
Scalable Access Controls for Lineage

Arnon Rosenthal, Len Seligman, Adriane Chapman, Barbara Blaustein

The MITRE Corporation

Bedford MA, McLean VA

{arnie, seligman, achapman, bblaustein}@mitre.org

Abstract

Lineage stores often contain sensitive information

that needs protection from unauthorized access. We

build on prior work for security and privacy of

lineage information, focusing on complex conditions

and scalable administration. We use Attribute-Based

Access Control (ABAC) to express conditions based

on many attributes, instead of roles. We then make

administration and management more scalable,

instead of managing large, monolithic access

predicates for each object. To do so, we first support

modular traceability and maintainability for separate

concerns (e.g. security, legally mandated privacy,

organizationally mandated privacy). We then

provide constructs to manage authority when

multiple administrators must collaborate. We show

that these security techniques are needed for easy

lineage security administration.

1. Introduction

Several papers have noted that lineage (also known

as provenance) information may often contain

sensitive information that must be protected, e.g. [8,

18, 29], and a few have described access control

mechanisms appropriate for lineage data [7, 8, 12].

This paper focuses on managing the access policies

on nodes, edges, and properties of a lineage graph.

We extend the prior work with these contributions:

 We allow finer-grained policies—i.e. for

particular properties of an individual lineage

node or edge—and illustrate their importance.

We also categorize properties in a way that

helps assign administrators for parts of a policy.

 We base our model on attribute-based access

control (ABAC). Unlike role-based access

control (RBAC), the predominant model in

prior lineage security work, ABAC can express

general access predicates, referencing any

available attribute information in the

environment.

 We enhance modularity of ABAC by adding a

model for separate capture and combination of

multiple concerns. The explicit decomposition

of access predicates makes them easier to

understand, maintain, and trace to specific

concerns. We illustrate its applicability to

lineage security and describe key stakeholder

roles for lineage scenarios drawn from

enterprise applications.

 We provide a way to manage split authority,

where different concerns (or stakes) are

managed by different people (stakeholders).

Following the conventions of the Open

Provenance Model (OPM) [22], data (artifacts) and

processes are represented by nodes; each edge

represents a relationship (e.g. generatedBy). Edges

represent causality and point inverse to data flow;

they may also be labeled with specific roles, e.g.

input_arg_X.

Example: Consider the lineage graph in Figure 1,

which shows the data (ovals) and processes

(rectangles) used to produce an Emergency

Preparedness Office’s (EPO) Epidemic Warning

Report (dashed outline). Mary, a Health Department

recipient of an epidemic warning report wants to

know how it was produced in order to know how to

best interpret it, whether to trust it for her purposes,

etc.

However, in determining which parts of the

lineage graph to reveal to Mary, the lineage system

should consider several stakeholders’ interests. For

example, the provider of animal test data may want

funding agencies to know he contributed to the

intelligence report, but may not want the public to

know. This same investigator demands that high-

level approvals be required to release the edge with

role ―Animal_Tests‖. Additionally, the properties of

a lineage node may contain even more sensitive

information. For instance, while most cleared

analysts can see the BioThreat Intelligence report

node, the authoring agent’s identity should be

protected by only releasing this data to a very

restricted group of users.

2

The requirement to protect specific properties of a

node, such as the author of a report or invoker of an

execution, illustrates the need for fine-grained access

controls; treating a given node or edge as a monolith

is often inadequate. There may also be conflicts

among interested parties about how restricted the

lineage information should be. For example, the

author of the Epidemic Projector, Prof. Jones, may

claim that the information about the algorithm should

be visible to anyone, while Analyst Smith, the

invoker of the program, wishes this particular use to

be considered extremely sensitive. Thus, any security

model must allow both Analyst Smith and Professor

Jones to express their concerns, and determine how

best to honor them. A good model will let each of

them reexamine and edit their concerns, and

regenerate the access predicates.

Unfortunately, current access control mechanisms

are too hard to administer where there are multiple

stakeholder concerns about a single object. An

administrator must consider all the relevant

stakeholders’ concerns and define the complicated

policies that combine them. Importantly, the separate

concerns are not currently modeled. The resulting

composite policies are not modular; they lack

traceability; they’re difficult to understand and edit,

and they’re not well-suited to gap analysis. For

example, suppose access to lineage information about

Animal Testing depends on the following predicate

(the arguments are discussed in Section 3.1):

Animal_Testing_Access(user, resource, environment)

≔ [User.Division= Intelligence
User.AssignedProject.Type=Epidemiology
Request.SourceDomain is in {.gov, .mil}
Experiment.ReleaseMarking = Intel
(ExperSubject.Type = inanimate
ExperSubject.Type = animal
 experimenterName.pseudonym=true
ExperSubject.Type = human
 releaseOnFile(ExperSubject)

 [Request.HasApproval.Level ≥ 4
(Request.HasApproval.Level ≥ 2
 threat.Status = Red)]
This predicate exploits a wide variety of

knowledge about the request, coming from multiple

sources. It is hard to imagine encompassing it all in a

role hierarchy. There are several categories of

concerns here, such as government secrecy,

experimental subject privacy, and experimenter

privacy. Even within categories, some stem from

agency-wide substantive policy (e.g. do not release

outside the agency), others are aware of the sort of

information this is (only epidemiologists have

access), and some are because an authority has

insisted on crisis workarounds (the disjuncts at the

end).

In such an environment, a lineage service exists

mainly to let users execute queries over the lineage

graph, e.g. to find all predecessors and successors of

a node, while applying various predicates and

projections. Lineage security ensures that each query

executes on a database subset, i.e. nodes, edges, and

property values for which the request satisfies the

access control predicates. Previous researchers have

described basic capabilities, but have not addressed

three more advanced requirements:

First, the access predicate on a node, edge, or

property may involve multiple subexpressions,

dependent on different attributes of users, the

resource, and the environment. Role-based access

control is not easily extended to support this.

Second, the predicate may include terms

representing many distinct concerns that ought to be

managed modularly, such as security, legally

mandated privacy, and organizationally mandated

privacy. If one of these concerns changes, or if

compliance is being audited, we do not want to wade

through a 12-line predicate.

Epidemic
Projector,
v3

CDC
Historical
Disease Data

TrakTek, Inc.
Disease
Spread
Monitor

Author:
Prof.
Jones

Invoker:
Analyst
Smith

Author:
Agent
009

Bio-Threat
Intelligence

EPO
Epidemic
Forecast

Pharmacy
Prescription
Data

Hospital
Admissions
Data

EPO Epidemic
Warning
Reports

Animal Tests

Figure 1: Lineage Graph for EPO Epidemic Warning

Reports.

3

Third, there may be multiple stakeholders

involved in setting the policy on a protected item, and

it is necessary to govern how the different desires are

to be combined. For example, if privacy officers want

only doctors to see certain information, and existing

workflows require that it be available to financial

managers, how does the system help administrators

manage these conflicting relationships?

Any access control system for lineage must allow

the following: determine access based on values of

multiple attributes; handle multiple goals, each with

separately evolving tradeoffs and legal requirements;

and appropriately combine the all stakeholders’

concerns.

One obvious but inadequate solution is to appoint

a lineage system administrator. However, the

stakeholders whose systems supply the lineage data

may not be willing to give this person discretion to

make substantive policy decisions. In our experience,

the lineage service is often a political lightweight, not

an 800-pound gorilla. Also, the appointment of an

administrator does not make the problems of

stakeholder conflicts and concern management go

away, nor does it give the administrator guidance on

how to resolve them.

When faced with complex expressions, current

access control mechanisms lack traceability and

maintainability, i.e. they do not connect clauses in the

predicate to the concern that motivated them, nor do

they help an administrator focus only on the relevant

portion when editing predicates. For example, the

system should be able to show which clauses in the

predicate exist to protect patient privacy vs.

experimenter protection vs. national security. If a

privacy regulation changes, we want a capability to

edit just the relevant sub-specifications. When the

HIPAA1 auditors arrive, we want to highlight the

controls motivated by patient privacy. If HIPAA

rules change, we want to edit this portion without

needing to extract it from a dozen other clauses.

We lay out our system model in Section 2. In

Section 3, we begin by showing how a general

purpose attribute-based access control capability can

support fine-grained access control for lineage data.

We then extend vanilla ABAC to provide better

maintainability, traceability, and sharing of authority,

and show how this fits the needs of lineage. Section 4

discusses related work, and Section 5 describes our

ongoing efforts to implement these ideas and areas

for future research.

2. High-Level Architecture

As users go about their ordinary tasks, creating or

manipulating data on base systems, information about

their actions is reported to the lineage store in ways

that minimize intrusion on the base (i.e. application)

systems [10, 15, 17, 25]. Figure 2 shows that the

lineage storage, querying and access controls are

separate from these base systems. Access controls on

base systems are unaffected; the lineage store

controls access to lineage information. The lineage

store is logically unified but may be physically

distributed.

A lineage graph describes a series of process

invocations, executed by one or more users, in

pursuit of their various goals. We follow ES3 [17]

and PASS [24] in that generation is ad hoc –

covering whatever was reported to the lineage

system. Unlike traditional workflows (discussed in

Section 3.4), the tasks, or steps, need not be defined

prior to execution, so graphs may grow indefinitely

and in unpredictable ways. In fact, information is tied

together by data usage (i.e. graph connectivity),

rather than by pre-defined patterns.

1 Privacy regulations imposed by the U.S. Health

Insurance Portability and Accountability Act of

1996

Base
System

Lineage Storage
System

Process2

DataC

Process3

DataB

Process1
DataA

Do Stuff Ask about

Lineage

DataA

Process1

DataB

Push execution

information

Access
Control

User

Stakeholders

Specify Access

Control Policies

Access
Control

Figure 2: An example system architecture. Lineage

storage and access control are on the right.

4

A lineage graph consists of a set of nodes, N, and

a set of edges, E. As in [8], each object (node or

edge) has descriptive properties that optionally

appear on each node, as illustrated in Figure 3. A

lineage manager should predefine and categorize a

starter set of properties, such as resource description,

invocation time, etc.

A lineage query consists of edge traversal forward

or backward from a start node (or node set), applying

access predicates to node properties to determine

which property values should be returned.

Our security model protects objects (nodes and

edges) and the values of their properties. These are

called protected items. There is an access predicate

that controls the visibility of each protected object

and property.
2

Edges which are not visible to a

particular user are not traversed in executing lineage

queries for that user. Thus, if the lineage graph

contains three nodes that the user is entitled to see,

but he is not entitled to see the edges between them, a

query on that graph will return only the single start

node. To aid security administration, we categorize

properties into buckets that help determine default

stakeholders.

 Description of an entity in the base system.

Examples include data description, data

location, process description, etc. These items

will be in the lineage graph only if the base

system reports them to the lineage system. For

2 A practical system will encourage use of the same

predicate to control multiple items.

instance, in Figure 3, the process node includes

the description ―Epidemic Projector, v3‖.

 Link to the underlying information. Base

systems may keep more extensive information

under their control, providing the lineage

system only with a link, as in the Resource

property of the nodes in Figure 3.

 Description of a process invocation or creation

of a dataset. For instance, the time started, time

ended, who invoked it, whether data integrity

was protected, etc. In the right-hand node record

of Figure 3, we can see that Analyst Smith

invoked the process.

This list is not intended to be exhaustive, but it

gives lineage system security administrators an initial

set of node and edge properties to address in

formulating access policies.

3. Access Control Extensions for Lineage

We now discuss desirable extensions to prior work

on access controls for lineage data: attribute-based

access controls, modularization of concerns, and

sharing of authority.

Section 3.1 shows the advantages of applying

ABAC in lineage security. The next two subsections

propose general purpose enhancements to ABAC

formalisms and administrative processes, extensions

that are particularly useful in settings such as lineage.

In Section 3.2, we show how to handle with multiple

concerns, while in Section 3.3 we deal with multiple

stakeholders. Section 3.4 shows opportunities to

build in lineage-specific definitions and defaults,

without which the administrative burden would be

prohibitive.

3.1. Moving Toward Attribute-based

Access Control

In this section, we argue that ABAC, not RBAC, is

the right basis for lineage security research, and give

an overview of ABAC. Later sections exploit the

flexibility of ABAC to propose additional

capabilities.

Prior lineage security proposals used role-based

access control (RBAC) [8, 12]. Unfortunately, RBAC

is known to suffer from serious scalability problems:

As ―policy becomes finer-grained and more attributes

are involved, one gets a separate role for each

NodeType: Data (i.e., artifact)
nodeId: E43xa78

ResourceDescription: Bio-Threat
Intelligence
Resource: …/I/bio-div/report1234

Time: 22 May
Creator: Agent 009

Edge:
edgeLabel: used
edgeId: 442.895
FromRole [outArg name]: Admissions
ToRole [inArg name] InfectedPatients
From: BI12bd5 To: E43xa78
Creation Time: 23 May
Creator: BI12bd5
IntegrityOfTransmission: Medium
…

NodeType: Process
nodeId: BI12bd5

ResourceDescription: Epidemic
Projector, v3
Process author: I.M. Programmer
Resource: …/…/jones_code

InvcationTime: 23May
Invoker: Analyst Smith

Figure 3: Properties and values for some nodes

from Fig. 1.

5

combination of attribute values, making the user-to-

role assignment and permission-to-role assignment

tasks prohibitively expensive‖ [31]. If a new resource

needs new policies, it needs a new set of roles, and

users need to be provisioned into these. For example,

a project management system may already know that

Joe has joined a project team, that Mary is an MD, or

that Task6 has been completed and roles in it are no

longer valid, but this knowledge must be separately

expressed and kept current as role assignments [26].

Finally, RBAC does not permit predicates that

address resource or environment attributes, e.g. that a

medical report is from Psychiatry, or that a request

was submitted at 3AM.

Attribute-based access control (ABAC) provides a

more scalable alternative that satisfies these

objections. Each relevant factor (e.g. project

assignment, threat severity) is an attribute, which can

be independently managed3. A predicate can

reference as many different attributes as needed.

Typically, attributes represent uncontroversial factual

statements asserted by a trusted source, e.g. the

current date, or that Analyst Smith’s assignment is

BioDesk. One can also define computed attributes,

e.g. attnew (att1 att2) (att3> 2).

For each protected item, an administrator defines

an access predicate, which is formally a derived,

unnamed attribute. The evaluator, or ―policy decision

point‖, obtains attribute-value pairs for this request

from an attribute service.4

 If the predicate returns

True, access is permitted.

The approach has several advantages. Since each

attribute is managed independently, one supplies a

linear amount of information (sum, not product, of

the attribute extents). It is easy to incorporate

multiple clauses. To reference a wider set of

information, the predicate can reach into the existing

information system.

Administrators and system owners collaborate to

manage the attribute set. Each attribute has a unique

3 For compatibility with existing systems, a role can

be treated as an attribute.
4 Attribute infrastructures typically provide a service

interface through which evaluators can request

attributes they need. Behind the scenes, attributes

may come from the request message, directories,

services, and databases.

name, e.g. a URI. The unavoidable decentralization

gives rise to the usual problems of semantic

heterogeneity, and of motivating data providers

across organizations [27]. Administrators may define

new attributes, and as in other flexible large scale

data environments, they are allowed to invent or

import attribute names in their own name spaces.

Standards and commercial ABAC

implementations are maturing, and we have

personally observed several large government

organizations exploring ABAC. They particularly

like the fact that one can add new users simply by

making their attributes available -- there is no need to

―provision‖ them (i.e. to insert users into each

relevant role). Additionally, new objects can be

protected by defining predicates over existing

attributes. XACML [2] is a standard language for

passing predicates to enforcers. The SAML standard

[1] allows assertions about attribute values and the

trust in them to be passed around a distributed

system.

3.2. ABAC and Modular Concerns
ABAC has attracted wide interest in the security

community. We enhance it here by tying it to explicit

concerns. Even when all the concerns on an item are

managed by a single person, the modularity and

explicit links make it easier to edit or audit.

We propose an extension of ABAC with explicit

support for modular capture of concerns, i.e. named

requirements that are linked to expression fragments

that may be put into the access predicate. The

administrator can delegate to other stakeholders the

ability to define new attributes as well as access

predicates. The administrator then writes (or,

preferably, selects from a pre-defined library) a

combiner predicate. The most common combiners are

likely to be conjunction, which gives all authorized

stakeholders a veto, weighted voting, and disjunctions

representing alternate scenarios, as illustrated in the

Animal_Testing_Access predicate, but administrators

may develop their own as needed. The advantage of

this approach is increased modularity, traceability,

and (optionally) delegation.

 Each concern (e.g. to protect privacy or

proprietary information such as the Epidemic

Projector algorithm) can be assigned an attribute.

When change is needed, the effort is modular: only

one attribute requires inspection. Traceability is easy.

6

While lineage access controls motivated us to add

modular capture of stakeholder concerns to ABAC,

we note that these capabilities have much broader

applicability. For example, before a billing record can

be released, a hospital must examine proprietary

pricing concerns plus both the patient’s and the

doctor’s privacy concerns. Similarly, before a

research study can be released, one needs to see

whether patients have given permission (or been de-

identified), whether the researcher is willing to reveal

his data to potential competitors, and whether the

funding agency is satisfied.

3.3. ABAC and Sharing the Power
The example access predicate in Section 1 had

contributions covering many different concerns, from

many different people. One needs an authority

structure to determine who can say how those

contributions are to be put together, and then a

process for those with proper authority to specify

each needed combiner.

Complex predicates like the one shown can arise

in any arena, not just lineage. However, lineage is

particularly prone to complex authority structures,

because it often tracks information passing through

many organizations, utilizing data and processes

derived from disparate individuals and entities, and

because a graph edge often connects independently

owned processes. Other e-science stakeholders who

may want a voice include suppliers of workflow

templates, scientific funding agencies, and oversight

agencies.

Thus, it is rarely acceptable to appoint a lineage

system administrator and give her full authority to

decide what access controls to specify. Rather, the

access predicate should reflect the different

stakeholders’ contributions, combined in a way

specified by higher level stakeholders. Furthermore,

when a stakeholder wants to change what she has

specified, she should be able to change it directly,

rather than sending an email to an administrator

requesting a change.

We outline here how to build on an ABAC system

to achieve this flexibility, providing constructs and

processes. The delegation operation is ordinary; the

novelty is the process for using it. We begin with an

overview, and then give an explicit algorithm.

For uniformity, the access predicate for each

protected item is treated as an attribute, and each

attribute has a single authority. Normally the

authority is an administrator; occasionally (e.g. for

edges) it is the lineage system itself; for attributes

that are statements of fact, it is an external source

(e.g. an enterprise directory).

The system helps attribute owners establish shared

responsibility for their attribute, beginning with the

top level access predicate and recursing downward.

The owner of attribute A specifies a derivation for the

value of A, by one of the following methods:

 The owner provides a direct means (for

example, one might look up a value in a

database, or check membership in a traditional

access control list), OR ELSE

 The owner provides an expression tree to derive

the attribute value:

o Pick a combiner function for the root.

(One can create and register a new one as

part of this step.)

o Bind some of the combiner’s input

arguments to attributes that already exist.

o For each input argument that is not yet

bound,

 Define a new attribute, with a unique

URI (the definer is its owner, and

must describe its meaning in text and

bind it to input argument(s)), OR

 Optionally delegate ownership to

somebody else.

 Recursively, derive the value of newly created

attributes, until it grounds in the first bulleted

step.

Delegation enables the work to be shared and to

be done by the proper stakeholder (especially when

different organizations are involved).

3.4. Lineage Security over our ABAC

Framework

As described above, fine-grained ABAC,

complemented by tools to manage multiple

stakeholder concerns, offers many benefits for

lineage security. While the basic techniques apply to

diverse applications (beyond lineage), we now

consider special properties of lineage information

that we can exploit to simplify access control policy

administration. Ease of administration is critical; if

administrators are forced to wade through long lists

of attributes and stakeholders, the access control

7

system is unusable. Therefore, we seek system

defaults that predefine an initial set of protection

concerns and their stakeholders. Additionally, pre-

defined workflows present an opportunity for further

reducing the security administration burden, and side

agreements provide a convenient workaround for

capabilities not built in.

For ease of administration, different types of

objects within a lineage graph should have pre-

defined default stakeholders. For example, for

process nodes, the default stakeholders are the author

(e.g., code developer) and the invoker of a specific

execution. Meanwhile, for data nodes, we must

distinguish between external data and data generated

by a process known to the lineage system. While

stakeholder concerns (if any) must be explicitly

asserted for external data, for other data the default

stakeholders are those defined for the process that

produced the data. Most often, the default will be the

invoker of the process. Finally, for edges, the

stakeholders are the union of the stakeholders of the

source and destination nodes, although the concerns

of stakeholders for each node are combined

separately. The combined predicate from source node

stakeholders represents what they are willing to

reveal about the edge, as does the combined predicate

of destination node stakeholders. The concerns of

both nodes’ stakeholders are then reconciled to

determine whether to reveal the edge. The default is a

veto – access to the edge is only granted if both sets

of stakeholders allow it.

Up to this point, we have discussed ad hoc

executions. However, a large body of lineage

research concerns routine computations in which a

pre-defined workflow is run many times [10, 23, 25].

The lineage system can automatically generate much

of the information needed to describe the resulting

history to the lineage store. The workflow creator is

allowed to express access control specifications on

nodes or properties, and is automatically made an

additional stakeholder whose concerns will be

combined with those of others. Also, if a (process or

data) object is to be used in many instances of the

workflow, the item’s policy can be propagated

automatically into the instantiations. Much of this

was done in [12]. We suggest going farther by

propagating access predicates on the properties, and

coping with mixed histories (partly ad hoc and partly

derived from workflows).

To keep the lineage system simple, we did not

attempt to provide all possible constructs, nor to

define all possible classes of Concern or Stakeholder.

One omission was sticky policies (a sort of

mandatory access control that goes from a node to all

nodes downstream, requiring that the certain clauses

be attached to policies on the downstream objects).

For example a GNU public license requires that

derived products be freely shared, if deployed as a

single package. Additionally, we did not

automatically build in a veto right for certain

stakeholders, e.g. a company which may hold

proprietary rights to all data produced by its

employees, or a funding agency which may insist that

all grantees reveal how they produced their results.

We know of no ABAC constructs for this. Such

situations can be handled by side agreements among

administrators, e.g. agreeing to insert a veto or to

extend access to organizations that maintain a non-

disclosure agreement. In addition to keeping the

lineage system of manageable size, there is another

reason not to build constructs for all these cases into

the lineage model. Many side agreements may need

to cover the base system as well as lineage, and there

is little chance of extending the models in all relevant

base systems.

4. Related Work

4.1. Lineage Systems

Lineage has become an active research area. Some

systems collect lineage generated from executing pre-

defined, explicit workflows [10, 15, 23, 25]. Other

systems monitor users’ ad hoc executions [17, 24].

Lineage within databases [4, 9], mechanisms to help

users query and navigate the lineage data [14], and

topics such as lineage storage efficiency [11] have

also been explored. The Open Provenance Model

(OPM) [22] is a high level attempt to model generic

lineage graphs and their component artifacts,

processes and edges.

As lineage systems gain traction, they will be used

with sensitive data and processes, e.g. medical data

[3, 28]. The need for secure lineage is outlined in [6,

8, 18, 29]. The current body of research can be

broken out into three general categories: securing the

underlying lineage information from tamper [32];

enforcing expected behavior [19], and specifying

8

access controls. Several groups have proposed access

control models for lineage. In [30], a high level

overview of security concerns in a SOA environment

are presented. In particular, a basic access control

policy that allows users to access lineage nodes if the

level(user) ≥ level(node). [7] breaks lineage

information into nodes and edges, specifying a

RBAC policy for distinct lineage information. In a

different take, [13] utilizes information about the past

ownership of an object (or lineage) to determine

whether or not a data object should be released.

Finally, [12] uses role-based access control, and

explores how to release lineage views based on this

model. Our work is the first to explore application of

fine-grained ABAC to lineage information.

4.2. Security models

Access control lists simply designate which users

may access each object. Role-based access control

(RBAC) offers a major improvement over access

control lists and is used in many systems. Two simple

forms are specified by the NIST [16] and SQL

standards, and in many application server and DBMS

products. Dozens of extensions have been proposed,

e.g. GTRBAC [5], but they have gained little

industrial traction. In general, RBAC suffers from

scalability problems since security administrators

must maintain their own up-to-date model of

resources and users [26]. SQL and XML security

models both handle structured data. SQL protections

(role based controls to table, column, or row) are

insufficient to provide a convenient basis for securing

lineage information; cell-granularity extensions are

immature [20]. Furthermore, one cannot easily

express general predicates directly (and use of a

separate view for each user profile is too awkward).

Also, there is no construct for two administrators to

share control over a policy. XML security is less

mature and less standardized than SQL security. It is

also more complex, since it addresses nesting and

paths in trees, e.g. to authorize a node to be bypassed

so its children remain visible [21].

5. Conclusions

Among our users, we have encountered diverse needs

for securing lineage information. Our approach

emphasizes general purpose constructs for both

lineage and security models, thereby giving vendors

more incentive to build, and users more incentive to

learn. At the same time, the general constructs are

well suited to extension, customization, and

traceability.

We have suggested that the lineage community

move to attribute-based access controls, which are

more flexible than roles in situations where an access

predicate tests multiple kinds of information. We also

saw that predicate expressions were a convenient way

to combine multiple concerns into a decision rule.

We believe that concerns need to be managed

explicitly, so their associated predicates can be

separately explained, updated, validated, and audited.

From here, it is a small step to managing the split of

concerns and delegation of parts of it. We propose

defaults that are suited to lineage systems.

We are implementing these access control

techniques within the PLUS system [6]. For

administration and also run-time efficiency, our

prototype lets an administrator or stakeholder choose

a set of items and attach the same predicate to all of

them. We have identified a set of default concerns

and their stakeholders; administrators may add

additional ones. At the time of this writing, we use

simple conjunctions – vetoes – for all combinations

of concerns. Meanwhile, we demonstrate our

prototype frequently to potential users of lineage

information, and are gathering requirements and

reactions.

Based on this information, we are investigating

―surrogate‖ answers – a general facility that, when a

user is unable to access some of the desired

information, gives approximate or other answers that

can help. Additionally, we plan to exploit the

modular specification of access control predicates to

explain authorization failures—e.g. the concerns

about privacy of patient medical information were

satisfied, but not those pertaining to financial

information.

References

[1] "SAML," http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=s

ecurity.

[2] "XACML," http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=x

acml.

[3] E. W. Anderson, S. P. Callahan, G. T. Y. Chen, J.

Freire, E. Santos, C. E. Scheidegger, C. T. Silva,

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

9

and H. T. Vo, "Visualization in Radiation

Oncology: Towards Replacing the Laboratory

Notebook," SCI Institute Technical Report, No.

UUSCI-2006-17, University of Utah 2006.

[4] O. Benjelloun, A. D. Sarma, A. Halevy, and J.

Widom, "ULDBs: Databases with Uncertainty

and Lineage," VLDB Seoul, Korea, pp. 953-964,

2006.

[5] R. Bhatti, J. Joshi, E. Bertino, and A. Ghafoor,

"X-GTRBAC Admin: A Decentralized

Administration Model for Enterprise Wide

Access Control," X-GTRBAC Admin: A

Decentralized Administration Model for

Enterprise Wide Access Control, 2004.

[6] B. T. Blaustein, L. Seligman, M. Morse, M. D.

Allen, and A. Rosenthal, "PLUS: Synthesizing

privacy, lineage, uncertainty and security," ICDE

Workshops, pp. 242-245, 2008.

[7] U. Braun and A. Shinnar, "A Security Model for

Provenance," in Technical Report, vol. TR-04-

06: Harvard University Computer Science, 2006.

[8] U. Braun, A. Shinnar, and M. Seltzer, "Securing

Provenance," Securing Provenance, 2008.

[9] P. Buneman, J. Cheney, and S. Vansummeren,

"On the Expressiveness of Implicit Provenance in

Query and Update Languages.," ICDT, pp. 209-

223, 2007.

[10] S. P. Callahan, J. Freire, E. Santos, C. E.

Scheidegger, and C. T. S. H. T. Vo, "VisTrails:

Visualization meets Data Management,"

SIGMOD, pp. 745-747, 2006.

[11] A. Chapman, H. V. Jagadish, and P. Ramanan,

"Efficient Provenance Storage," SIGMOD, pp.

993-1006, 2008.

[12] A. Chebotko, S. Chang, S. Lu, F. Fotouhi, and P.

Yang, "Scientific Workflow Provenance

Querying with Security Views," WAIM, 2008.

[13] A. Cirillo, R. Jagadeesan, C. Pitcher, and J. Riely,

"Tapido: Trust and Authorization Via Provenance

and Integrity in Distributed Objects," Tapido:

Trust and Authorization Via Provenance and

Integrity in Distributed Objects, 2008.

[14] S. Cohen-Boulakia, O. Biton, S. Cohen, and S.

Davidson, "Addressing the provenance challenge

using ZOOM," Concurrency and Computation:

Practice and Experience, vol. 20, pp. 497-506,

2008.

[15] S. Davidson, S. Cohen-Boulakia, A. Eyal, B.

Ludascher, T. McPhillips, S. Bowers, and J.

Freire, "Provenance in Scientific Workflow

Systems," IEEE Data Engineering Bulletin, vol.

32, pp. 44-50, 2007.

[16] D. Ferraiolo, R. Kuhn, and R. Chandramouli,

Role Based Access Control: Artech House, 2004.

[17] J. Frew, D. Metzger, and P. Slaughter,

"Automatic capture and reconstruction of

computational provenance," Concurr. Comput. :

Pract. Exper., vol. 20, pp. 485-496, 2008.

[18] R. Hasan, R. Sion, and M. Winslett, "Introducing

Secure Provenance: Problems and Challenges,"

Proceedings of the Third International Workshop

on Storage Security and Survivability, 2007.

[19] I. Khan, R. Schroeter, and J. Hunter,

"Implementing a Secure Annotation Service,"

Implementing a Secure Annotation Service,

2006.

[20] K. LeFevre, R. Agarwal, V. Ercegovac, R.

Ramakrishnan, Y. Xu, and D. J. DeWitt,

"Limiting Disclosure in Hippocratic Databases,"

Limiting Disclosure in Hippocratic Databases,

2004.

[21] M. Makoto, T. Akihiko, K. Michiharu, and H.

Satoshi, "XML access control using static

analysis," ACM Trans. Inf. Syst. Secur., vol. 9,

pp. 292-324, 2006.

[22] L. Moreau, J. Freire, J. Futrelle, R. McGrath, J.

Myers, and P. Paulson, "The Open Provenance

Model," University of Southampton 2007.

[23] L. Moreau, B. Ludäscher, I. Altintas, R. S. Barga,

S. Bowers, S. Callahan, G. C. JR., B. Clifford, S.

Cohen, S. Cohen-Boulakia, S. Davidson, E.

Deelman, L. Digiampietri, I. Foster, J. Freire, J.

Frew, J. Futrelle, T. Gibson, Y. Gil, C. Goble, J.

Golbeck, P. Groth, D. A. Holland, S. Jiang, J.

Kim, D. Koop, A. Krenek, T. McPhillips, G.

Mehta, S. Miles, D. Metzger, S. Munroe, J.

Myers, B. Plale, N. Podhorszki, V. Ratnakar, E.

Santos, C. Scheidegger, K. Schuchardt, M.

Seltzer, Y. L. Simmhan, C. Silva, P. Slaughter, E.

Stephan, R. Stevens, D. Turi, H. Vo, M. Wilde, J.

Zhao, and Y. Zhao, "Special Issue: The First

Provenance Challenge," Concurrency and

Computation: Practice and Experience, vol. 20,

pp. 409-418, 2008.

[24] K.-K. Muniswamy-Reddy, D. A. Holland, U.

Braun, and M. I. Seltzer, "Provenance-Aware

Storage Systems," USENIX Annual Technical

Conference, pp. 43-56, 2006.

[25] T. Oinn, M. Greenwood, M. Addis, M. N.

Alpdemir, J. Ferris, K. Glover, C. Goble, A.

Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M.

R. Pocock, M. Senger, R. Stevens, A. Wipat, and

C. Wroe, "Taverna: lessons in creating a

workflow environment for the life sciences:

Research Articles," Concurr. Comput. : Pract.

Exper., vol. 18, pp. 1067-1100, 2006.

[26] A. Rosenthal, "Scalable Access Policy

Administration: Opinions and a Research Agenda

" in Security Management, Integrity, and Internal

10

Control in Information Systems, IFIP

International Federation for Information

Processing, 2006, pp. 355-370.

[27] A. Rosenthal, L. J. Seligman, and S. Renner,

"From semantic integration to semantics

management: case studies and a way forward,"

SIGMOD Record, vol. 33, pp. 44-50, 2004.

[28] T. Stef-Praun, B. Clifford, I. Foster, U. Hasson,

M. Hategan, S. Small, M. Wilde, and Y. Zhao,

"Accelerating Medical Research using the Swift

Workflow System," Health Grid, 2007.

[29] V. Tan, P. Groth, S. Miles, S. Jiang, S. Munroe,

S. Tsasakou, and L. Moreau, "Security Issues in a

SOA-Based Provenance System," Security Issues

in a SOA-Based Provenance System, 2006.

[30] W. T. Tsai, X. Wei, Y. Chen, R. Paul, J.-Y.

Chung, and D. Zhang, "Data provenance in SOA:

security, reliability, and integrity," Journal

Service Oriented Computing and Applications,

2007.

[31] E. Yuan and J. Tong, "Attributed Based Access

Control (ABAC) for Web Services," Attributed

Based Access Control (ABAC) for Web Services,

2005.

[32] J. Zhang, A. Chapman, and K. LeFevre, "Fine-

Grained Tamper-Evident Data Pedigree,"

University of Michigan Technical Report, 2009.

