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Abstract 

Lineage stores often contain sensitive information 

that needs protection from unauthorized access. We 

build on prior work for security and privacy of 

lineage information, focusing on complex conditions 

and scalable administration. We use Attribute-Based 

Access Control (ABAC) to express conditions based 

on many attributes, instead of roles. We then make 

administration and management more scalable, 

instead of managing large, monolithic access 

predicates for each object.  To do so, we first support 

modular traceability and maintainability for separate 

concerns (e.g. security, legally mandated privacy, 

organizationally mandated privacy).  We then 

provide constructs to manage authority when 

multiple administrators must collaborate. We show 

that these security techniques are needed for easy 

lineage security administration. 

1. Introduction 

Several papers have noted that lineage (also known 

as provenance) information may often contain 

sensitive information that must be protected, e.g. [8, 

18, 29], and a few have described access control 

mechanisms appropriate for lineage data [7, 8, 12]. 

This paper focuses on managing the access policies 

on nodes, edges, and properties of a lineage graph. 

We extend the prior work with these contributions: 

 We allow finer-grained policies—i.e. for 

particular properties of an individual lineage 

node or edge—and illustrate their importance. 

We also categorize properties in a way that 

helps assign administrators for parts of a policy. 

 We base our model on attribute-based access 

control (ABAC). Unlike role-based access 

control (RBAC), the predominant model in 

prior lineage security work, ABAC can express 

general access predicates, referencing any 

available attribute information in the 

environment.  

 We enhance modularity of ABAC by adding a 

model for separate capture and combination of 

multiple concerns. The explicit decomposition 

of access predicates makes them easier to 

understand, maintain, and trace to specific 

concerns. We illustrate its applicability to 

lineage security and describe key stakeholder 

roles for lineage scenarios drawn from 

enterprise applications.  

 We provide a way to manage split authority, 

where different concerns (or stakes) are 

managed by different people (stakeholders). 

Following the conventions of the Open 

Provenance Model (OPM) [22], data (artifacts) and 

processes are represented by nodes; each edge 

represents a relationship (e.g. generatedBy). Edges 

represent causality and point inverse to data flow; 

they may also be labeled with specific roles, e.g. 

input_arg_X. 

Example: Consider the lineage graph in Figure 1, 

which shows the data (ovals) and processes 

(rectangles) used to produce an Emergency 

Preparedness Office’s (EPO) Epidemic Warning 

Report (dashed outline). Mary, a Health Department 

recipient of an epidemic warning report wants to 

know how it was produced in order to know how to 

best interpret it, whether to trust it for her purposes, 

etc. 

However, in determining which parts of the 

lineage graph to reveal to Mary, the lineage system 

should consider several stakeholders’ interests. For 

example, the provider of animal test data may want 

funding agencies to know he contributed to the 

intelligence report, but may not want the public to 

know. This same investigator demands that high- 

level approvals be required to release the edge with 

role ―Animal_Tests‖. Additionally, the properties of 

a lineage node may contain even more sensitive 

information. For instance, while most cleared 

analysts can see the BioThreat Intelligence report 

node, the authoring agent’s identity should be 

protected by only releasing this data to a very 

restricted group of users.  



2 

The requirement to protect specific properties of a 

node, such as the author of a report or invoker of an 

execution, illustrates the need for fine-grained access 

controls; treating a given node or edge as a monolith 

is often inadequate. There may also be conflicts 

among interested parties about how restricted the 

lineage information should be. For example, the 

author of the Epidemic Projector, Prof. Jones, may 

claim that the information about the algorithm should 

be visible to anyone, while Analyst Smith, the 

invoker of the program, wishes this particular use to 

be considered extremely sensitive. Thus, any security 

model must allow both Analyst Smith and Professor 

Jones to express their concerns, and determine how 

best to honor them. A good model will let each of 

them reexamine and edit their concerns, and 

regenerate the access predicates. 

Unfortunately, current access control mechanisms 

are too hard to administer where there are multiple 

stakeholder concerns about a single object. An 

administrator must consider all the relevant 

stakeholders’ concerns and define the complicated 

policies that combine them. Importantly, the separate 

concerns are not currently modeled. The resulting 

composite policies are not modular; they lack 

traceability; they’re difficult to understand and edit, 

and they’re not well-suited to gap analysis. For 

example, suppose access to lineage information about 

Animal Testing depends on the following predicate 

(the arguments are discussed in Section 3.1):   

 

 

 

Animal_Testing_Access(user, resource, environment) 

≔ [User.Division= Intelligence  
User.AssignedProject.Type=Epidemiology  
Request.SourceDomain is in {.gov, .mil}  
Experiment.ReleaseMarking =  Intel  
(ExperSubject.Type = inanimate  
ExperSubject.Type = animal   
        experimenterName.pseudonym=true  
ExperSubject.Type = human   
        releaseOnFile(ExperSubject)  

  [Request.HasApproval.Level ≥ 4  
(Request.HasApproval.Level ≥ 2  
          threat.Status = Red)] 
This predicate exploits a wide variety of 

knowledge about the request, coming from multiple 

sources. It is hard to imagine encompassing it all in a 

role hierarchy. There are several categories of 

concerns here, such as government secrecy, 

experimental subject privacy, and experimenter 

privacy. Even within categories, some stem from 

agency-wide substantive policy (e.g. do not release 

outside the agency), others are aware of the sort of 

information this is (only epidemiologists have 

access), and some are because an authority has 

insisted on crisis workarounds (the disjuncts at the 

end). 

In such an environment, a lineage service exists 

mainly to let users execute queries over the lineage 

graph, e.g. to find all predecessors and successors of 

a node, while applying various predicates and 

projections. Lineage security ensures that each query 

executes on a database subset, i.e. nodes, edges, and 

property values for which the request satisfies the 

access control predicates. Previous researchers have 

described basic capabilities, but have not addressed 

three more advanced requirements: 

First, the access predicate on a node, edge, or 

property may involve multiple subexpressions, 

dependent on different attributes of users, the 

resource, and the environment. Role-based access 

control is not easily extended to support this.  

Second, the predicate may include terms 

representing many distinct concerns that ought to be 

managed modularly, such as security, legally 

mandated privacy, and organizationally mandated 

privacy. If one of these concerns changes, or if 

compliance is being audited, we do not want to wade 

through a 12-line predicate. 

Epidemic
Projector, 
v3

CDC
Historical 
Disease Data 

TrakTek, Inc.
Disease 
Spread  
Monitor

Author: 
Prof. 
Jones

Invoker: 
Analyst 
Smith

Author: 
Agent 
009

Bio-Threat 
Intelligence

EPO 
Epidemic
Forecast 

Pharmacy
Prescription
Data

Hospital
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EPO Epidemic
Warning
Reports

Animal Tests

 
Figure 1: Lineage Graph for EPO Epidemic Warning 

Reports. 
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Third, there may be multiple stakeholders 

involved in setting the policy on a protected item, and 

it is necessary to govern how the different desires are 

to be combined. For example, if privacy officers want 

only doctors to see certain information, and existing 

workflows require that it be available to financial 

managers, how does the system help administrators 

manage these conflicting relationships?  

Any access control system for lineage must allow 

the following: determine access based on values of 

multiple attributes; handle multiple goals, each with 

separately evolving tradeoffs and legal requirements; 

and appropriately combine the all stakeholders’ 

concerns. 

One obvious but inadequate solution is to appoint 

a lineage system administrator. However, the 

stakeholders whose systems supply the lineage data 

may not be willing to give this person discretion to 

make substantive policy decisions. In our experience, 

the lineage service is often a political lightweight, not 

an 800-pound gorilla.  Also, the appointment of an 

administrator does not make the problems of 

stakeholder conflicts and concern management go 

away, nor does it give the administrator guidance on 

how to resolve them.  

When faced with complex expressions, current 

access control mechanisms lack traceability and 

maintainability, i.e. they do not connect clauses in the 

predicate to the concern that motivated them, nor do 

they help an administrator focus only on the relevant 

portion when editing predicates. For example, the 

system should be able to show which clauses in the 

predicate exist to protect patient privacy vs. 

experimenter protection vs. national security. If a 

privacy regulation changes, we want a capability to 

edit just the relevant sub-specifications. When the 

HIPAA1 auditors arrive, we want to highlight the 

controls motivated by patient privacy. If HIPAA 

rules change, we want to edit this portion without 

needing to extract it from a dozen other clauses.  

We lay out our system model in Section 2. In 

Section 3, we begin by showing how a general 

purpose attribute-based access control capability can 

support fine-grained access control for lineage data. 

We then extend vanilla ABAC to provide better 

maintainability, traceability, and sharing of authority, 

and show how this fits the needs of lineage. Section 4 

discusses related work, and Section 5 describes our 

ongoing efforts to implement these ideas and areas 

for future research. 

2. High-Level Architecture 

As users go about their ordinary tasks, creating or 

manipulating data on base systems, information about 

their actions is reported to the lineage store in ways 

that minimize intrusion on the base (i.e. application) 

systems [10, 15, 17, 25].  Figure 2 shows that the 

lineage storage, querying and access controls are 

separate from these base systems. Access controls on 

base systems are unaffected; the lineage store 

controls access to lineage information. The lineage 

store is logically unified but may be physically 

distributed. 

A lineage graph describes a series of process 

invocations, executed by one or more users, in 

pursuit of their various goals. We follow ES3 [17] 

and PASS [24] in that generation is ad hoc – 

covering whatever was reported to the lineage 

system. Unlike traditional workflows (discussed in 

Section 3.4), the tasks, or steps, need not be defined 

prior to execution, so graphs may grow indefinitely 

and in unpredictable ways. In fact, information is tied 

together by data usage (i.e. graph connectivity), 

rather than by pre-defined patterns. 

                                                           
1 Privacy regulations imposed by the U.S. Health 

Insurance Portability and Accountability Act of 

1996 
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Figure 2: An example system architecture. Lineage 

storage and access control are on the right. 
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A lineage graph consists of a set of nodes, N, and 

a set of edges, E. As in [8], each object (node or 

edge) has descriptive properties that optionally 

appear on each node, as illustrated in Figure 3. A 

lineage manager should predefine and categorize a 

starter set of properties, such as resource description, 

invocation time, etc. 

A lineage query consists of edge traversal forward 

or backward from a start node (or node set), applying 

access predicates to node properties to determine 

which property values should be returned.  

Our security model protects objects (nodes and 

edges) and the values of their properties. These are 

called protected items. There is an access predicate 

that controls the visibility of each protected object 

and property.
2 

Edges which are not visible to a 

particular user are not traversed in executing lineage 

queries for that user. Thus, if the lineage graph 

contains three nodes that the user is entitled to see, 

but he is not entitled to see the edges between them, a 

query on that graph will return only the single start 

node. To aid security administration, we categorize 

properties into buckets that help determine default 

stakeholders.   

 Description of an entity in the base system. 

Examples include data description, data 

location, process description, etc. These items 

will be in the lineage graph only if the base 

system reports them to the lineage system. For 

                                                           
2 A practical system will encourage use of the same 

predicate to control multiple items. 

instance, in Figure 3, the process node includes 

the description ―Epidemic Projector, v3‖. 

 Link to the underlying information. Base 

systems may keep more extensive information 

under their control, providing the lineage 

system only with a link, as in the Resource 

property of the nodes in Figure 3. 

 Description of a process invocation or creation 

of a dataset. For instance, the time started, time 

ended, who invoked it, whether data integrity 

was protected, etc. In the right-hand node record 

of Figure 3, we can see that Analyst Smith 

invoked the process. 

This list is not intended to be exhaustive, but it 

gives lineage system security administrators an initial 

set of node and edge properties to address in 

formulating access policies.  

3. Access Control Extensions for Lineage 

We now discuss desirable extensions to prior work 

on access controls for lineage data: attribute-based 

access controls, modularization of concerns, and 

sharing of authority.  

Section 3.1 shows the advantages of applying 

ABAC in lineage security. The next two subsections 

propose general purpose enhancements to ABAC 

formalisms and administrative processes, extensions 

that are particularly useful in settings such as lineage. 

In Section 3.2, we show how to handle with multiple 

concerns, while in Section 3.3 we deal with multiple 

stakeholders. Section 3.4 shows opportunities to 

build in lineage-specific definitions and defaults, 

without which the administrative burden would be 

prohibitive.  

3.1. Moving Toward Attribute-based 

Access Control 

In this section, we argue that ABAC, not RBAC, is 

the right basis for lineage security research, and give 

an overview of ABAC. Later sections exploit the 

flexibility of ABAC to propose additional 

capabilities.  

Prior lineage security proposals used role-based 

access control (RBAC) [8, 12]. Unfortunately, RBAC 

is known to suffer from serious scalability problems: 

As ―policy becomes finer-grained and more attributes 

are involved, one gets a separate role for each 

NodeType: Data (i.e., artifact)
nodeId: E43xa78

ResourceDescription: Bio-Threat 
Intelligence
Resource: …/I/bio-div/report1234

Time: 22 May
Creator: Agent 009

Edge:
edgeLabel: used
edgeId: 442.895
FromRole [outArg name]:  Admissions
ToRole [inArg name] InfectedPatients
From: BI12bd5 To: E43xa78
Creation Time: 23 May
Creator: BI12bd5 
IntegrityOfTransmission: Medium
…

NodeType:  Process
nodeId: BI12bd5

ResourceDescription: Epidemic 
Projector, v3
Process author: I.M. Programmer
Resource: …/…/jones_code

InvcationTime: 23May
Invoker: Analyst Smith

 
Figure 3: Properties and values for some nodes 

from Fig. 1. 
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combination of attribute values, making the user-to-

role assignment and permission-to-role assignment 

tasks prohibitively expensive‖ [31]. If a new resource 

needs new policies, it needs a new set of roles, and 

users need to be provisioned into these. For example, 

a project management system may already know that 

Joe has joined a project team,  that Mary is an MD, or 

that Task6 has been completed and roles in it are no 

longer valid, but this knowledge must be separately 

expressed and kept current as role assignments [26].  

Finally, RBAC does not permit predicates that 

address resource or environment attributes, e.g. that a 

medical report is from Psychiatry, or that a request 

was submitted at 3AM.  

Attribute-based access control (ABAC) provides a 

more scalable alternative that satisfies these 

objections. Each relevant factor (e.g. project 

assignment, threat severity) is an attribute, which can 

be independently managed3. A predicate can 

reference as many different attributes as needed. 

Typically, attributes represent uncontroversial factual 

statements asserted by a trusted source, e.g. the 

current date, or that Analyst Smith’s assignment is 

BioDesk. One can also define computed attributes, 

e.g. attnew  (att1  att2) (att3> 2).  

For each protected item, an administrator defines 

an access predicate, which is formally a derived, 

unnamed attribute. The evaluator, or ―policy decision 

point‖, obtains attribute-value pairs for this request 

from an attribute service.4
 
 If the predicate returns 

True, access is permitted. 

The approach has several advantages. Since each 

attribute is managed independently, one supplies a 

linear amount of information (sum, not product, of 

the attribute extents). It is easy to incorporate 

multiple clauses. To reference a wider set of 

information, the predicate can reach into the existing 

information system.  

Administrators and system owners collaborate to 

manage the attribute set. Each attribute has a unique 

                                                           
3 For compatibility with existing systems, a role can 

be treated as an attribute. 
4 Attribute infrastructures typically provide a service 

interface through which evaluators can request 

attributes they need. Behind the scenes, attributes 

may come from the request message, directories, 

services, and databases.  

name, e.g. a URI. The unavoidable decentralization 

gives rise to the usual problems of semantic 

heterogeneity, and of motivating data providers 

across organizations [27].  Administrators may define 

new attributes, and as in other flexible large scale 

data environments, they are allowed to invent or 

import attribute names in their own name spaces.  

Standards and commercial ABAC 

implementations are maturing, and we have 

personally observed several large government 

organizations exploring ABAC. They particularly 

like the fact that one can add new users simply by 

making their attributes available -- there is no need to 

―provision‖ them (i.e. to insert users into each 

relevant role). Additionally, new objects can be 

protected by defining predicates over existing 

attributes. XACML [2] is a standard language for 

passing predicates to enforcers. The SAML standard 

[1] allows assertions about attribute values and the 

trust in them to be passed around a distributed 

system.  

3.2. ABAC and Modular Concerns 
ABAC has attracted wide interest in the security 

community. We enhance it here by tying it to explicit 

concerns. Even when all the concerns on an item are 

managed by a single person, the modularity and 

explicit links make it easier to edit or audit.  

We propose an extension of ABAC with explicit 

support for modular capture of concerns, i.e. named 

requirements that are linked to expression fragments 

that may be put into the access predicate. The 

administrator can delegate to other stakeholders the 

ability to define new attributes as well as access 

predicates. The administrator then writes (or, 

preferably, selects from a pre-defined library) a 

combiner predicate. The most common combiners are 

likely to be conjunction, which gives all authorized 

stakeholders a veto, weighted voting, and disjunctions 

representing alternate scenarios, as illustrated in the 

Animal_Testing_Access predicate, but administrators 

may develop their own as needed. The advantage of 

this approach is increased modularity, traceability, 

and (optionally) delegation. 

  Each concern (e.g. to protect privacy or 

proprietary information such as the Epidemic 

Projector algorithm) can be assigned an attribute. 

When change is needed, the effort is modular:  only 

one attribute requires inspection. Traceability is easy.  
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While lineage access controls motivated us to add 

modular capture of stakeholder concerns to ABAC, 

we note that these capabilities have much broader 

applicability. For example, before a billing record can 

be released, a hospital must examine proprietary 

pricing concerns plus both the patient’s and the 

doctor’s privacy concerns. Similarly, before a 

research study can be released, one needs to see 

whether patients have given permission (or been de-

identified), whether the researcher is willing to reveal 

his data to potential competitors, and whether the 

funding agency is satisfied.  

3.3. ABAC and Sharing the Power 
The example access predicate in Section 1 had 

contributions covering many different concerns, from 

many different people. One needs an authority 

structure to determine who can say how those 

contributions are to be put together, and then a 

process for those with proper authority to specify 

each needed combiner. 

Complex predicates like the one shown can arise 

in any arena, not just lineage. However, lineage is 

particularly prone to complex authority structures, 

because it often tracks information passing through 

many organizations, utilizing data and processes 

derived from disparate individuals and entities, and 

because a graph edge often connects independently 

owned processes. Other e-science stakeholders who 

may want a voice include suppliers of workflow 

templates, scientific funding agencies, and oversight 

agencies.  

Thus, it is rarely acceptable to appoint a lineage 

system administrator and give her full authority to 

decide what access controls to specify. Rather, the 

access predicate should reflect the different 

stakeholders’ contributions, combined in a way 

specified by higher level stakeholders. Furthermore, 

when a stakeholder wants to change what she has 

specified, she should be able to change it directly, 

rather than sending an email to an administrator 

requesting a change.  

We outline here how to build on an ABAC system 

to achieve this flexibility, providing constructs and 

processes. The delegation operation is ordinary; the 

novelty is the process for using it. We begin with an 

overview, and then give an explicit algorithm. 

For uniformity, the access predicate for each 

protected item is treated as an attribute, and each 

attribute has a single authority.  Normally the 

authority is an administrator; occasionally (e.g. for 

edges) it is the lineage system itself; for attributes 

that are statements of fact, it is an external source 

(e.g. an enterprise directory).  

The system helps attribute owners establish shared 

responsibility for their attribute, beginning with the 

top level access predicate and recursing downward. 

The owner of attribute A specifies a derivation for the 

value of A, by one of the following methods: 

 The owner provides a direct means (for 

example, one might look up a value in a 

database, or check membership in a traditional 

access control list), OR ELSE 

 The owner provides an expression tree to derive 

the attribute value: 

o Pick a combiner function for the root. 

(One can create and register a new one as 

part of this step.) 

o Bind some of the combiner’s input 

arguments to attributes that already exist.  

o For each input argument that is not yet 

bound, 

 Define a new attribute, with a unique 

URI (the definer is its owner, and 

must describe its meaning in text and 

bind it to input argument(s)), OR 

 Optionally delegate ownership to 

somebody else. 

 Recursively, derive the value of newly created 

attributes, until it grounds in the first bulleted 

step. 

Delegation enables the work to be shared and to 

be done by the proper stakeholder (especially when 

different organizations are involved).  

3.4. Lineage Security over our ABAC 

Framework 

As described above, fine-grained ABAC, 

complemented by tools to manage multiple 

stakeholder concerns, offers many benefits for 

lineage security. While the basic techniques apply to 

diverse applications (beyond lineage), we now 

consider special properties of lineage information 

that we can exploit to simplify access control policy 

administration. Ease of administration is critical; if 

administrators are forced to wade through long lists 

of attributes and stakeholders, the access control 
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system is unusable. Therefore, we seek system 

defaults that predefine an initial set of protection 

concerns and their stakeholders. Additionally, pre-

defined workflows present an opportunity for further 

reducing the security administration burden, and side 

agreements provide a convenient workaround for 

capabilities not built in. 

For ease of administration, different types of 

objects within a lineage graph should have pre-

defined default stakeholders. For example, for 

process nodes, the default stakeholders are the author 

(e.g., code developer) and the invoker of a specific 

execution. Meanwhile, for data nodes, we must 

distinguish between external data and data generated 

by a process known to the lineage system. While 

stakeholder concerns (if any) must be explicitly 

asserted for external data, for other data the default 

stakeholders are those defined for the process that 

produced the data. Most often, the default will be the 

invoker of the process. Finally, for edges, the 

stakeholders are the union of the stakeholders of the 

source and destination nodes, although the concerns 

of stakeholders for each node are combined 

separately. The combined predicate from source node 

stakeholders represents what they are willing to 

reveal about the edge, as does the combined predicate 

of destination node stakeholders. The concerns of 

both nodes’ stakeholders are then reconciled to 

determine whether to reveal the edge. The default is a 

veto – access to the edge is only granted if both sets 

of stakeholders allow it.  

Up to this point, we have discussed ad hoc 

executions. However, a large body of lineage 

research concerns routine computations in which a 

pre-defined workflow is run many times [10, 23, 25].  

The lineage system can automatically generate much 

of the information needed to describe the resulting 

history to the lineage store. The workflow creator is 

allowed to express access control specifications on 

nodes or properties, and is automatically made an 

additional stakeholder whose concerns will be 

combined with those of others. Also, if a (process or 

data) object is to be used in many instances of the 

workflow, the item’s policy can be propagated 

automatically into the instantiations. Much of this 

was done in [12]. We suggest going farther by 

propagating access predicates on the properties, and 

coping with mixed histories (partly ad hoc and partly 

derived from workflows).  

To keep the lineage system simple, we did not 

attempt to provide all possible constructs, nor to 

define all possible classes of Concern or Stakeholder. 

One omission was sticky policies (a sort of 

mandatory access control that goes from a node to all 

nodes downstream, requiring that the certain clauses 

be attached to policies on the downstream objects). 

For example a GNU public license requires that 

derived products be freely shared, if deployed as a 

single package. Additionally, we did not 

automatically build in a veto right for certain  

stakeholders, e.g. a company which may hold 

proprietary rights to all data produced by its 

employees, or a funding agency which may insist that 

all grantees reveal how they produced their results.  

We know of no ABAC constructs for this. Such 

situations can be handled by side agreements among 

administrators, e.g. agreeing to insert a veto or to 

extend access to organizations that maintain a non-

disclosure agreement. In addition to keeping the 

lineage system of manageable size, there is another 

reason not to build constructs for all these cases into 

the lineage model. Many side agreements may need 

to cover the base system as well as lineage, and there 

is little chance of extending the models in all relevant 

base systems.  

4. Related Work 

4.1. Lineage Systems 

Lineage has become an active research area. Some 

systems collect lineage generated from executing pre-

defined, explicit workflows [10, 15, 23, 25]. Other 

systems monitor users’ ad hoc executions [17, 24]. 

Lineage within databases [4, 9], mechanisms to help 

users query and navigate the lineage data [14], and 

topics such as lineage storage efficiency [11] have 

also been explored. The Open Provenance Model 

(OPM) [22] is a high level attempt to model generic 

lineage graphs and their component artifacts, 

processes and edges. 

As lineage systems gain traction, they will be used 

with sensitive data and processes, e.g. medical data 

[3, 28]. The need for secure lineage is outlined in [6, 

8, 18, 29]. The current body of research can be 

broken out into three general categories: securing the 

underlying lineage information from tamper [32]; 

enforcing expected behavior [19], and specifying 
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access controls. Several groups have proposed access 

control models for lineage. In [30], a high level 

overview of security concerns in a SOA environment 

are presented. In particular, a basic access control 

policy that allows users to access lineage nodes if the 

level(user) ≥ level(node). [7] breaks lineage 

information into nodes and edges, specifying a 

RBAC policy for distinct lineage information. In a 

different take, [13] utilizes information about the past 

ownership of an object (or lineage) to determine 

whether or not a data object should be released. 

Finally, [12] uses role-based access control, and 

explores how to release lineage views based on this 

model. Our work is the first to explore application of 

fine-grained ABAC to lineage information.  

4.2. Security models  

Access control lists simply designate which users 

may access each object. Role-based access control 

(RBAC) offers a major improvement over access 

control lists and is used in many systems. Two simple 

forms are specified by the NIST [16] and SQL 

standards, and in many application server and DBMS 

products. Dozens of extensions have been proposed, 

e.g. GTRBAC [5], but they have gained little 

industrial traction. In general, RBAC suffers from 

scalability problems since security administrators 

must maintain their own up-to-date model of 

resources and users [26]. SQL and XML security 

models both handle structured data. SQL protections 

(role based controls to table, column, or row) are 

insufficient to provide a convenient basis for securing 

lineage information; cell-granularity extensions are 

immature [20]. Furthermore, one cannot easily 

express general predicates directly (and use of a 

separate view for each user profile is too awkward). 

Also, there is no construct for two administrators to 

share control over a policy. XML security is less 

mature and less standardized than SQL security. It is 

also more complex, since it addresses nesting and 

paths in trees, e.g. to authorize a node to be bypassed 

so its children remain visible [21]. 

5. Conclusions 

Among our users, we have encountered diverse needs 

for securing lineage information. Our approach 

emphasizes general purpose constructs for both 

lineage and security models, thereby giving vendors 

more incentive to build, and users more incentive to 

learn. At the same time, the general constructs are 

well suited to extension, customization, and 

traceability.  

We have suggested that the lineage community 

move to attribute-based access controls, which are 

more flexible than roles in situations where an access 

predicate tests multiple kinds of information. We also 

saw that predicate expressions were a convenient way 

to combine multiple concerns into a decision rule.  

We believe that concerns need to be managed 

explicitly, so their associated predicates can be 

separately explained, updated, validated, and audited. 

From here, it is a small step to managing the split of 

concerns and delegation of parts of it. We propose 

defaults that are suited to lineage systems. 

We are implementing these access control 

techniques within the PLUS system [6]. For 

administration and also run-time efficiency, our 

prototype lets an administrator or stakeholder choose 

a set of items and attach the same predicate to all of 

them. We have identified a set of default concerns 

and their stakeholders; administrators may add 

additional ones. At the time of this writing, we use 

simple conjunctions – vetoes – for all combinations 

of concerns. Meanwhile, we demonstrate our 

prototype frequently to potential users of lineage 

information, and are gathering requirements and 

reactions.  

Based on this information, we are investigating 

―surrogate‖ answers – a general facility that, when a 

user is unable to access some of the desired 

information, gives approximate or other answers that 

can help. Additionally, we plan to exploit the 

modular specification of access control predicates to 

explain authorization failures—e.g. the concerns 

about privacy of patient medical information were 

satisfied, but not those pertaining to financial 

information. 
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