On Explicit Provenance Management in RDF/S Graphs

P. Pediaditis G. Flouris
ICS-FORTH ICS-FORTH
University of Crete Greece
Greece feeo@ics.forth.gr
pped@ics.forth.gr
Abstract

The notion of RDF Named Graphs has been proposed
in order to assign provenance information to data de-
scribed using RDF triples. In this paper, we argue that
named graphs alone cannot capture provenance infor-
mation in the presence of RDFS reasoning and updates.
In order to address this problem, we introduce the no-
tion of RDF/S Graphsets: a graphset is associated with
a set of RDF named graphs and contain the triples that
are jointly owned by the named graphs that constitute
the graphset. We formalize the notions of RDF named
graphs and RDF/S graphsets and propose query and up-
date languages that can be used to handle provenance in-
formation for RDF/S graphs taking into account RDFS
semantics.

1 Introduction

An increasing number of scientific communities (such
as Bioinformatics [21, 22] and Astronomy [13]) rely on
common terminologies and reference models related to
their subject of investigation in order to share and in-
terpret scientific data world-wide. Scientists, acting as
curators, rely on a wide variety of resources to build con-
ceptual models of increasing formality (e.g., taxonomies,
reference models, ontologies) related to their subject of
study. These models are usually developed and main-
tained manually and co-evolve along with experimental
evidence produced by scientific communities worldwide.
To enforce sharing and reusability, these knowledge rep-
resentation artefacts are nowadays published using Se-
mantic Web (SW) languages such as RDF or OWL, and
essentially form a special kind of curated databases [3].
The popularity of the RDF data model [6] and RDF
Schema language (RDFS) [1] among scientific commu-
nities is due to the flexible and extensible representation
of both schema-relaxable and schema-less information
under the form of triples.

I. Fundulaki V. Christophides
ICS-FORTH ICS-FORTH
Greece University of Crete
fundul@ics.forth.gr Greece
christop @ics.forth.gr

An RDF triple, (subject, property, object), asserts
the fact that subject is associated with object through
property. A collection of (data and schema) triples
forms an RDF/S graph whose nodes represent either in-
formation resources universally identified by a Univer-
sal Resource Identifier (URI) or literals, while edges are
properties, eventually defined by one or more associated
RDFS vocabularies (comparable to relational and XML
schemas). In addition, RDF Named Graphs have been
proposed in [5, 28] to capture explicit provenance in-
formation by allowing users to refer to specific parts of
RDF/S graphs in order to decide “how credible is”, or
“how evolves” a piece of information. Intuitively, an
RDF named graph is a collection of triples associated
with a URI which can be referenced by other graphs as a
normal resource; this way, one can assign explicit prove-
nance information to this collection of triples.

RDFS is used to add semantics to RDF triples, by im-
posing inference rules [12] (mainly subsumption rela-
tionships) which can be used to entail new implicit triples
(i.e., facts) which are not explicitly asserted. There are
two different ways in which such implicit knowledge
can be viewed and this affects the assignment of prove-
nance information to such triples, as well as the seman-
tics of the update operations. Under the coherence se-
mantics [8], implicit knowledge is not depending on the
explicit one but has value on its own; therefore, there
is no need for explicit “support” of some triple. Un-
der this viewpoint, implicit triples are “first-class citi-
zens”, i.e., considered of equal value as explicit ones.
On the other hand, under the foundational semantics [8],
implicit knowledge is only valid as long as the support-
ing explicit knowledge is there. Therefore, each implicit
triple depends on the existence of the explicit triple(s)
that imply it. In this work, we assume coherence seman-
tics.

Currently, there is no adequate support for querying
and updating RDF/S graphs that takes into account both
RDF named graphs and RDFS inference. In particular,

existing declarative query and update languages for RDF
have been extended either with named graphs support
(such as Sparql [19] and Sparql Update [25]), or with
RDFS inference support [18, 20], but not with both.

In this paper, we introduce RDF/S graphsets in or-
der to cope with RDFS reasoning issues while query-
ing and updating logical modules of RDF/S graphs. An
RDF/S graphset is defined using a set of RDF named
graphs, and is itself associated with a URI and with a
set of triples whose ownership is shared by the named
graphs that constitute the graphset. The main objective
behind the introduction of this construct is i) to preserve
provenance information that would otherwise be lost in
the presence of updates and ii) to record joint ownership
of facts, something that is not possible with the use of
named graphs only.

1.1 Problem Statement

We will use, for illustration purposes, an example taken
from a bioinformatics application. The RDFS schema of
our biological example (see Figure 1) captures informa-
tion related to diseases, receptors and ligands, as well
as the relationships between them, and is contributed by
several curated databases, each one represented with one
named graph. For illustration purposes, we use the name
of the curated database as the URI of its corresponding
named graph.

Figure 1 shows the graph obtained from the triples
of sources Si, Sz and S3. The building blocks of
an RDFS vocabulary are classes and properties (bi-
nary relations between classes). Since RDF/S graphs
can be seen as a kind of labeled directed graphs, we
use the following graphical notation: classes are rep-
resented with boxes, and their instances are presented
as ovals and contain their URI reference. To dis-
tinguish between individual resources and classes, we
prefix a URI with the “&” symbol. RDFS built-in
properties [1] subclassOf, type and subpropertyOf are
represented by dashed, dotted and dotted-dashed ar-
rows respectively. If a triple (s, p, o) belongs to a

named graph whose URI is n we write sp—(n;o. For
instance, the triple (& dopamine_receptor_D2,type,-
Neurotransmitter Receptor) is provided by source
S, whereas the triple (Neurotransmitter Receptor,sc,-
Cell Receptor) is provided by source Ss.

Not surprisingly, a great part of the information cap-
tured by an RDF/S graph can be inferred by the transi-
tivity of class (and property) subsumption relationships
stated in the associated RDFS schemas. For instance, al-
though not explicitly asserted, from the graph of Figure 1
we can infer the triple (& dopamine_receptor_D2 type,-
Cell Receptor), because class Neurotransmitter Recep-

tor is a subclass of class Cell Receptor. However, this
triple does not belong to any of the considered so far
named graphs. In terms of provenance, we view the ori-
gin of this triple as composite (i.e., being shared by two
or more different sources). In our example, we need
to combine triples from sources S; and Sy to derive
triple (&dopamine_receptor_D2,type,Cell Receptor).
Shared origin (or ownership) cannot be captured by RDF
named graphs alone.

Unfortunately, shared ownership cannot be captured
by a set-theoretic-based union of the involved named
graphs either. Such a union would contain all triples
of both named graphs, and, as a consequence, all triples
computed by applying the RDFS inference rules on this
set of triples. The contents of the union are totally deter-
mined by the contents of its operands.

This has two undesirable (and related) consequences.
The first is that one cannot explicitly assert triples to be-
long to a union, since the result of the union is deter-
mined by the operands; thus, an explicit triple cannot be
asserted to be of shared origin, but should belong to some
individual named graph.

The second consequence is related to updates, which
are common practice in the context of curated databases.
Recall that, under coherence semantics, implicit triples
are of equal value as explicit ones and should not be
deleted when their support is lost; thus, when delet-
ing a triple ¢, we want to retain the implicit triples
that were inferred when ¢ was asserted in order to
preserve as much information as possible. For in-
stance, consider that the experimental evidence that
&dopamine_receptor_D2 is an instance of class Neuro-
transmitter Receptor from source S7, was erroneous and
this triple is deleted. Nevertheless, we wish to retain that
& dopamine_receptor_D2 is an instance of class Cell
Receptor. In this case, we need to associate this triple
with a set of named graphs (namely, {S1, S2}) to record
that these named graphs share the ownership of the triple.

Note that the above problems are not specific to the
union operator, but would appear in any operator-based
formalization of shared ownership. What we need here
is a first-class construct that would capture shared own-
ership independently, but without losing the connection
with the sources (named graphs) that compose the struc-
ture. This is the purpose of the RDF/S graphsets machin-
ery that is introduced here.

As a side remark, we can note that the later re-addition
of the information that & dopamine_receptor_D2 is an
instance of class Neurotransmitter Receptor by source
S1 would result to the restoration of the original RDF/S
graph. This means that our model allows the identifi-
cation of the data being deleted and subsequently added,
unlike standard provenance models (e.g., [2]), where suc-
cessive deletions and additions of the same data result to

(s1) (s1) (s1)

—_— .) /
assactadetth - (S2) bindsTo
f ' A AN
! j \
' (s1) \ (s1)
S2
CliRecqpior] %
' A A\, M
i | | \ (s2) VRN
(s2) : ‘ . \ — Qo \
| H (s2) bindsToNeurotrans (s2) (s2)
\ 1 i S VA N
| Neurotransmitter "\‘ [Neur 1i] [Neur lulator
(s2) Receptor ; i A
: A Y (s2) (S4)
4 s3 ! g
(s1) (\) ’

&schizophrenia S<— (S2) &dopamine_receptor_D2_>< (S3)

Figure 1: Collaborative Neurobiology Ontology

loss of provenance information due to the generation of
a new identifier in each addition. On the contrary, in our
context, we consider that two triples are identical when
they carry the same information; this policy is supported
(and imposed) by the fact that the constituents of triples
(i.e., the resources) are uniquely identified by their URI,
so triples with the same content are identical.

The main contributions of our work are: i) the formal-
ization of the notion of RDF/S graphsets to record and
reason about provenance information for RDF/S graphs
and ii) the elaboration of the semantics of query and
update languages for RDF/S graphs in the presence of
RDFS inference.

2 Preliminaries

As already mentioned, in the RDF data model [6], the
universe of discourse is a set of resources. A re-
source is essentially anything that can have a URI. Re-
sources are described using binary predicates which
are used to form descriptions (triples) of the form
(subject, predicate, object): a subject denotes the de-
scribed resource, a predicate denotes a resource’s prop-
erty, and an object the corresponding property’s value.
The predicate is also a resource, while an object can be a
resource or a literal value. We consider two disjoint and
infinite sets U, L, denoting the URIs and literals respec-
tively.

Definition 1 An RDF triple (subject,predicate,object)
is any element of the set U x U x (UUL).

The RDF Schema (RDFS) language [1] provides a
built-in vocabulary for asserting user-defined schemas in
the RDF data model. For instance, the RDFS names
Resource [res], Class [class] and Property [prop] could

be used as objects of triples describing class and prop-
erty types. Furthermore, one can assert instance of rela-
tionships of resources with the RDFS predicate rdf:type
[type], while subsumption relationships among classes
and properties are expressed with the RDFS subclassOf
[sc] and subpropertyOf [sp] predicates respectively. In
addition, RDFS domain [domain] and range [range]
predicates allow one to specify the domain and range to
which properties can apply. In the rest of this paper, we
consider two disjoint and infinite sets of URIs of classes
(C C U) and property types (P C U).

It should be finally stressed that RDFS schemas are
essentially descriptive and not prescriptive, designed to
represent data. We believe that this flexibility in rep-
resenting schema-relaxable (or schema-less) informa-
tion, is the main reason for RDF and RDFS popular-
ity. Using the uniform formalism of RDF triples, we
are able to represent in a flexible way both schema and
instances in the form of RDF/S graphs. It should be
noted that RDF/S graphs are not classical directed la-
beled graphs, because, for example, an RDFS predicate
(e.g., subpropertyOf) may relate other predicates (e.g.,
bindsTo and bindsToN euroTrans). Thus, the result-
ing structure is not a graph in the strict mathematical
sense. An RDF/S graph can be assigned a URI and a
collection of such graphs forms an RDF Dataset as de-
fined in [19].

To capture the fact that a triple belongs to a particular
RDF/S graph, we extend the notion of triple as follows:

Definition 2 An RDF quadruple (subject, predicate,
object,graph) is any element of the set U x U x (U U
L) x U. We denote by D the set of quadruples.

Using this definition, we can define the notion of an
RDF Dataset featuring several graphs as follows:

Definition 3 An RDF Dataset d is a finite set of quadru-
plesinD (d C D).

3 RDF Named Graphs

Intuitively, an RDF named graph is defined by a set of
triples to which we have explicitly assigned an identifier
(URI). We denote with N C U the set of named graph
URIs.

Definition 4 A named graph g,, identified by a URI n €
N, is a set of quadruples in d of the form (s, p, o, g) such
that g = n.

RDFS Inference for Named Graphs: The RDFS spec-
ification [12] relies on a set of inference rules which,
when applied to a set of triples, entail knowledge which
was not explicitly specified. We extend those inference
rules for sets of quadruples. The result shown in Ta-
ble 1 is a straightforward extension of the RDFS infer-
ence rules discussed in [11]. For instance, rule I,(LQ) de-
fines the transitivity of the sc RDFS predicate: if a class
(1 is a subclass of Cy and C5 a subclass of C3 in named
graph n4, then we infer that C'; is a subclass of C'3 in ny.
The remaining rules are defined in a similar manner.

(C, type, class, n1)
A (C,sc,C,ny)
(C1,s¢,C2,n1), (Ca,s¢c,Cs,n1)
2 (C1,sc,Cs,nq)

Reflexivity of sc

Transitivity of sc

(P, type, prop,n1)
I (P,sp, P,n1)

(P1,sp, P2,n1), (P2, sp, P3,n1)
I (P1,sp, Ps,n1)

(z,type, C1,n1), (C1,sc,C2,n1)
A (z,type, C2,n1)

Reflexivity of sp

Transitivity of sp

Transitivity of
class instantiation
(P175P7 P27n1)7 (w17pl,x27n1)

Transitivity of I,(f) :
property instantiation

(1'17P2,l'27n1)

Table 1: Inference Rules for RDF Named Graphs

The closure of an RDF named graph, as well as the
employed inference rules, are as usual abstracted by a
consequence operator, Cn. More formally, for a named
graph g, the result of Cn(g,) contains all the implicit
and explicit quadruples obtained by applying the rules in
Table 1 until no more rules can be applied. Note that
these inference rules do not span across multiple named

graphs. We say that a named graph g,, entails a quadru-
ple t = (s,p, 0,n) iff t belongs to the closure of g,,:

gnFteteCnlgn)

In some cases, we may want to restrict entailment in
order to use only some of the rules I}, ..., IS. The em-
ployed rules in such a case will be specified as a sub-
script of -; for example, the symbol g,, (71 72} t means
that ¢ is entailed by g,, using only I! I2. We say that

two named graphs 97(11) and gf«?)

g%l) = 95{” iff they are identified by the same name.

are identical, denoted by

4 RDF/S GraphSets

Intuitively, an RDF/S graphset is a set of quadruples de-
fined either extensionally (by assigning them a graph-
set identifier), or intentionally (i.e., jointly entailed by
a set of associated named graphs using the inference
rules of Table 2 — see Section 5.1). The identifier of
an RDF/S graphset is obtained via skolemization on the
URIs (names) of its associated named graphs. With-
out loss of generality, we consider singletons of named
graphs to be graphsets identified by the URI of the only
named graph in the set (i.e., the identifier of {n} is n).
We denote with I C U the set of graphset identifiers;
obviously, N C I.

Definition 5 An RDF/S graphset gs, identified by an
identifier 1 € 1 and associated with a set of named
graphs S, is a set of quadruples (s,p,0,g) in d that (1)
either are assigned identifier v (2) or are jointly entailed
by the named graphs in S, but not by any subset thereof.
Thus: ¥t = (s,p,0,9) € gs, it holds that either g = i
or 3T1,Tz,...Tisy € d, such that for all g,(q,]) e S,

g%j) T and Uj—, . s/ = t and there does not exist
quadruples in a subset S’ of S that entail t.

The above definition does now allow the construction
of graphsets by composition. Note that none of the ex-
isting approaches combine intentional and extensional
assignment of triples to graphsets (or named graphs).
In [24] named graphs are defined intentionally through
Spargl [25] views and do not support the explicit assign-
ment of triples to named graphs, whereas in [5] a purely
extensional definition is followed. The notion of graph-
sets introduced in this paper allows us to capture both the
intentional and extensional aspects of RDF datasets that
are useful to record and reason about provenance infor-
mation in the presence of updates.

Example 1. Consider the named graphs

(2) _ 0
gn =
¢¥ = {(B,sc,C,n®)}

shown in Figure 2(a) and graphset gs associated with
set S = {g%l),gn ,gn)} of named graphs and identi-
fied by 1. The set of quadruples directly associated with
the graphset is {(r,type, D,i)}. The set of quadruples
Jjointly entailed by the named graphs in N is empty since
there does not exist a quadruple t that is jointly entailed
by quadruples belonging in all of the named graphs in S.

(2)

Suppose that named graph g, ' is now

97(12) = {(A7 sc, B, n(2))})

(see Figure 2(b)). Then, the set of jointly entailed
quadruples for graphset g5 becomes:

{(Ta type7 C) Z)a (Aa SC, D7 Z)}

¢
(1)
1
C
A
(3)
\
A
|
(1)
g,

gy
ﬁ
(1)

&r
(a)

Figure 2: Graphset Example

In a similar manner as for RDF named graphs we de-
fine a consequence operator that abstracts a set of infer-
ence rules which compute the closure of a graphset. The
inference rules given in Table 1 can be applied for graph-
sets as well where n is the graphset identifier. We over-
load the notation here, and write Cn(gs) to refer to the
closure of a graphset g;. Also, we say that two graph-
sets are identical, denoted by ggl) = g§2), iff they have
the same identifier. It is straightforward to see that two
graphsets associated with the same set of named graphs
are identical via skolemization. Entailment for RDF/S
graphsets is defined as follows: a graphset ggl) entails

graphset g() 2
(1)

iff the closure of g5~ is a subset of the clo-

sure of g5/ modulo the graphset identifiers.

Consider a graphset g() with an associated set S of
named graphs; we say that named graph g, is a con-

stituent ofggl), denoted by g,, < ggl), iff g, € S.

Finally, note that graphsets can be materialized and
subsequently treated as RDF named graphs by assign-
ing them a user defined URI. The quadruples of material-
ized graphsets stem from both the intentional and exten-
sional definition and they behave as yet another source
of triples: the connection with their constituent named
graphs is lost. This is useful for distributed SW appli-
cations requiring to exchange graphsets from one RDF/S
processing system to another.

S Reasoning for RDF Datasets

In this section we discuss inference, validity and redun-
dancy elimination for RDF datasets. The validity con-
straints as well as redundancy elimination (in the style of
[26]) are defined independently of the notion of graphsets
introduced in this paper.

5.1 Inference

The RDFS inference mechanism can (and should) be ex-
tended to infer facts across graphsets. The rules in Ta-
ble 2 span across multiple graphsets and are a straightfor-
ward extension of those in Table 1. The rules in Table 2
record the graphset that the implicit quadruple belongs
to, based on those implying it.

(C, type, class, i"))
I;l): (C,sc,C,iM)

(C1,sc, Ca, i(l)), (Ca,sc, Cs, i(2>)
8% (C1,sc, Cs,i12)

Reflexivity of sc

Transitivity of sc

(P, type, prop, i(l))
1 (Psp, PiV)

(Py,sp, P2, i), (Py,sp, Ps,i?)
Transitivity of sp 154) : (Py,sp, Ps,i"?)

(z, type, C1,i M), (C1, sc, C2,i?)
IR (z, type, Ca, i)

Reflexivity of sp

Transitivity of
class instantiation
(P, sp, P2, i), (21, P, 22,i®)

Transitivity of 156) : (z1, P, xa,i1?)
property instantiation

Table 2: RDFS Inference Rules with Graphsets

In Table 2, i(V) and i(?) are graphset identifiers and we
denote with i) the identifier of the graphset whose as-
sociated named graphs are the associated named graphs

of i1 and i(®. Take, for instance, rule 1552): if

(A,sc, B,i)) with i(!) the identifier for graphset gV
and (B,sc,C,i®) with i® the identifier for graph-
set g{?), then quadruple (A, sc, C,i(1:?)) belongs to the
graphset whose associated named graphs are those of
gV, g{?) (and has identifier i(1:?)). Moreover, we over-
load the closure operator C'n in order to capture the clo-
sure of an RDF Dataset, computed using the inference

rules of Table 2.

5.2 Validity and Redundancy Elimination

The notion of validity has been described in various frag-
ments of SW languages ([16, 26]), and is used to overrule
certain triple combinations. In the context of graphsets,
the validity constraints are applied (and defined) at the
level of the RDF dataset, but the graphset-related part of
the quadrable is not considered. The main validity re-
quirement that we will use in this paper is the fact that a
property instance’s subject and object should be correctly
classified under the domain and range of the property re-
spectively; other constraints include the disjointness be-
tween class and property URIs and the acyclicity of [sc]
and [sp]. For a full list of the related validity constraints,
see [17]. Similarly, the detection and removal of redun-
dancies is straightforward using the rules of Table 2.

In the sequel, we assume that queries and updates are
performed upon valid and redundant-free RDF datasets.
In effect, this means that invalidities and redundancies
are detected (and removed) at update time rather than at
query time. This choice was made because we believe
that in real scale SW systems, query performance should
prevail over update performance. Redundant-free RDF
datasets were chosen because they offer a number of ad-
vantages in the case of transaction management for con-
current updates and queries.

6 Querying and Updating RDF Datasets

6.1 Querying RDF Datasets

In this section, we discuss the semantics of our query lan-
guage, which is an extension of RQL [14]. We consider
V, GV to be two sets of variables for resources and graph-
sets respectively; V, GV, U and L are mutually disjoint
sets. We rely on tableau queries to formalize the seman-
tics of our query language: in our context, a query is of
the form (H, B,C) where H (head) is a g-pattern, B
(body) is a conjunction of g-patterns and C' (constraints)
is a conjunction of atomic predicates. A g-pattern is a
quadruple from (UUY) x (UUY) x (UUY) x (IUGV),
whereas each atomic predicate (from C') has the form:

1. vop cforv € V,opisone of {=, <, > <=,>=}

andce LUUUYV
2. vop' v forv,v" € GV, 0p' € {=,<}

3. i={ny,n9,...,ni} wherei € GV and n; € N

According to the above definition, one can express
constraints on resources (), on graphsets (2), as well as
to specify that a graphset considered in the query is asso-
ciated with a given set of named graphs (3). In this paper,
we focus on atomic predicates involving resources which
use the equality (=) operator. In addition, we require that
all variables that appear in the head of the query (H) ap-
pear in the query’s body (B). This restriction is imposed
in order to have computationally desirable properties.

We denote variables with ?x, 7y, ... for resources and
741, g, ... for graphset identifiers. To define the se-
mantics of queries, we use the notion of valuation (map-
ping) in the same spirit as in [11] as follows: a valua-
tion v from V U GV to U U L U1 is a partial function
v:(VUGY) — UULUL The domain of v (dom(v))
is the subset of V U GV where v is defined. For v a val-
uation, 7z a variable, v(?z) denotes the resource, literal,
or graphset to which ?x is mapped through v.

To define the semantics of a g-pattern we must define
first the semantics of property p over an RDF Dataset
d, denoted by [[p]]4. Given an RDF Dataset d, [[p]]q is
defined for the properties type, sc, sp and p as follows:

[[type”d = {(.CU, Y, 7’) | d F{I((]Q)J((]f))} (matypev y72)}
[[SC”d = {('1:’ Y, Z) | d }_{[;1)’1?)} (9575C7y:i)}
[splla = {(z, y,) ldF o oy (250,99}
[[p]]d = {(567 Y, 7’) | dF{I_y),I_((]G)} (map7 y77')}

We write (p)q to denote the semantics of property p
when no inference rule is used. We can now define the
semantics of a g-pattern. Consider an RDF dataset d and
t=(7X,exp,?Y, i) a g-pattern, where exp is one of sc,
sp, type, domain, range or p. Then the evaluation of ¢
over d is defined as follows:

[the = {v|dom(v)={?X,?Y, 7} and
(w(?X), v(?Y), v(%)) € [[expl]a}-

In Table 3 we give the semantics of some g-patterns
when URISs, literals and graphset identifiers are consid-
ered (in Table 3, a and b are constant URISs or literals and
1 1s a graphset identifier).

Finally, given a valuation v we say that v satisfies an
atomic predicate C', denoted by v - C, per the following
conditions:

vk (?z =c¢) if f v(?z) =c,ce UUL,
?z € dom(v)
vk (7z ="y) iff v(?z) =v(?y),
Tz, 7y € dom(v)
vk (7 =) if f v(?) =v(?),
74,7 € dom(v)
v (ri<?i) i () C (7)),
71,71’ € dom(v)

v (?i={ni,...nx}) iff sid({n1,...,nx}) = v(79),
7 € dom(v)

([(a, exp, 7y, ?i)]]la = {v|dom(v) =
((?2,cap,a,?)]a = {v| dom(v) =
(72, exp, 7y, D)lla = {v | dom(v) =
[(a,exp,0,%)]]la = {v|dom(v) =
[[(a,exp,b,1)]]a = {v|dom(v) =

Table 3: Semantics of g-patterns

where (is a function that returns for a graphset identi-
fier the set of identifiers of its associated named graphs
and sid is the skolem function that computes the graph-
set identifier based on the graphset’s constituents named
graphs.

As in [18], the semantics of the conjunction of g-
patterns is defined as follows:

[[Pr, Pl]a = [[Pr]]a > [[P2]]a
where

[Pu]]a > [Pe]la={v1 U2 [v1 € [[Pr]]a, v2 € [[P2]]a,

v1, v are compatible mappings}

We say that two mappings are compatible if they map

the same variable to the same value (i.e., for all z €
dom(v1) N dom(vz), it holds that v (z) = ve(x)). Sim-
ilarly, we can define the semantics of optional patterns
(like in Sparql [19]).

6.2 Updating RDF Datasets

RUL [15] extends the RQL language and is used for up-
dating RDF graphs. RUL supports fine-grained updates
at the (class and property) instance level, set-oriented
updates with a deterministic semantics and takes bene-
fit of the expressive power of RQL for restricting vari-
ables’ range to nodes and arcs of RDF graphs. Here, we
present an extension of RUL for supporting updates for
RDF datasets focusing on instance updates.

The semantics of each RUL update is specified by its
corresponding effects and side-effects. The effect of an
insert or delete is defined over the graphset that is spec-
ified in the operation. The side-effects ensure that the
resulting RDF dataset continues to be valid and non-
redundant as discussed in [29]. Update semantics ad-
here to the principle of minimal change [7], per which
a minimal number of insertions and deletions should be
performed in order to restore a valid and non-redundant
state of an RDF dataset. The effects and side-effects of
insertions and deletions are determined by the kind of
triple involved, i.e., whether it is a class instance or prop-
erty instance insertion or deletion.

{7y, 7} and (a, v(?y), v(?i)) € [[exp]]a}
{ﬂf ?i} and (v(?x), a, v(7i)) € [[exp]]a}
{72, 7y} and (v(?x), v(?y), i) € [[exp]]a}
{7} and (a, b, v(?i)) € [[exp]a}
0 and (a, b, i) € [[exp]la}
6.2.1 INSERT Operation
A primitive insert operation is of the form:

insert(s,p,0,i) where s,p € U,o€c UUL,i € L

z V4

AN A

} insert(x,type,y,{1}) }

I I

B [——

A (2

" / | (upey (1)) is inserted. |

| (xtypez,{1,2}) is deleted since }

vy quadruple (x,type,z,{1,2}) y

would be inferred A
{1}
&x &x

Figure 3: Class Instance Insertion

Data: insert(x, p,y, i), RDF dataset d
Result: Updated RDF dataset d
if (3 (z, y, i) € [[p]]q) then return d;
if (p = type) then
if (y ¢ C) then
return d;
forall ((z, z, i) € (type)q s.t. Iy, z, i) €
[[sc]]q and i’ = {3,i"}) do

N oA W N -

6 | d=d\{(z,type,z,i)};
7 end

8 | d=dU{(z,p,y,i)};

9 return d;

10

1 elseif (3 (p, X, i) € (domain)g, (z, X, j) €
[[type]]a or B (p, Y, k) € (range)q, (y, Y,) €
([type]]4) then

12 | returnd;

13

14 forall ((z, y, i) €
i ={i,i"})do

5 | d=d\{(z, 0.0}

16 end

v d=dU{(e.py.i)}:

18 return d;

Algorithm 1: Class and Property Instance Insertion Al-
gorithm

(pYg s.t. Ap, q, i) € (sp)q and

At i e - g g W
A : A A A
insert(x,p.y{1}) | | !
> {m) 2
(x,p,y{1}) inserted and g i |
(x.g.3{1,2}) deleted z={if p —> X
since quadruple
(x,q.y{1,2}) would :
be inferred {}

I I |
{rh} {é} {h}
I ; i
z—{i}-p ——>w

; ; i
{1 i i

Y {12} — g —>y x—{}—p >y

Figure 4: Property Instance Insertion

A formal description of the insertion of a triple to a
graphset (i.e., a quadruple, say (z, p,y, 1)) along with its
side-effects can be found in Algorithm 1. At line 1 we
examine if the quadruple already belongs to the seman-
tics of property p. If not, and if the triple to be inserted
is of the form (z, type,y,) then, we ensure that y is a
class (lines 3—4). If it is, then we remove all class in-
stantiation quadruples from the RDF dataset which can
be entailed through the quadruple to be inserted and the
class subsumption relationships (lines 5-7). Finally, the
quadruple is inserted (line 8). An example of a class in-
stance insertion is shown in Figure 3.

If the quadruple to be inserted is of the form (z, p, y, 7)
where p # type we must make sure that the domain and
range validity constraints hold, i.e., that x, y are instances
of the domain and range of property p respectively (lines
11-13). If so, we remove all quadruples that will be
redundant when the quadruple is inserted (lines 14—16).
Finally, the quadruple is added to the RDF dataset d (line
17). Figure 4 demonstrates an example of a property
instance insertion.

6.2.2 DELETE Operation

A primitive delete operation is of the form:
delete(s, p,0,7) where s,p e U,oe UUL,i € L.

2 thf—p x> 2= fhf —p—x—>w
A A A
I | :) | A
! i ; ap
! |
ii{l/qu‘—)Vx' ZA*{l}*qu—>yx’
} i } delete(x,p,y{12}) ! :
7 {ZI} fmp > {2‘} {m}
Z‘, - p' i v‘v (xp'y{1}) deletedand | - i !
A A (xgy{l1.2})isnot A ! > A
{n} inserted since quadruple : (n}
{0} o (xpy{1,2}) would {0} :
x p' {1} —>y beinferred P ;

Figure 5: Property Instance Deletion

A formal description of the deletion of a quadruple

1
2
3

[T N

e e 9

11
12
13

14
15
16
17

18
19
20
21

22
23
24
25
26
27

28

29

30

31

32

33

Data: delete(x, p,y,), RDF dataset d
Result: Updated RDF dataset d
if (3 (z, y, i) € [[p]]a) then return d;
if (p = type) then
forall ((x, ¢/, i) €
([typella, (v, v, i") € [[sc]]a s.t. i = {i’,i"}) do
forall (v/, z, k) € (sc)gs.t. y'! = zdo
if 3(z, v, h) € [[sc]] then
d=dU{(z,type, z,{¢', k})}
end
d=d\ {(x,type,y’,i)}
end
forall (z, o, h) € (¢)4, s.t.
(¢, ¢, 1) € (omain), do
1f39 (7, ¢, 7) € [[type]]4 then
4= d\ {(z.9,0,1)} ;
forall ¢’ s.z. 3 (¢, ¢/, W) €
if 3 (z, e, k) € [[type]]a s.t.
3 (q, e, k') € (domain), then
a= a0 {(r,q0, (1 h"})}
end

[[spl]a do

end
forall (o, =, h) €
do

(@)a, s-t. (q, ¢, i) € (range)q

if 3 (z, ¢, j) € [[type]]s then
d= d\ {(O7Q7xvh)} 5
forall ¢’ s.z. 3 (¢, ¢/, h"’)
if 3 (z, e, k) € [[type]]a s.t.
3 (q, e, k') € (range), then
d=dU{(o,q,z,{h,h"})}
end

< [[sp]la do

end
return d;
else
forall (z, y,) € [P]la (', p, ") €
st i={i',i"}) do
forall (p', q, k) € (sp)q s.t. p'! = ¢ do if
3(q, p, h) € [[sp]]a then
d = dU{(e .y 7 KD}

[[sp]]a

end

forall (z, y, ') € (P)a. (v, y, @) € [[splla 5.t
i={i,i"}do d=d\ {(z,p',y,7)} returnd;

Algorithm 2: Class and Property Instance Deletion Al-
gorithm

(z,p,y,17) is given in Algorithm 2. As with the in-
sertion of quadruples we differentiate between deletion
of an instantiation link (i.e., a quadruple of the form
(z,type,y,1) — lines 2—-25) and a property edge (lines
26-33).

In the first case, we must remove all the quadruples
that would cause the implication of the quadruple to be
deleted (line 7 — see Figure 6 for an example), but, be-
fore that, we must make sure that the implications of the
about-to-be-deleted quadruples which do not imply the
deleted quadruple are retained (lines 4—6). In order to
ensure that the RDF dataset is still valid after the up-
dates, we must remove all properties originating from (or
reaching) x whose domain (or range) is a class that z is
no longer an instance of (lines 9—25). Figure 7 shows
an example of class instance deletion that involves also
property deletion.

In the case of deleting a property edge, a similar pro-
cedure is followed (see Figure 5): first, we explicitly add
all quadruples that should be maintained (lines 26-31)
and then remove the desired quadruple (lines 32—33).

7 Related Work

There are three kinds of provenance information [27]:
why provenance (which refers to the source data that had
some influence on the existence of the target data), where
provenance (which refers to the locations in the source
data from which the target data was extracted [4]) and
how provenance (which refers to how source and target
data are related and constrained via mappings [10]). To
the best of our knowledge, this is the first work that ex-
amines the problem of why provenance for the RDF data
model while considering RDFS inference and updates.
In [5], the use of named graphs as the means to store
and manage explicit provenance information has also
been considered, but there is no in depth discussion on
how to manage provenance in the presence of queries
and updates. There exist some works describing declara-
tive languages for querying and updating RDF triples in

y y
AN \\ AN \\
N ;TN
3w delete(x,type,y,{1,2}) G
w) 7 ——— w) z
v oA N S
2 2 (x,type,w,{1,2}) is inserted. L
N } J/ (xtypez,{1,2}) is not inserted since %\ } J/
y' quadruple (x,type,y,{1,2}) oy
A would still be inferred .
; (1.2}
{1}
&x &x

Figure 6: Class Instance Deletion (1)

the presence of named graphs (such as Sparql [19] and
Sparqgl Update [25]), but these do not consider RDFS in-
ference. On the other hand, two recent works that support
RDFS inference [18, 20], do not support named graphs.

On the other side of the spectrum, a significant amount
of work on the issue has been done for relational and tree-
structured databases [2, 4, 10, 9]. In [2] authors discuss
explicit provenance recording under copy-paste seman-
tics where all operations are a sequence of delete-insert-
copy-paste operations. In that work, new identifiers are
introduced in the case in which the same object is deleted
and then re-inserted, whereas in our case we are able
to recognize the corresponding triple, and consequently
preserve provenance information. In [10], fine-grained
where and how provenance for relational databases is
captured; however, updates are not considered in that
work. Finally, in [9] authors consider a colored algebra to
annotate columns and rows of relational tables at a coarse
grained level which bares similarities to our named graph
based approach.

8 Conclusion

This paper addresses the problem of managing prove-
nance information in RDF datasets. We follow the idea
presented in [5, 28], where named graphs have been pro-
posed in order to assign provenance information to a col-
lection of RDF triples. One of the main arguments of our
paper is that named graphs are not sufficient for most ap-
plications, because they don’t allow the explicit assign-
ment of “joint entailment” information to triples, a fea-
ture that is necessary in order to support updates with-
out losing provenance information. For this purpose, we
formalize the notion of graphsets as a generalization of
named graphs; this is the first contribution of this paper.
The interested reader can find a more detailed description
in [17].

In order to be able to manage provenance information
in RDF datasets, we extended existing query (RQL [14])
and update (RUL [15]) languages to support queries and
updates of triples with provenance information (graph-
sets), taking into account the RDFS inference semantics.
To our knowledge, this is the first effort to formally de-
fine the semantics of query and update languages that
support both RDFS inference and provenance. These
languages have been recently implemented and a demo
can be found at [23].

9 Acknowledgments

This work was partially supported by the EU projects
CASPAR (FP6-2005-1ST-033572) and KP-Lab (FP6-
2004-1ST-4).

y
4
2/
J— i !
41r 9K z}—>;v
S f
g TPy
‘ m}
‘x< q {54} >0
9 <
LA

A
{ f} delete(x,type,y,{1,2})
W —4q —x {l} —>w' e ——
AA] A
{2} {4} fk} - (obpes,(1}) is deleted and
, | | | (x,typew,{1,2}) is not
! Z—p—L—m >z inserted since (x,type,y,{1,2})
{3} A A would be inferred.
: ' - (x,p,0,{5}) is deleted since
{]} {m} x is no longer an instance of the
. . domain of p (class z).
X SN p— {5} >o0 -- (x,q,0,{5,4}) is inserted since it was
q inferred in the initial graph.
h
.
o
Figure 7: Class Instance Deletion (2)
References [15]

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

(13]

[14]

D. Brickley and R.V. Guha. RDF Vocabulary Descrip-
tion Language 1.0: RDF Schema. www.w3.org/TR/
2004 /REC-rdf-schema—-20040210, 2004.

P. Buneman, A. P. Chapman, and J. Cheney. Provenance
Management in Curated Databases. In SIGMOD, 2006.

P. Buneman, J. Cheney, W.-C. Tan, and S. Vansummeren.
Curated databases. In PODS, 2008.

P. Buneman, J. Cheney, and S. Vansummeren. On the Ex-
pressiveness of Implicit Provenance in Query and Update
Languages. In ICDT, 2007.

J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named
graphs, Provenance and Trust. In WWW, 2005.

B. McBride F. Manola, E. Miller. RDF Primer. www.
w3.0rg/TR/rdf-primer, February 2004.

P. Gardenfors. Belief Revision: An Introduction. Belief
Revision, (29):1-28, 1992.

P. Gardenfors. The dynamics of belief systems: Founda-
tions versus coherence theories. Revue Internationale de
Philosophie, 44:24-46, 1992.

F. Geerts, A. Kementsietsidis, and D. Milano. MON-
DRIAN: Annotating and Querying Databases through
Colors and Blocks. In ICDE, 2006.

T. J. Green, G. Karvounarakis, and V. Tannen. Prove-
nance semirings. In PODS, 2007.

C. Gutierrez, C. A. Hurtado, and A. O. Mendelzon. Foun-
dations of Semantic Web Databases. In PODS, 2004.

P. Hayes. @ RDF Semantics. www.w3.0rg/TR/
rdf-mt, February 2004. W3C Recommendation.

The UMD Astronomy Information and Knowledge
Group. Astonomy Ontology in OWL. archive.
astro.umd.edu.

G. Karvounarakis, S. Alexaki, V. Christophides, D. Plex-
ousakis, and M. Scholl. Rql: a declarative query language
for rdf. pages 592-603. ACM Press, 2002.

[16]

[17]

(18]

[19]

[20]
(21]
[22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

M. Magiridou, S. Sahtouris, V. Christophides, and
M. Koubarakis. RUL: A Declarative Update Language
for RDF. In ISWC, 2005.

S. Munoz, J. Perez, and C. Gutierrez. Minimal deductive
systems for RDF. In ESWC, 2007.

P. Pediaditis. Querying and Updating RDF/S Named
Graphs. Master’s thesis, Computer Science Department,
University of Crete, 2008.

J. Perez, M. Arenas, and C. Gutierrez. nNSPARQL: A Nav-
igational Language for RDF. In ISWC, 2008.

E. Prud’hommeaux and A. Seaborne. SPARQL
Query Language for RDF. www.w3.0rg/TR/
rdf-spargl-query, January 2008.

PSPARQL. pspargl.inrialpes.fr.

Gene Ontology. www.geneontology.org.
UniProtRDF.
uniprot-rdf.
RQL, RUL demo. athena.ics.forth.gr:3026/
RULdemo/named_graph_demo/.

dev.isb-sib.ch/projects/

S. Schenk and S. Staab. Networked graphs: a declarative
mechanism for SPARQL rules, SPARQL views and RDF
data integration on the Web. In WWW, 2008.

A. Seaborne and G. Manjunath. SPARQL/Update: A lan-
guage for updating RDF graphs. jena.hpl.hp.com/
“afs/SPARQL-Update.html, April 2008.

G. Serfiotis, 1. Koffina, V. Christophides, and V. Tannen.
Containment and Minimization of RDF/S Query Patterns.
In ISWC, 2005.

Wang-Chiew Tan. Provenance in databases: Past, cur-
rent, and future. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, 2007.

E. Watkins and D. Nicole. Named Graphs as a Mecha-
nism for Reasoning About Provenance. In Frontiers of
WWW Research and Development - APWeb, 2006.

D. Zeginis, Y. Tzitzikas, and V. Christophides. On the
foundations of computing deltas between rdf models. In
ISWC/ASWC, 2007.

