The following paper was originally published in the

Proceedings of the 3rd USENIX Windows NT Symposium

Seattle, Washington, USA, July 12—-13, 1999

PORTING LEGACY
ENGINEERING APPLICATIONS
ONTO DISTRIBUTED NT SYSTEMS

N. K. Allsopp, T. P. Cooper, P. Ftakas, and P. C. Macey

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association
All Rights Reserved
For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510 548 5738
Email: office@usenix.org WWWhttp://www.usenix.org
Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

Porting L egacy Engineering Applications onto Distributed NT Systems.

N.K. Allsopp, T.P. Cooper, P. Ftakas
Parallel Applications Centre, 2 Venture Road, Chilworth, Southampton SO16 7NP
P.C. Macey
SER Systems Ltd, 39 Nottingham Rd., Stapleford, Nottingham NG9 8AD

Abstract

In this paper we present our experiences developing
two distributed computing applications on NT. In both
examples a legacy application is ported from Unix to
NT and is then further developed to be a distributed
application within the NT environment. We shall pres-
ent two different approaches to managing the remote
execution of tasks. One is a port of a serial vi-
broacoustic analysis code called PAFEC VibroAcous-
tic and the other is the parallelisation of the non-linear
analysis modules of the LUSAS FE analysis package.
We shall show in these two projects that it is techni-
cally possible to carry out scientific computing on a
distributed NT resource

1. Introduction

In this paper we present our experiences developing
two distributed computing applications on NT. In both
examples a legacy application is ported from Unix to
NT and is then further developed to be a distributed
application within the NT environment. We shall pres-
ent two different approaches to managing the remote
execution of tasks. For both applications we shall pre-
sent performance metrics and discuss the benefits of
running distributed applications on NT.

The first application is a port of a seria acoustic
analysis code, PAFEC VibroAcoustic, from Unix to
run in parallel on a cluster of NT workstations. The
port was funded by the European Union in the project
PACAN-D. The University of Southampton Parallel
Applications Centre (PAC) and SER Systems Ltd
(code owners) carried out the parallelisation of the
code before being assessed by an industrial end-user,
Celegtion International. Celestion are a small manu-
facturing company who design and build loudspeakers
for home entertainment. As a small concern wishing to
minimise costs, they were obvioudly attracted to NT.

They became involved in the project to determine the
conditions under which their cluster of desktop ma-
chines could also be used for running numerical simu-
lations. In particular they wanted to test whether the
cluster could be fully dual use, or whether they would
still need to invest in extra computing resource to
serve their simulations. The parallelisation of the code
was implemented using MPI, enabling the same source
to be used for NT as for Unix applications. Celestion
tested the code on their cluster of single processor NT
machines. The machines were dua use, in that they
were used for other tasks during the day and were
available for execution of large tasks over night.

The second application is the paralelisation of the
non-linear analysis modules of the LUSAS FE analysis
package from FEA Ltd. The code was well suited to a
domain decomposition approach, and a major part of
the effort in the project was the porting to NT of an
intelligent resource manager (Intrepid), initialy devel-
oped by PAC for heterogeneous clusters of Unix work-
stations. The issues that had to be addressed in per-
forming this task were wide ranging. The Intrepid code
was over 70000 lines of C and C++ and utilised a
number of Unix toolsto compile, not all of which were
available on NT. In addition the functionality on
which a resource manager relies, such as the methods
of controlling remote execution, of monitoring tasks
and of copying data sets all had to be completely re-
designed. The work was funded by the EU as part of
the project PARACOMP and evaluated by Messier-
Dowty on a cluster of NT workstations. Again these
machines were dual use (athough unlike Celestion
there was some spare capacity). One other feature of
this cluster was its heterogeneity; machines varied
between 166Mhz and 400Mhz clock speed, with a
similar variation in memory and disk performance.
One issue that had to be addressed is that of control-
ling accessto machines. A problem that takes just over
4 daysto solve in serial may only take 1 day to run on

4 processors. However if it prevents engineers from
working on those machines for that time, there is no
increase in productivity. The issue for Messier-Dowty
was to have a code that would deliver a result in the
same elapsed time, but would utilise the paralel
speed-up to enable it to run only overnight.

2. Background to Projects
2.1 The PACAN-D Project

The aim of the PACAN-D project was to deploy a par-
alel version of the PAFEC VibroAcoustic finite ele-
ment analysis package in a loudspeaker business. The
work was based upon an existing parallel PAFEC Vi-
broAcoustic code that was developed in a previous
collaboration between SER Systems Ltd and the PAC.
This code was developed in 1993 before the appear-
ance of effective standard message passing interfaces.
The code was also specific to the Intel iPSC/860 and
Paragon platforms.

The objectives of the port can therefore be summarised
as to port the old parallel PAFEC VibroAcoustic code
from the Intel iPSC/860 to modern parallel systems
and standards. As the code is under constant develop-
ment it was decided to consolidate the parallel code
with the latest version. As the code was originally de-
veloped on a UNIX based operating system and to
reduce the number of platform dependant version of
the code it was decided to select a message passing
protocol, which could be easily used on different plat-
forms. Therefore it was decided to use MPI for the

message passing.

The PAFEC VibroAcoustic system ismainly written in
FORTRAN, but some of the low level machine de-
pendent parts are written in C. There are several hun-
dred thousand lines of FORTRAN code. Original sec-

2.2 The PARACOMP Project

The PARACOMP project was an ESPRIT-TTN project
whose main aim was "to demonstrate the deployment
of a paralel code to perform composites analysis on a
network of NT workstations, and to disseminate the
benefits'. Three companies were involved in the proj-
ect:

» FEA Ltd. supplied the finite element analysis code
for the project. They implemented a paralel
solver, which was based on their legacy FOR-
TRAN finite element analysis solver called Lusas.

e Parallel Applications Centre supplied the resource
management system and the integration software
for the project. An intelligent resource manager
called Intrepid and developed by the PAC was
used in the project. Intrepid was originally written
for the UNIX operating system, but it has been
ported to Windows NT for this project.

e Messier-Dowty tested the software for the analysis
of composite materials.

The Intrepid parallel scheduler isatool that allows the
scheduling, control and execution of a number of tasks
(programs) on a heterogeneous network of worksta-
tions. It allows the user to control both the resources
used by the scheduler to run programs on, as well as
the programs running themselves.

The general structure of the Intrepid parallel scheduler

(“set in stone” by the Unix version of the software) is

shown in figure 1.

As can be seen from the figure, the Intrepid parallel

scheduler consists of two main components:

tions of the code were written in FORTRAN 1V. More
recently FORTRAN 77 and FORTRAN 90 have been
used. The system is ill being actively developed.
There are many different executables in the system,
some for running different stages of the analysis, and
some for converting dictionary files from ASCII to
binary form. It is possible to run jobs including user
supplied FORTRAN routines, either as an efficient
way of specifying data or to use a modified version of
a standard system routine. Under these conditions the
system runs a shellscript to perform a compile and link
for the appropriate executable, while running the
analysis. The system is currently developed in a Unix
environment on HP workstations.

pacS This is the main scheduler executable and the
program that contains the global network and schedule
information for the system. This module takes all the

scheduling decisions in Intrepid. There is only one

instance of pacS running in a functioning Intrepid

system.

pacD: This is the daemon that provides support to the
Intrepid parallel scheduler. There is one of these dae-
mons in each "node" in the network. An Intrepid dae-
mon's main function is to pass back information to
pacS about the state of the "node" which it is control-
ling, and to launch and monitor applications. Secon-
dary functionality includes all the necessary actions to
start an application (e.g. creation of temporary di-

Socket connection

Daemon executable

—>
D Scheduler executable
O

Computing resource

Figure 1. General Structure of the Intrepid system.

rectories, if required, transfer of all input files before copied at once. Consequently everything was done
and output files after the execution, etc.). using command shells. This did not help at a later
stage with debugging the test jobs which failed, as less
Communications between pacS and the various pacD information was available on error conditions. There
daemons are implemented via TCP/IP sockets. This are limits on the command line length, but the shells
allows Intrepid to control heterogeneous networks. The generated in Unix ports depended on long lines to link
user of Intrepid submits a “schedule” to the system. An all the appropriate libraries. Thus it was necessary
schedule consists of a number of tasks (processes) to use resource files rather than wild cards and this
be executed and the dependencies between them. Thecessitated a fundamental change to the structure of
Intrepid system then assigns tasks to specific procesne of the dictionary files. Problems were encountered
sors in the network, so that the overall time of execuwith handling sequential files, which seem to be com-
tion for the whole schedule is minimal. The systempiler dependent. Furthermore there were problems
also performs any data transfers that might be requiredith opening files, which did not work in dynamic link
to allow a task to run on a specific machine. Anylibraries. The machine dependent FORTRAN parts
number of users can submit any number of schedulesere handled by a rewrite of routines from a previous
to Intrepid simultaneously and the system is able td°C port, which used a DOS extender, and worked us-

deal with the added complexity ing DOS interrupts. The Dital Visual FORTRAN
compiler was relatively strict, compared with those

3. Techniques Used used in many Unix ports, and detected some occur-
rences of inconsistent numbers of parameters in rou-

3.1 The PACAN-D Port tine calls. As always code errors found were fixed in

the development level, making the code more robust
and portable for the future.
When porting onto the PC with the Digital Visual
FORTRAN compiler it was found to be very time con- The PAFEC VibroAcousc system consists of a suite
suming to set up the visual environment. Indeed it wasf programs calleghhases. There are 10 phases in to-
not clear how best this should be done for a systertal, phase 1 to 6 performs the pre-processing of the
containing thousands of routines and with multipleelement data of the model to be analysed. Phase 7 car-
executables. Attempts at setting up the environmented out the solution of the equations, the numerically
were hampered by a bug in IE3, which has since beentensive part of the whole system. Phases 8 to 10
fixed, which prevented large numbers of files beinghandle the plotting and visualisation of the calculated

data. Information passes between the phases via files
held on disk. It was apparent that this phase structure
of the PAFEC VibroAcoustic code need not be paral-
lelised in its entirety. The phases are essentially stand-
aone programs each of which may be parallelised
independently of the others. Profiling the code showed
that phase 7 carried out most of the computationally
intensive operations. The most striking result of the
profiling exercise was that a majority of the execution
time was spent within a very small number of routines
i.e. 50 routines out of the 18000 routines of the whole
PAFEC VibroAcoustic code. It was therefore decided
to concentrate on these numerically intensive routines
which occurred at four points within phase 7.

The underlying ethos to the parallelism of phase 7 of
the PAFEC VibroAcoustic is that the master processor
proceeds through the code in the same way as the se-
rial version. At the point where the master processor is
about to enter a numerically intensive subroutine a
message is sent to the other slave processors to indi-
cate which routine is being entered. On entering the
numerically intensive routine, all the processors per-
form an equal amount of the required calculation.
When the routine is finished the master processor con-
tinues to progress on through the serial code whilst the
dlave processors wait for the next numerically inten-
sive section to be reached by the master processor.

For a fully coupled vibroacoustic solution, using an

acoustic BE mesh coupled to a mesh of structural FE
the set of equations to be solved can be written as:

0 [s] [r]mulo_dF)
fel [E] [H]%p}g_apn}

Oodd

Where:

[S] Contains the structural stiffness matrices which are
large and sparse,

[H], [G] are small dense matrices derived from the BE
formulation.

[T], [E] are coupling matrices.

Where {u} is a vector of displacements on the struc-
tural mesh, {p} is avector of pressures on the BE. [9],
[C] and [M] are the structural stiffness, damping and
mass matrices and are large and sparse. [H] and [G]
are small dense matrices derived from the BE formu-

lation. [T] and [E] are coupling matrices. Sometimes
the structural representation is simplified using a
smaller modal model of the structure, but this does not
permit variation of properties with frequency, which
occurs for the surround and cone on a loudspeaker.
The current work was based on a full solution of the
above equation, using the four stages below.

e Stage 1 - FE merging/reduction. The dynamic
stiffness matrix and coupling matrix [T] are
formed by merging contributions from individual
finite elements. The equations are simultaneously
solved. Degrees of freedom are eliminated as
early as possible. The matrices are shared between
processors and the elimination is done in parallel.

e Stage 2 - forming the BE matrices. For each col-
location point on the BE surface it is necessary to
integrate over the surface to form arow in the BE
matrices. Paralelization is achieved by sharing
these collocation points between the processors.
Distributed BE matrices are formed.

e Stage 3 - reducing the BE matrices. The matrix
-w O G]lE]" is formed and reduced using
resolution with the structural elimination equa-
tions from stage 1. As above the matrices are dis-
tributed between processors.

e Stage 4 - Gaussian elimination of final equations.
The resulting compact dense set of equations is
solved using a paralelized form of Gaussian
elimination on the distributed matrix.

3.2 The PARACOMP Port
3.2.1 Porting Intrepid to Windows NT

The Intrepid system was originally implemented on
UNIX systems. The dependencies of the source code
on libraries and development tools were kept minimal
(even in the UNIX world there are a large number of
different flavours of UNIX and Intrepid was designed
to be portable). Intrepid relied on the following exter-
nal dependencies:

e C++ compiler. In UNIX, native C++ compilers on
the corresponding platforms were used to compile
Intrepid. Although the code is not ANSI C, or
POSIX compliant, the transfer from UNIX to Vis-
ual C++ did not present large difficulties, as the
main bulk of the code is written as a console ap-
plication and does not rely on any GUI functions.

The UNIX GUI to Intrepid (which existed in
Tcl/Tk and X/Motif incarnations) has been lost
with the transit to Windows NT.

Socket library. The windows socket library pre-
sented minimal problems during the porting proc-
ess. Problems were mostly solved with the use of
C pre-processor macros to distinguish between
dissmilar UNIX and Windows32 APl socket
function calls and constants. The reason that it
was decided to use sockets for communications
between the various components of Intrepid was
historical. Sockets are the de-facto standard for
fast low-level communications in all UNIX sys-
tems. The use of sockets though, had another con-
sequence: the Intrepid resource manager can be
used to control a heterogeneous network of work-
stations, running different operating systems and
not having access to a common, uniform file sys-
tem. The system is able to distinguish between a
number of different operating system types and
treat workstations running those operating systems
accordingly. It also implements file transfers for
input and output files (through sockets, or using
the Windows32 drive mapping mechanism and
file copying functions to perform the transfer).

Environment variables. Although environment
variables exist in the case of Windows NT as well
as UNIX, a cleaner solution in Windows NT
would be to have application information held in
the registry and not in environment variables. This
was partialy implemented during the PARA-
COMP project. Although all the environment
variables are available through the registry, they
have been introduced under the
HKEY_LOCAL_MACHINE key. Since Intrepid
is a multi-user system, this has security implica-
tions for the system, since all users will see the
same vaues for the environment variables. In
UNIX, Intrepid relies on various shell scripts be-
ing executed at login for the user, in order to cor-
rectly implement security.

rshd. At start-up, the Intrepid system has to start
(daemon) processes on every workstation that will
be controlled by the system. In the case of UNIX
machines, as long as the workstation is reachable
and the username is accepted, Intrepid can execute
a remote shell command on the remote machine
and start up the (daemon) processes. Unfortu-
nately, Windows NT does not come with a remote
shell daemon (rshd) as standard, and most system
administrators are not willing to give such powers

to their users. The solution we have come up with
was to implement these (daemon) processes as
Windows NT services. Instead of Intrepid explic-
itly spawning these processes at start-up, these
processes always exist on the background, waiting
to connect to the resource management system. In
reality they are blocked listening on a socket, so
impact on system resources is minima while In-
trepid is not running.

lex/yacc. Part of the Intrepid system was a parser
that was written using lex and yacc. The only ver-
sions of lex and yacc that we could have access to
on Windows NT would be the GNU implementa-
tions. However, the UNIX code was written with
the BSD versions of lex and yacc, which has some
dight differences. The solution we used was to
execute the BSD lex and yacc tool implementa-
tions on a UNIX workstation to create the C code
for the parser. We then performed some minor
changes to the included files and definitions in the
source code (a program was written to do this
automatically) and finally included the resulting
code in the VC++ project for Intrepid.

Data transfers. The Intrepid version of UNIX used
two different methods to perform data transfers:
direct copying using the standard UNIX copy
command cp, or a pair of helper programs that are
used to implement the data transfer using sockets.
The former method cannot be used in NT since it
presumes the existence of NFS for it to work. The
latter method is generic enough to work in the
context of a Windows NT environment. However,
after the porting of helper programs from UNIX to
NT, we found that the system was too dow. We
implemented an alternative data transferring
mechanism that uses drive mappings to effect the
file copy. In Windows NT, one computer can have
access to the file store of another computer
through the drive mapping mechanism. There is a
notion of network file names called by Microsoft
UNC (Universal Naming Convention). However,
these UNC file names cannot be used directly with
the Win32 API functions that handle fileg5]. The
solution Intrepid has come up with, is to map the
UNC directory to afree drive letter and then use a
normal file path (containing the new drive letter,
of course) to perform any operations on the file.
Once the file is copied to a local execution direc-
tory the drive letter can be unmapped, so that it
can be used again on some other file transfer. The
limitation of this method is that the system ad-
ministrator must set up the system in such a way

that the products that are defined in the task graph
file point to the intended files. This meansthat if a
product is defined to consist of a file at location
"\\machine\dirl\file.dat", then the directory dirl
must be shared on the workstation named ma-
chine.

3.2.2 Interfacing Intrepid with LUSAS

Lusas consists of a number of components. The two
main ones are the solver itself (Lusas solver) which is
the legacy Fortran code for the finite element analysis,
and the GUI front end (Lusas modeller) which is a
Windows32 application and is used to design the
model and present results.

The usual mode of operation for Lusas is that a user
will design a model using the modeller, use the solver
on the created model and finally display the results on
the modeller window. To start the solver on a model
al auser hasto doisclick a button.

We wanted to keep the same style of operations in
PARACOMP. However, there are a number of steps
involved in generating the parallel solution that have
to be hidden from the user. When a model is ready to
submit to the paralel solver, the first thing that
PARACOMP must do is split the model into the ap-
propriate number of sub-domains in order to perform
the finite element analysisin parallel. Appropriate data
files have to be generated for each of the sub-domains
of the model. An input file to Intrepid has to be gener-
ated (the task graph file) that contains information
about the dependencies between the composite parts of
the finite element analysis. For each of the sub-
domains a different process running the parallel solver
will have to be spawned on the target machine. Before
the process is started the necessary data files that rep-
resent the domain have to be copied over to a local
directory on the target machine. When the finite ele-
ment analysis run is finished the result files have to be
copied back to the machine from which the user sub-
mitted the job. All this is handled by the Intrepid sys-
tem and a small Visual Basic script that performs the
domain decomposition and essentially "glues' Lusas
and Intrepid together [5]. All the user input required is
the number of sub-domains that the model must be
split into.

There is also a need for another GUI program, which
would configure Intrepid for the specific network that
Intrepid is used on. Because of time limitations and
because PARACOMP only addressed networks of
Windows NT workstations, the software that performs

this function does not have the full functionality of the
UNIX GUI for setting up Intrepid. It assumes that the
network only contains NT machines and the options
that the user can set at configuration time are com-
paratively limited.

4. Results
4.1 PACAN-D

The following results were obtained using the test case
supplied by Celestion International. The size of the
test case represented the maximum size of problem
that could be simulated on their existing single ma-
chine. This particular test case is representative of a
typical loudspeaker system under test at Celestion. The
system represented a half model, its parameters are
141 dructural elements, 1917 structural degree of
freedom and 914 acoustics degrees of freedom (inte-
rior and exterior).

This test case was run on a cluster of 166 MHz
Pentium Pro machines linked together with standard
10Mbit Ethernet. To reduce traffic conflicts over the
Ethernet the cluster were linked via a switch that ef-
fectively isolated the cluster from the rest of the net-
work. The same test case was then run using the same
code but compiled with a different version of MPI[1,4]
on a shared memory SGI machine consisting of eight
75MHz processors athough only 4 processors were
used.

Stage | 1Proc. 2Proc.s | 3Proc.s | 4Procs
1 73 74 73 75
2 165 86 58 41
3 975 484 315 227
4 132 95 85 104
Tota 1345 739 531 447
Table 1. Resultson 75MHz SGI Machine using
MPICH.
Stage | 1Proc. 2Proc.s | 3Proc.s | 4Procs
1 49 56 66 70
2 81 42 31 18
3 508 286 173 134
4 76 84 100 96
Tota 714 468 369 318

Table 2: Results on 166M Hz Pentium Pro using

WMPI 1.01.

Figure 2: Landing gear component from Messier-Dowty.

4.2 PARACOMP

The fina stage of the PARACOMP project involved
the use and evaluation of the final software by an end
user, which was Messier-Dowty. The software was
installed and run on a model defined by Messer-
Dowty. The model is one half of a lug which is the
main load bearing component of a landing gear. The
load is transmitted in plane through the landing gear
and up through the lug into the wing. The aim of the
investigation was to identify the onset of delamination
in the lug, and thence provide input into the type of
physical testing to be carried out.

The experiment consisted of the parallel finite element
analysis of a design decomposed into two sub-
domains. The relative size of the two sub-domains is
important since the target machines had different

processing power. One (which we will name machine
A) was a 400MHz Pentium Il machine and the other
(machine B) was a 166MHz Pentium. The time taken
to execute the full sequential solution on machine A
was 46 minutes and on machine B 110 minutes. If we
assume that the execution time for a sub-domain on a
processor is a linear function of the size of the sub-
domain, then we can calculate that the optimal run for
the parallel case is 33 minutes. This can be seen as the
minimum value of the execution time curve in figure
3. When the software was used to perform a parallel
run on the same model, the actual execution time was
29 minutes. We think that such a discrepancy exists
because the code is /0 bound. By distributing the 1/O
between the two machines, we achieve a super-linear
speed-up.

Expected speed up

120
(4] \
£ 100
=80 \ ----- Theoretical
5 60 \ performance
% 40 \ o Actual performance
Q ="
X5 20

o+r-—r——F+—"7 T T T T T T

N P D X b 6 A D 9O N

Q7 Q7 Q7 QO Q7 O O QO O
% of problem on machine A

Figure 3: Resultson a heterogeneous cluster of a 400MHz Pentium |1 and

a 166M Hz Pentium Pro.

5. Conclusion

The MPI protocol has been previoudy proven to pro-
vide portability of source code between UNIX plat-
forms. In the PACAN-D project we have shown that
this portability extends to NT, and that performance is
sufficient to yield satisfactory speed-ups.

One of the main concerns about NT is that absence of
remote shell procedures make controlling the remote
execution of jobs difficult. However the mapping of a
Unix daemon to an NT service has been demonstrated
in the port of Intrepid to NT. In addition it is worth
noting that the MPI daemons are also implemented as
NT services, and it is our conclusion that the NT serv-
ice functionality provides a robust way of managing
remote execution in the NT environment.

Three methods of data transfer between machines have
been tested: using WMPI calls, using sockets and us-
ing drive mappings to move files. The WMPI layer is
fast enough to support serious numerical computation.
A comparison between the use of sockets and drive
mappings was made as part of the Intrepid port, and
drive mappings were found to be faster. It is not clear
whether thisisfundamental to the design of sockets on
NT, or because of the implementation of the transfer
within Intrepid.

With the ever-increasing processor speed of NT plat-
form coupled with the decreasing unit cost, the propo-
sition of porting legacy commercial codes to NT is
increasingly attractive. We have shown in these two
projects that it is technically possible to carry out sci-
entific computing on a distributed NT resource. The
next stage of the work will be to assess whether this
computation can be carried out on truly dual use hard-
ware. If this proves to be possible, then the potential
cost benefits for smaller organisations that wish to
invest in numerical simulation become enormous.

6. Acknowledgements

Thiswork has been funded as part of ESPRIT projects,
no. 24871 PACAN-D and no. 24474, PARACOMP,
both part of the HPCN TTN Network supported by the
EC. The authors would like to thank MPI Software
Technology Inc. and Genias Gmbh for their support of
this research

7. References

[1] Message Passing Interface Forum, MPI: A Mes
sage-Passing Interface Standard, May 5, 1994, Univer-
sity of Tennessee, Knoxville, Report No. CS-94-230

[2] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, A
high-performance, portable implementation of the MPI
message passing interface standard.

[3] W. Gropp and B. Smith, Chameleon parallel pro-
gramming tools users manual. Technical Report ANL-
93/23, Argonne National Laboratory, March 1993.

[4] JM.M. Marinho, Instituto supererior de Engen-
haria de Coimbra, Portugal.

[5] Sing Li, Professional Visual C++ ActiveX/COM
Control Programming, Wrox Press Ltd, 1997.

[6] Microsoft Corporation, Moving UNIX Applications
to Windows NT, version 0.9 (part of Visual C++ on-
line documentation), 1994.

[7] Meecham, K; Floros, N; Surridge, M. Industrial
Stochastic Simulations on a European Meta-Compulter,
Proceedings 4" International EuroPar Conference, Eu-
roPar 98 Parallel Processing.

[8] Cooper, T. Case studies of 4 industriad meta-
applications, Proceedings HPCN Europe 99.

