an effect
to begin with.

• On architectures such as ours, where there are
no special hardware assists or remote caches,
scaling the performance of the application may
require application tuning and operating system
support for memory affinity.

• Memory allocation affinity should become a
part of the standard API of Windows NT, as
ccNUMA machines become increasingly
common.

• For some applications, local bus saturation is
the dominant performance impediment. This is
somewhat surprising since one would expect



the latency of the NUMA interconnect to be a
significant source of overhead in a ccNUMA
system.

• Generally speaking, applications that scale well
on an SMP system seem to also scale well on a
ccNUMA environment, and vice versa.
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Appendix

The tables at the end of this paper contain the raw
data used to create Figures 1 through 6.

Table 1 lists the execution times of the applications
for different 16-processor configurations. All times
are in seconds. BEST refers to the best-case scal-
ability. For each data point, the configuration that
yielded the least execution time is also provided.
The BASE case provides the execution times when
standard NT allocation policies are used. The
TUNED case presents the execution time when the
applications intelligently make use of Rsets. The
data in this table was used to create Figures 1, 3, 4,
and 5. The base single-thread execution time used
to generate speedup numbers is given under each
application. The single-thread execution was meas-

ured on a 1N1,t3,m0 system.

Tables 2 lists the execution times of the applica-
tions for different NUMA configurations. All times
are in seconds. The allocation policy in each case is
t0,m2. The data in this table was used to create

Figures 2 and 6.
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Table 1: Execution times for base, best, and modified cases.
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Table 2: Execution times for different t0,m2 NUMA configurations


