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Abstract

Clusters of industry-standard multiprocessors are
emerging as a competitive alternative for large-scale
parallel computing. However, these systems have
several disadvantages over large-scale multi-
processors, including complex thread scheduling and
increased susceptibility to failure. This paper describes
the design and implementation of two user-level
mechanisms in the Brazos parallel programming
environment that address these issues on clusters of
multiprocessors  running  Windows NT: thread
migration and checkpointing. These mechanisms offer
several benefits: (1) The ability to tolerate the failure of
multiple computing nodes with minimal runtime
overhead and short recovery time. (2) The ability to
add and remove computing nodes while applications
continue to run, simplifying scheduled maintenance
operations and facilitating load balancing. (3) The
ability to tolerate power failures by performing a
checkpoint before shutdown or by migrating
computation threads to other stable nodes. Brazos is a
distributed system that supports both shared memory
and message passing parallel programming paradigms
on networks of Intel x86-based multiprocessors running
Windows NT. The performance of thread migration in
Brazos is an order of magnitude faster than previously
reported Windows NT implementations, and is
competitive with implementations on other operating
systems. The checkpoint facility exhibits low runtime
overhead and fast recovery time.

1. Introduction

Recent advances in multiprocessor and network
performance have made cluster-based computing an
increasingly cost-effective option for large-scale
parallel computing. Distributed systems constructed of
industry-standard multiprocessors and networks offer
an excellent price-to-performance ratio compared with
monolithic multiprocessor systems, especialy for large

systems.  Advances in user-level communication
mechanisms [4], memory consistency models [12, 14],
and network technologies (eg. [4] and [9]) have
improved the performance of these systems
significantly.  However, several issues limit the
widespread adoption of clustered multiprocessors for
distributed parallel computing.  First, clusters of
multiprocessors have an increased risk of failure simply
because there are more components that might fail.
This tendency to fail is exacerbated by the presence of
other users running applications that might cause the
system to crash. Second, multiple instances of the
operating system running concurrently on each node
require more administration and maintenance than a
single operating system. Finaly, reducing inequitable
load distributions in parallel applications may require a
system-level  solution. Addressing these issues
necessitates  effective  threed  migration and
checkpointing capabilities.

In this paper we describe the design and
implementation of user-level mechanisms for thread
migration and checkpointing. Together, these
mechanisms support the following functionality:

Tolerating the failure of multiple computing nodes
with minimal runtime overhead and recovery time.
Addition and remova of computing nodes while
applications continue to execute.

Handling power failures on systems with limited
power backup by performing a checkpoint before
shutdowns are triggered, or by migrating
computational threads to other stable nodes.
Distribution of the computational load among
nodesin acluster.

We have implemented both mechanisms within the
Brazos system [21], a Windows NT-based parallel
programming environment that runs on industry
standard networks of Intel x86-based multiprocessors.
In addition to providing programmers with the
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abstraction of running on a single shared memory
multiprocessor, Brazos supports message passing by
implementing the MPI library [20].

Thread migration in the context of a distributed system
involves the movement of a computation thread from
one currently executing process to another running
process. Thread migration has been previousy
proposed as a tool for load-balancing and
communication reduction in distributed shared memory
systems [13, 23]. Our work extends the use of thread
migration to fault tolerance and cluster management.
Migration can be used to tolerate shutdowns due to
scheduled maintenance or power loss by dynamically
moving al computation threads and necessary data of
the application to another available node, without
restarting the application. Migration can also be used to
add or remove multiprocessor nodes on-the-fly by
relocating existing computation threads to the new
nodes as appropriate. Finally, the runtime system or
programmer may elect to migrate a thread to another
node in cases where moving the thread to the data is a
better option than moving the data to the thread.

Applications that run for a long time or that require
high-availability need a means of recovering from
failures, while minimizing the runtime overhead
required to ensure recoverability. Previous work in
distributed fault tolerance schemes can be categorized
as either transaction or checkpoint-based, although
combinations of both have been used. Transaction-
based recovery is similar to database recovery, in that
the distributed system maintains a list of memory
transactions or messages [5]. Single node failures can
be tolerated by replaying the transactions related to the
failed node. Checkpointing is used to save the state of a
process. In case of a falure, the checkpoint files are
applied and computation can proceed from the point of
the last checkpoint [1, 22]. Systems that combine
transactions and checkpoints attempt to minimize the
amount of work lost due to failure as well as the space
requirements for recovery data.

Our implementation of checkpointing is distinguished
in two ways. First, we minimize the amount of data
saved during a checkpoint operation by leveraging
some of the existing coherence-related information
available in the Brazos runtime system. This reduces
both the overhead required to create checkpoints and
the time needed to recover from failures. Second, our
checkpoint facility can be initiated either explicitly
upon user request or implicitly using predetermined
checkpointing intervals. Our results indicate that the
facility, given an appropriate choice of checkpoint
interval, exhibits low execution time overhead and fast
recovery times.

The rest of the paper is organized as follows. In
Section 2 we described the design and performance of
the Brazos thread migration mechanism. Section 3
contains a similar analysis of the Brazos checkpointing
mechanism. In Section 4, we describe how thread
migration and checkpoints can be combined to perform
several fault tolerance and cluster management
functions. Related work is discussed in Section 5. We
conclude and describe future research directions in
Section 6.

2. Thread Migration

This section describes the design issues that must be
addressed to implement a thread migration mechanism,
as well as the specific implementation decisions
appropriate for use in aWindows NT environment.

2.1. Thread Contextsand Stacks

A thread in Windows NT is comprised of the
processor’s register set (or context), a thread-specific
stack, and a Windows NT-specific area called Thread
Loca Storage (TLS) [18] intended to contain data
instanced per thread. In order to migrate a thread from
one process to another, a thread's stack, context, and
the user portions of the TLS (Brazos uses the TLS for
certain runtime system information) have to be
packaged and sent to the remote node. Upon receiving
the thread migration message, the remote process
copies the contents of the remote thread's stack into a
local thread's stack and injects the context and TLS
data of the remote thread into that of the local thread.

Since stacks may include pointers that reference stack
data, a mechanism must be in place to guarantee that
these pointers have the same meaning on the new host
(issues related to heap and shared memory coherence
are addressed in Section 2.3). Furthermore, the stack
contains the saved state from any functions executed
before migration, implying that both nodes must have
the program code loaded at the same virtual address.
Code location is not an issue for Brazos, since a
distributed application executing on the Brazos system
employs multiple instances of the same program.

Two solutions addressing stack data pointer
management have been proposed [13, 23]. First, the
destination host can scan the received stack data and
adjust or remap any pointers encountered by adding the
appropriate offset. This solution has several potential
problems:

Stack data may be misaligned, making it difficult
to identify the location of pointers.



Actua variables stored on the stack may contain
values that are similar to stack addresses.
Changing such values will likely result in incorrect
computation.

Stack pointer values may reside in processor
registers, making it necessary to also examine
register contents and adjust them accordingly.

These problems make the scanning or remapping of
pointers unattractive in the general case. We have
chosen to adopt the alternative solution, in which the
destination thread’s stack must be located at the same
virtual address as the source thread’'s stack [13, 23].
We ensure that the stacks of both threads begin at the
same virtual address by reserving the thread stack space
for al user threads that may exist during the execution
of the distributed process. During the Brazos runtime
system initialization on each node, we create a number
of threads equal to the total number of user threads
executing on al nodes. A potential problem with this
approach is the memory and operating system overhead
for each thread created. @ Upon thread creation,
Windows NT reserves a default IMB region from the
process virtual address space for the thread's stack.
However, only 2 pages (a tota of 8KB on x86-based
systems) of memory are initially committed. The
amount of memory committed for a stack then increases
as needed. The operating system also reserves the
necessary interna data structures needed for
manipulating and scheduling threads. Since user
processes may address up to 2GB of virtual memory
(3GB on Enterprise Server systems), we believe that the
cost in terms of the memory space wasted by idle user
threads is relatively low. In addition, since typical
thread stack sizes are often much less than the default
IMB provided for by Windows NT, the amount of
wasted address space may be reduced by lowering the
maximum thread stack size to a more appropriate value.

2.2. Win32 Support for Thread Migration

Because Windows NT threads are managed by the
operating system, we need a mechanism to find a
thread's stack and context before we can perform
migration. The Win32 API provides several functions
that are used to manipulate both thread state and virtual
memory [18]. A thread's context may be acquired and
set using the GetThreadContext and SetThreadContext
functions, respectively. In order to find the thread's
stack, we first acquire the thread' s current stack pointer,
which is part of a thread’'s context. The Win32
VirtualQuery function is then used to determine the
region of committed memory associated with the
thread’s stack. At this point, the thread's state is
completely known, and the context and stack are copied
into a message buffer. The migrating thread on the local

machine is suspended using the Win32 SuspendThread
cdl', and the migration message is sent to the
destination node. Upon receipt of the message, the
destination node sets the local thread's context, copies
the stack data, and activates the thread using the
ResumeThread routine. Since Brazos uses UDP, the
destination node explicitly acknowledges that the
migration message was successfully received.

Migrating threads with open files are handled as
follows. The Win32 calls that access files are
intercepted by a wrapper function that saves the
parameters necessary to reopen the files after migration
(i.e., the name of the file, its sharing mode, read/write
mode etc.) [11]. In addition, the current file pointer
values are determined using standard Win32 calls. This
information is then transmitted to the new node and
used to reopen the appropriate files and reset their file
pointers. Since the file handles used by the migrated
thread will be different than the handles created at the
new node, we include a mechanism for mapping file
handles from the handle used by the thread to the actual
handle at the new node. The same wrapper functions
used to save access parameters aso take care of this
mapping. This mechanism requires that all nodes have
access to a common file system. File contents are not
migrated; however, users have the option of flushing
output file buffers prior to migration. A similar
mechanism is used for checkpoint and recovery, as
described in Section 3.3.

2.3. Ensuring Correctness

There are two correctness issues that arise when threads
are allowed to migrate: the effects of thread migration
on shared memory coherence mechanisms, and the
management of static (linker allocated) or non-shared
heap data during thread migration [13, 23]. As
described earlier, athread’ s context and its automatic or
stack variables are maintained throughout the migration
process, however, no explicit actions are performed
with respect to shared or static memory that may be
accessed by a thread. In order to move such data, we
need a method to identify static variables or non-shared
heap memory that are only accessed by the thread being
migrated.  Although it is possible to construct a
memory map for a Windows NT process [22] and to
migrate any such data detected, it is both difficult and
time consuming to do so. In order to achieve fast

b we initially used Win32 synchronization primitives (e.g.,

WaitForSingleObject) to suspend and resume threads.  During
development, we discovered that in order to correctly set the thread's
context, it must be executing in user code where it is suspended
explicitly using SuspendThread.



thread migration, our approach requires that the
programmer ensure that no read/write static or non-
shared heap data is used as thread-private data. All
read/write data private to a thread must be allocated in
Brazos shared memory. Since the runtime system will
automatically migrate private data allocated in shared
memory when it is accessed by a thread, this rule
ensures that private data can be accessed by the
migrating thread on any node. Aligning such structures
on page boundaries reduces the chances of other threads
causing more communication through false sharing.

Shared memory coherence issues increase in
complexity if relaxed consistency models are employed
[23]. For example, Brazos implements a multiple
writer protocol and two relaxed memory consistency
models. Release Consistency (RC) [8] and Scope
Consistency (ScC) [12]. Both of these models allow
multiple nodes to modify different portions of a virtual
page concurrently, and only perform coherence or
consistency actions at specific synchronization points.

Node N1 Node N2

£

MigrateMe(2)
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©
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Figure 1: Correctnesslssuesin Thread Migration

Figure 1 identifies the problems that can occur during
thread migration. Consider a thread t1, which initially
resides on node N1 and modifies a shared variable x. If
thread t1 is subsequently migrated to node N2, it may
access the variable x, which could either contain a valid
or stale value depending upon whether an appropriate
synchronization event’® occurred between the initial
modification and the access following migration. The
simplest approach to this problem requires that a global
synchronization operation, such as a barrier, be
performed before migration can take place. Another
solution includes shipping coherence information with
thread migration messages, possibly resulting in slower
overall migration performance. Our current approach is

2 A barrier is sufficient for both RC and ScC. Locks are sufficient for
RC, but for ScC the modification of x occurs within alock’s scope on
N1. The same lock has to be acquired by athread on node N2 before
the correct value of x may be read.

to allow thread migration to occur whenever most
appropriate, and to require the programmer or runtime
system to synchronize as necessary prior to migrating.

24. Thread Migration API

Our implementation of thread migration adds a single
function to the Brazos API: MigrateMe(DestNode). A
thread calls this function when it wants to migrate itself
to another node. When athread invokes this function, it
is suspended, a specia thread called the Migration
Agent awakens, and the calling thread is migrated to the
specified node. At the dedtination node, the
corresponding thread continues execution from the
same point in the program. The thread on the original
node remains indefinitely suspended unless the same
thread migrates back.

2.5. Performance and Analysis

The performance measurements described here were
performed on a network of Compagq Professional
Workstation 8000's.  Each system contains four
200MHz Pentium Pro processors with 256KB of L2
cache. The systems are equipped with two 33MHz 32-
bit PCI network interfaces: Fast Ethernet and Gigabit
Ethernet. Each node contains 256MB of main memory
and an Ultra-Wide SCSI-3 disk controller and drive.

Parameter FastEthernet Gigabit
Ethernet
Win32 cdlls 0.089 ms 0.089ms
Network/copy/synch. 1.121 ms 0.921 ms
Total Migration time 121 ms 1.0l ms

Table 1: Performance of Thread Migration in
Brazos with 4KB Stacks

We measured the performance of thread migration by
executing 1000 back-to-back thread migrations between
two nodes. Each iteration contains two calls to the
MigrateMe() function. Each call suspends the local
thread and places the stack and context in a message
destined for another node. At the receiver, an
acknowledgement message is sent back to the
originating node for reliability purposes’. The stack
contents are copied, the context is injected into the local
thread, and the local thread is then resumed. We also
measured the overhead of the various Win32 calls used
in the migration process by averaging over 1000
instances of each call. As shown in Table 1, thread
migration takes between 1.01 and 1.21ms, depending
on the network interface used. = Communication
accounts for the majority of the migration time.

® There were no retries or dropped messages observed during the
performance measurements presented here.



Win32 Function (No. of calls) Cost per call
GetThreadContext (1) 27 msec
SetThreadContext (1) 27 msec
SuspendThread (1) 14 nsec
ResumeThread (1) 5 nmsec
VirtualQuery (2) 8 nmsec

Table 2: The Cost of Win32 CallsUsed in Thread
Migration

Table 2 identifies the fixed costs associated with
migration. Certain costs associated with migration,
such as the time needed to wake up the migration agent
thread and the time needed to schedule threads after
being migrated, are difficult to quantify. The overhead
of the Win32 calls that we measured was low compared
to the network, stack copying, and synchronization
overheads.

The performance of the Brazos thread migration
mechanism is an order of magnitude faster than that
reported for the Millipede Windows NT-based system
[13], and is competitive with other user-level thread
migration implementations (see Section 5.1).

3. Checkpoint and Recovery

The ability to tolerate faults becomes increasingly
important as the number of multiprocessors in a cluster
grows. This is because the probability of failure
increasing along with the complexity of the system: a
system with sixteen power supplies is more likely to
experience power supply failure than a system with
one. This is an especialy important concern for long-
running applications. Additionally, clusters of
multiprocessors may be geographically distributed with
different local loads that vary over time. Clustered
systems need to be able to adapt to these variations. In
the extreme, it may be necessary to move all threads off
a particular node, and then resume them elsewhere.
Checkpoint and restart is an effective mechanism for
this situation. Finally, since maintenance and upgrade
functions typicaly require the interruption of service,
fault tolerance support alows processors or systems to
be shutdown and restarted, thus interrupting rather than
terminating the running application. In the remainder
of this section we describe the Brazos checkpointing
mechanism.

3.1. Checkpointing in Brazos

In order to checkpoint a running Windows NT process,
it is necessary to save its state. A process state
includes the stacks and contexts of all threads that exist
in that process, the contents of memory (the heap and
static data areas, code may not be important), and any

operating system objects owned by the process, such as
open file handles, synchronization objects, etc. In a
networked computing environment, it is also necessary
to recreate any network connections upon recovery.
This may require additional information concerning the
overall composition of the cluster to be saved. The
amount of time needed to create a checkpoint is a
performance concern because of the potential for a
large amount of process-specific information. For a
checkpointing mechanism to be practical, it must incur
low overhead during norma operation and alow
recovery in substantially less time than the potential
time lost due to failure.

The structure of a Windows NT process within the
Brazos environment can be broken down into the
following components: user and runtime system
threads, shared memory, static or other heap memory,
operating system handles for various synchronization
objects and files, and network connections to other
nodes participating in the computation. We will discuss
each of these components in the context of
checkpointing and recovery. Before discussing these
details, it is necessary to review the mechanics of
starting a Brazos distributed process.

Before a user can execute a Brazos parallel application,
a configuration file must be created. The configuration
file contains information about the executable program,
the names of nodes participating in the computation,
and the number of user threads on each node. The
program executable, configuration files, and input data
files must exist on a shared disk volume accessible
from all nodes. Every node that hosts a Brazos process
runs a Windows NT service responsible for starting
Brazos processes on the local node. The first node
listed in the configuration file starts execution by
sequentially sending process start requests to other
nodes. To avoid deadlock, each Brazos process listens
on two network ports: one for requests and the other for
replies. The runtime system creates Brazos system
threads to handle requests and replies from the network.
Once the Brazos runtime system is initialized, the
user's application program is started.  Programs
typically alocate shared memory and initialize data
structures using input files a the beginning of
execution.  The application then proceeds until
completion.  Severa characteristics of the Brazos
runtime system facilitate checkpointing:

The initidization of Brazos is identical for any
given configuration file; therefore, it is not
necessary to checkpoint most of the runtime
system-specific entities. For example, it is not
necessary to checkpoint the runtime system’s
threads, sockets, and most other data structures



because they can be easily recreated at recovery by
rerunning the initialization routines.

Brazos synchronization objects such as locks and
barriers do not need to be saved because
checkpoints are created only at barriers. Thus
synchronization objects can be reinitialized during
recovery.

Since checkpoints are independent of the Brazos
runtime system initialization process, it is possible
to recover processes using different configuration
files. This proves to be a valuable feature,
allowing recovery on a different number of nodes
than were present when the checkpoint is made.
This allows a Brazos distributed application to be
moved to accommodate varying system loads
without serioudly affecting performance.

3.2. Memory Issues

Although the Brazos parallel programming environ-
ment supports both shared memory and message
passing programs, we only discuss issues related to
shared memory checkpointing in this paper. The
checkpoint facility must save a consistent view of
memory to permit full recovery. Memory coherence in
Brazos is maintained at the granularity of avirtual page.
Operating system support for virtual memory is used to
protect pages, and special virtual memory exception
handlers are used by the runtime system to ensure that
coherence is maintained. Since Brazos supports
multiple writer protocols [3], if a node performs a store
to an address on a page, a twin or duplicate copy of the
page is made before the store is alowed to complete.
Thetwin islater used to create a diff when another node
requires a copy of the page. A diff isalist of addresses
and values for locations that have been modified on a
particular page. Since multiple nodes may modify a
single page simultaneously, multiple nodes may contain
diffs for each page. When a node faults on such a page,
it will receive diffs from all nodes with modifications to
the page in order to reconstruct a valid version of that
page. The Brazos runtime system maintains the state of
every shared memory page, and this state is used by the
checkpoint facility to examine the status of every page
and save the necessary coherence-related information,
including diffs or twins.

3.3. Implementing Checkpoint

In order to guarantee that the state of pagesis consistent
and that no coherence actions are pending, we only
create checkpoints at global synchronization points
such as barriers. At the checkpoint, all data necessary
to perform a recovery operation is stored. These data
include all shared memory pages, including any twins

and diffs and their related runtime system status data
structures.  In addition, al user threads and their
contexts and stacks are saved using the methodology
described in Section 2. Since Brazos includes multiple
instances of barrier data structures, it is necessary to
save the number of the barrier instance used at the time
of creating the checkpoint. This ensures that the barrier
structures are updated before threads are resumed after
recovery. The time consumed in creating checkpoints
is a function of the amount of shared memory in use at
each of the nodes in the system, but is considerably
smaller than the size of the running process (see Section
3.5).

Before a checkpoint is initiated at a barrier, al
computation threads have to arrive at that barrier. The
thread currently responsible for managing synchroniza-
tion performs the necessary communication with other
nodes to supply coherence information. When al
nodes have arrived at the barrier, a message is sent to
release all nodes. If a checkpoint is to be performed,
threads are not immediately resumed upon receiving the
barrier completion message. Instead, a Checkpoint
Agent thread initiates the checkpoint. Application
threads resume once the checkpoint is compl eted.

Open files during checkpoint and recovery are handled
in much the same manner as open files during thread
migration (see Section 2.2). File access functions are
wrapped and the necessary parameters are saved. This
information is stored in the checkpoint file and is used
to reopen the files and to set their file pointers during
recovery. File contents are not included in the
checkpoint; however, users have the option of flushing
output file buffers during checkpoint creation.

Two optimizations were added to our checkpointing
facility. First, checkpoint files are initialy written to
each node’'s local disk to improve performance. In
order to allow recovery from other nodes, we also copy
the checkpoint files to a network file system. In order
to hide the latency of the copy process, the checkpoint
agent wakes up the computation threads as soon as the
loca checkpoint files are written. The copy is
performed in the background while the application
continues execution. Second, to minimize the size of
checkpoint files, we modified the runtime system to
keep track of shared memory pages that are allocated
and used before the checkpoint takes place and only
save information related to modified pages. This
substantially reduces the size of checkpoint files by
eliminating the need to copy the full pool of shared
memory pages.



3.4. Programmer Interface

There are a small number of checkpoint-related issues
that must to be addressed by the programmer. Since the
checkpoint facility only saves shared memory pages,
the programmer allocates all application data (except
for stack variables) in shared memory, even if they will
not be shared in practice. This restriction may be
ignored only for static or heap data that is read-only
(note that this restriction is already enforced in order to
provide thread migration as described in Section 2.3).
Variables that are declared and initialized in this
manner will be reinitialized upon recovery and
execution will proceed correctly.

Either the user or the runtime system may initiate a
checkpoint. Programmers are able to specify aflagto a
barrier call that instructs the system to perform a
checkpoint or recovery operation. Since users will
likely be more concerned with the amount of time
potentially lost due to failure, Brazos also supports an
automatic checkpoint interval that can be specified in
the configuration file, on the command line, or at any
point in time during execution using the Brazos user
interface. Using the interval method, when the time
since the previous checkpoint exceeds the specified
interval, the runtime system instructs al nodes to
perform a checkpoint. A user interface initiated
checkpoint is performed at the next barrier instance.
This feature is useful for planned shutdown situations
and avoids checkpoint overhead unless necessary. All
Brazos programs must explicitly include at least one
recovery barrier. For programs that do not use barriers,
our current implementation requires inserting additional
synchronization. We are investigating techniques to
perform checkpoint and recovery without barriers.

Brazos provides two types of recovery mechanisms:
automatic recovery on the remaining nodes, or recovery
with the addition of a new node to replace the failed
node. For recovery on a replacement node, a new
configuration file identifying this node is created using
the Brazos user interface.  Then, the application
program calls the recovery process at a barrier placed
after the runtime system and application initialization
phases in each Brazos process. The only application
initilization required before recovery is shared
memory allocation and globa read-only variable
initialization.  After recovery, al threads exit the
recovery barrier and continue execution from the last
checkpoint. During automatic recovery, the Brazos
runtime system detects that a node has failed through
the use of heartbeat messages that are sent out by a
designated node every 10 seconds (the heartbeat period
is user-selectable). When a node fails, the remaining
nodes will restart their Brazos processes from the last

successful checkpoint, and the threads from the failed
node will be distributed to the surviving nodes in a
round-robin fashion. We currently do not attempt to
optimize the assignment of threads to nodes.

3.5. Checkpoint Performance

To demonstrate the checkpointing facility, we used two
applications. Water, a molecular dynamics application
from the SPLASH benchmark suite [19] using a 4096
molecule dataset, and a locally-written SOR (successive
over relaxation) using 4000° 4000 matrices. Both
applications were run on four nodes, each with a single
user thread. Water is intended to be representative of
applications with a small shared memory footprint,
whereas SOR is intended to be representative of
applications with a large shared memory footprint. To
measure the overhead of the checkpoint facility, we
used the system initiated checkpoint mode while
varying the checkpoint interval from two to thirty two
minutes.

Ckpt interval in min | Execution time | Ckpt overhead as
(number of ckpts) in minutes % of exec time
(none) 42.23 0%
32(1 42.40 0.39%
16 (3) 42.38 0.34%
8(6) 42.58 0.82%
4(11) 43.20 2.28%
2(20) 43.88 3.90%
Table 3: Checkpoint Overhead vs. Interval Length
for Water

Table 3 shows that for Water the overhead of
performing checkpoints to network disks every two
minutes was about 3.9% of the total execution time.
The size of the Water process was about 45MB and the
average checkpoint size was 52MB per node
Checkpoint time averaged about 1.25 seconds, and
recovery time was 21 seconds (17 seconds for runtime
system and user initialization, and 4 seconds for actual
recovery) on four nodes. When only local files were
created, the runtime overhead was essentially the same.

Ckpt interval in min | Execution time | Ckpt overhead as
(number of ckpts) in minutes % of exec time
(none) 36.06 0%
32 (1) 36.45 1.08%
16 (2 37.24 3.27%
8 (4) 37.97 5.30%
4(9) 40.62 12.65%
2 (19 46.18 28.06%
Table 4: Checkpoint Overhead vs. Interval Length
for SOR



As Table 4 shows, the checkpoint execution time
overhead of SOR (with a 122MB footprint) is relatively
high for low checkpoint interval settings (28% for two-
minute intervals). These results suggest that checkpoint
intervals of eight minutes or higher are more
appropriate in this case, resulting in runtime overheads
of about 5% or less. The process size for SOR was
about 163MB; the average size of the checkpoint file
was 62.1MB. The average checkpoint time was 25.8
seconds, and recovery time was 46 seconds (19 seconds
for runtime system and user initialization and 27
seconds for data recovery).

In order to improve checkpoint performance for large
applications, we are adding support for incremental
checkpoints. Incremental checkpoints reduce runtime
overhead in two ways. Firgt, they eliminate the need to
stall the computation threads at barriers by alowing
checkpoint operations to be performed in parallel with
computation. Second, the amount of data copied to
checkpoint files is reduced because only modifications
made since the previous full checkpoint need to be
saved. This is accomplished by tracking pages that
have been modified since the last checkpoint and only
saving the information necessary to apply these changes
from the last checkpoint instance. We are presently
implementing this mechanism.

4. Integrating Thread Migration and
Checkpoint/Recovery

Thread migration can be used to allow the addition or
removal of nodes participating in a distributed
application. To add anode, the application is started on
the new node and network connections are established
with al nodes currently participating in the
computation (as described by the configuration file)
during the runtime system’s initialization phase. The
root process then takes note of the added node and sets
a special flag. The current barrier manager uses this
information to synchronize all existing nodes with the
new node. Any threads that need to be migrated to the
new node are moved before execution resumes.

Shared memory accesses on the new node are handled
in the usua way by the Brazos runtime system;
however, all static or non-shared heap data have to be
initialized before the node can participate in the
computation. For this purpose, an initial user thread is
used to perform any required user datainitialization. In
addition, it is necessary to modify some runtime system
data structures to reflect the addition of the new node.
This work is accomplished at the barrier at which the
new node is detected.

Removing nodes is basically the reverse process. An
important difference is that once the computation
threads have migrated to other nodes, the contents of
shared memory at the node to be removed need to be
transferred to other nodes before the process is
terminated.  This is accomplished by creating a
checkpoint of the shared memory state of the node to be
removed. All remaining nodes then apply the necessary
changes to their state using the contents of the
checkpoint file, and update the appropriate runtime
system information to reflect the departure of a node
before proceeding with computation.

In case of a power falure, our system triggers
checkpoints of all running distributed processes before
the system is shutdown. This requires that the system
have an UPS with sufficient backup time to alow
checkpointing to take place. If other nodes are not
affected by the power failure, threads on the affected
machine(s) migrate to other nodes using a methodol ogy
similar to that of removing and adding a node to the
system.

5. Related Work

This section discusses previous relevant work in fault
tolerance and thread migration on software distributed
shared memory systems. Since we are not aware of any
previous work that combines both techniques, related
work is separated into two parts. First, we discuss other
systems that utilize thread migration. Then we discuss
various fault tolerance techniques proposed for
distributed shared memory systems. Findly, we
discuss work related to checkpointing Windows NT
processes.

5.1. Thread Migration

Millipede [13] and D-CVM [23] both employ thread
migration. Millipede is a Windows NT-based DSM
system that includes a user-level thread migration
mechanism similar to ours. In particular, they use the
same method of ensuring that all thread stacks are at
identical virtual addresses across all nodes, and impose
the same restrictions on memory use. Millipede uses
thread migration to reduce communication costs by
keeping track of al accesses made by a thread that
result in inter-node communication. Millipede requires
that memory be sequentially consistent [17], which
results in lower overal performance. The reported
migration time on Millipede is 70ms on Pentium-based
systems with 100Mbps Ethernet.

D-CVM uses thread migration to dynamically
redistribute computation threads to nodes to reduce



communication and improve load-balancing [23].
Instead of relying solely on the tracking of page faults
as in Millipede, D-CVM contains an active thread
tracking mechanism. This mechanism tracks sharing
among local threads by both serializing thread
execution and adding per-page access counters for each
thread in a DSM process. D-CVM's approach to
coherence is similar to ours. It uses a multiple-writer
LRC (Lazy Release Consistency [14]) coherence
protocol and avoids correctness problems by restricting
thread migration to only occur at barriers. We allow
migration at other points in the program, as long as
certain rules are followed (see Section 2.3). D-CVM
also requires all static and heap-allocated thread-private
data to be in shared memory. The best reported thread
migration performance for D-CVM (using a reserved
stack approach similar to ours) was 1.597ms on an IBM
SP2 using 66.7MHz Power2 processors over a 40MB/s
SP2 switch (with a stack size of 1704 bytes).

Active Threads [24] is a user level thread library that
includes support for migration. One of the main goals
of the Active Threads package is performance. This
goa is achieved by utilizing an efficient user-level
communication package based on active messages [6].
Their solution to the stack pointer problem is similar to
ours. For SPARCstation-10 multiprocessor work-
stations connected by a Myrinet network interface,
thread migration latency was reported to be about
1.1msfor 2KB stacks.

5.2. Fault Tolerance

Codta et al. [5] implement a logging and checkpoint
facility to recover from single and multi-node failures
on the TreadMarks [15] DSM system. They implement
a two-level checkpoint mechanism. They use a
lightweight logging mechanism to support single node
failures and perform occasional consistent checkpoints
to implement multiple node recovery. The performance
results reported in [5] show that the overhead of
maintaining the logs is very small. On the other hand,
the re-execution needed for recovery consumed from
72% to 95% of the total execution time of three
benchmark applications used (SOR, Water, and TSP).
In contrast, Brazos recovery takes 0.8% of the
execution time for Water even with a considerably
larger dataset. Checkpoint overhead was reported as
less than 2% of execution time for both Water and TSP,
and around 22% for SOR. They attribute the difference
to the size of checkpoints in the respective applications,
which are a function of the coherence traffic exhibited
by these applications.

Cabillic et a. [1] implement a consistent checkpoint
facility that is similar to ours in several respects. They

perform checkpoints at barrier synchronization points
that are annotated by the programmer. Their
checkpoint facility requires the copying of pages and
page information blocks only, and does not require
saving diffs. This is because their DSM system,
MY OAN [2], implements sequential consistency and an
invalidation-based protocol. They require that all
private data be alocated in shared memory in order to
expose it to the checkpoint facility, similar to our
system. They implement a special checkpoint server
process that requires inter-node communication to
perform the checkpointing, whereas we use a
checkpoint agent thread per process and communication
is through hardware shared memory.

Kermarrec et al. implement a recoverable distributed
shared memory system caled ICARE [16]. They
modified an invalidation-based coherence protocol to
maintain a recovery database in volatile memory that
enables recovery from single node failures. Their
system replicates pages on multiple nodes to allow
recovery, which in some cases resulted in improved
performance since page faults were avoided.

Previous researchers have developed checkpoint
facilities for Windows NT processes [10, 22], although
none of these work in a distributed shared memory
environment. Huang et a. implement a recovery
facility for NT processes, called NT-SwiFT [10]. It
includes the Winckp library that can be used for
rollback-recovery of NT applications. Their system
intercepts system calls and discovers areas of memory
to save using standard Win32 calls. Recovery can also
be performed on applications that access the network by
logging network traffic. Srouji et al. [22] implemented
a general-purpose checkpoint facility for multi-threaded
Windows NT processes. Similar to NT-SwiFT, they
redirect Win32 APl calls to a set of wrapper functions
that are used to save state information before calling the
actual Win32 routines.  This enables them to build a
database of open files and other handles that need to be
recreated at recovery. They describe how data
segments are reserved, including static and heap-
allocated memory. Checkpoint file sizes were about the
same size as the process itself and checkpoint time was
twenty one seconds for a 50MB process.

Finally, the Microsoft Cluster Service (MSCS) supports
high availability applications such as database servers
on Windows NT [7]. The MSCS can detect failures of
hardware or software resources and can restart or
migrate failed components. MSCS does not support
rollback recovery of DSM applications, but handles
situations that we do not address, including hardware
fail-over.



6. Conclusionsand Future Work

We have described the implementation and
performance of thread migration and checkpointing
mechanisms for clusters running Windows NT. The
performance of thread migration was found to be
competitive with other systems and an order of
magnitude faster than a previoudly published Windows
NT implementation. The checkpoint facility exhibited
low runtime overhead and fast recovery times. We are
currently implementing an incremental checkpointing
mechanism to further reduce the overheads for large
applications. We are also implementing additional
techniques that combine thread migration and
checkpointing for fault tolerance.

We would like to thank Karin Petersen and the
anonymous reviewers for their helpful comments on
earlier versions of this paper.

Brazos is available free for non-commercia use at
http://mww-brazos.rice.edu/brazos.
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