Provenance as data mining:

Combining file system metadata with content analysis

Vinay Deolalikar

Hernan Laffitte

Storage and Information Management Platforms Lab
Hewlett Packard Labs

Palo Alto, CA 95014
{vinay.deolalikar, hernan.laffitte}@hp.com

February 12, 2009

Abstract

Provenance describes how an object came to be in
its present state. Thus, it describes the evolution
of the object over time. Prior work on provenance
has focussed on databases and the file system. The
database or file system is enhanced or augmented
in order to capture additional information about the
historical evolution of document collections, and thus
answer the provenance question. We address the
question of provenance for unstructured information
(i.e., document corpii from file systems) but without
any enhancements to the file system. To provide a so-
lution in this setting, we model the provenance prob-
lem in such a setting as a problem of data mining.
We show that data mining can provide provenance
information for repositories of unstructured informa-
tion, including chains of historical evolution. Thus,
we do not require any additions to the file system,
and we can operate on legacy documents. Experi-
mental results indicate a strong performance of our
approach.

1 The Provenance problem

The explosion of data of all forms in recent times
has given rise to many research investigations, one
of which is Provenance. Roughly speaking, Prove-
nance is the study of (a) the origins and (b) the his-

tory of evolution of data. In other words, the Prove-
nance question for a piece of data asks “How did this
data originate, and how did it evolve into its current
form?”

The provenance question can be asked in unstruc-
tured (filesystem) environments, and in structured
(database) environments. We will be concerned
only with unstructured provenance in this paper.
Concretely, given an evolving universe %; of docu-
ments at time ¢, and a finite subset of documents
{Di}1<i<m C %r from the universe of documents at
a time T, the Provenance question is a specific ques-
tion about the relationship of {D;} to %; for t < T.
It asks:

(i) Which documents in %; for t < T contributed to
the evolution of documents {D;} C %p?

(ii) What are the first document(s) in the chain of
ideas that culminated in the documents {D;}?

(iii) When did the chain of documents that led to
{D;} C % begin? In other words, what is the
lowest value of ¢t for which % contains a docu-
ment which has contributed to the evolution of
a document in {D;} C %p?

We shall refer to the first two questions as Where
Provenance and the third question as When Prove-
nance.

A little thought indicates that the answer to a
Provenance query forms a directed acyclic graph
(DAG). A node in the DAG represents a document
(or a process) and a directed edge from a to b indi-
cates a causal relationship which should loosely be
translated as “a resulted, under certain processes, in
b”. Note that such causal predecessors are by no
means unique. Concretely, not just a, but in general
{a;} result in b. This means the graph is not a tree.
Since relationships capture information flow in the
direction of time, the graph must be acyclic.

Why is provenance valuable, and when might one
need to query the provenance of a document? Prove-
nance is valuable because it allows us a track an entity
to its original sources, and gives us the paths the in-
termediate document took in order to arrive at the
final form that we possess.

2 Previous work in Provenance

Prior work in this area has been deterministic and
syntactic. In particular, research has focussed around
modifying the file or the filesystem (in unstructured
environments) and the database (in structured envi-
ronments). We rely on the excellent discussion in [14]
for more information on these, described below.

The obvious approach to provenance maintenance
in files is to include provenance inside the file. As-
tronomys Flexible Image Transport (FITS) format [3]
and the Spatial Data Transfer Standard (SDTS) are
examples of this approach. A FITS file header con-
sists of a collection of tagged attribute/value pairs,
some of which are provenance. Whenever a file is
transformed, additional provenance is added to this
header. This approach addresses the challenge of
making the provenance and data inseparable, but
it introduces other disadvantages. It is expensive
to search the attribute space to find objects meet-
ing some criteria. Tools that operate on such files
must read and write the headers and be provenance-
aware. The validity and completeness of the prove-
nance is entirely dependent upon the tools that pro-
cess the data. Worse yet, there is no way to de-
termine if provenance is complete or accurate. As
shown in Section 2, complete system-level prove-

nance provides functionality unavailable in other sys-
tems. A second, and perhaps more important, differ-
ence is that LinF'S delays provenance collection, per-
forming it at user-level by writing it to an external
database. In contrast, PASS manages its provenance
database directly in the kernel, providing greater syn-
chronicity between data and provenance; PASTA, our
provenance-aware file system, manages both the data
and provenance producing a tighter coupling than
provided by a separate user-level database.

As mentioned earlier, prior work in provenance has
focussed on database provenance, and making storage
provenance-aware by enhancing the file system. An
example of a system that enhances the file system to
obtain provenance is PASS (Provenance aware stor-
age systems) [14]. PASS is a modified Linux kernel
that automatically and transparently captures prove-
nance by intercepting system calls in real time. It
tracks what files a process read and wrote and records
this information together with the data in the same
file system. The Lineage File System (LinFS) [12]
is most similar to PASS. LinFS is a file system that
automatically tracks provenance at the file system
level, focusing on executables, command lines and
input files as the only source of provenance, ignor-
ing the hardware and software environment in which
such processes run.

Trio [16] is to databases what a PASS is to file sys-
tems. Trio is a database system that incorporates
uncertainty, managing both data and its provenance.
It extends SQL to support lineage and accuracy infor-
mation when requested by a user or application. Trio
and PASS are complimentary. Trio focuses on the
formalism to describe uncertainty via lineage and op-
erates on tuples within a database framework; PASS
focuses on a less structured environment and operates
on files.

An architecture for provenance management in
databases is also described by [1]. This is for curated
databases which are used for archival purposes.

3 Preliminaries for provenance
as data mining

From this section onwards, we describe our solution
to the provenance problem for universes of unstruc-
tured documents using content analysis. Our meth-
ods come mostly from the field of text mining, which
is the branch of data mining that deals with text doc-
uments.

3.1 The vector space model

The first task is to represent each document in the
universe as a vector in a suitably high-dimensional
vector space of terms that occur in the universe. This
representation is called the vector space model [5].
There are many such representations possible. If one
were to simply represent each document D by its vec-
tor of its term-frequencies (¢f), one would obtain the
representation

vt[J; = (tflatf2> s 7th)a

where tf, refers to the frequency with which the ¢**
term in the universe occurs in document D. The
total number of terms in the universe is denoted by
T. Notice that tf; could well be zero.

The major drawback of the above model is that
there is no “global” information since each docu-
ment’s vector is computed based only on informa-
tion obtained from the vector itself. This is eas-
ily rectified by weighting all the term frequencies by
a global quantity - the inverse document frequency
(idf) which is the inverse of the fraction of documents
in the universe that contain a given term. The result-
ing model represents a document D by its tf — idf
vector given by
% | % | % |
an, s gy dfr

where df; is the number of documents that contain
the t*" term.

There is still one issue, namely, that different docu-
ments have different lengths, leading to Dyf_;qf vec-
tors of different magnitudes. This is also easily fixed
by normalizing all the D;s_;qr vectors to have unit

vg_idf = (tf1log tfrlog),

magnitude so that they lie on the hypersphere. We
will assume all our documents are represented in this
normalized fashion.

3.2 Similarity metrics

All clustering algorithms rely on some underlying no-
tion of similarity on the document universe. For-
mally, similarity is a function s(_,) : % X % — RT
on pairs of documents that satisfies our intuitive idea
of what it means for two documents to be “similar”.
It will, in general, not be a metric.

Various notions of similarity have been proposed
and studied in literature. By far, the most commonly
used for the purposes of clustering of textual docu-
ments is Cosine similarity given by

VD;-VD-
s(Dy, Dj) := cos(vp,,Vp,) = m.
i i

We will use this notion of similarity for our clus-
tering algorithms.

3.3 Clustering algorithms

Clustering is the staple of data miners. It is usu-
ally the first algorithm run on any data set since it
unearths the natural groupings inherent in the data
set.

The general problem of of clustering is defined as
follows. Given a universe % of documents, we would
like to partition them into a pre-determined num-
ber of k subsets (known as clusters) {Cy,Cs,...,Ci}
such that the documents within a cluster are more
similar to each other than they are to documents that
lie in other clusters.

There are various approaches to clustering docu-
ments, and the clusters produced by different ap-
proaches produce different clusters, based on the no-
tion of cohesiveness of document classes used by the
approach. Clustering algorithms can be categorized
based either on the underlying methodology of the
algorithm, or on the structure of the clusters that
are output by the algorithm. The first approach re-
sults in a division into agglomerative or partitional

approaches, while the second leads to a division into
hierarchical or nonhierarchical solutions.

Agglomerative algorithms work “bottom-up”.
They find clusters by engaging in a while loop that
initially assigns each object to its own cluster and
then repeatedly merges pairs of clusters until a cer-
tain stopping criterion is met. These algorithms then
differ mainly in how they select the next pair of clus-
ters that are to be merged. Various methods to do
this have been proposed, such as group-average [§],
single-link [15], complete-link [11] and others.

On the other hand, partitional algorithms work
from “top-down”. They either find the k clusters
directly, or through a sequence of repeated bisections
where they create finer clusters at each step. Clas-
sical partitional algorithms include k-means [13] and
K-medoids [8], among many others.

It is generally accepted [4] that when clustering
large document collections, partitional clustering al-
gorithms are preferable due to their relatively low
computational requirements. We used a version of
k-means clustering.

4 Provenance as data mining

4.1 Intuition

Clearly, a precise mathematical formulation of the
questions above requires a quantifiable measure for
the contribution of one document to another. Since
we insist on not adding any syntax to track prove-
nance, we would like this measure to be computable
from the unstructured data itself. The measure we
propose is document similarity. Again, there are
many measures of document similarity, and they will
give different meanings to these questions. But the
key idea is that a document that a user accesses be-
fore he creates another document is likely to have
influenced the creation of the newer document if it
bears similarity to it. This is a statement about pos-
teriors - namely, if the newer document is similar to
an older one that the user accessed recently, then
it is likely that the older document played a role in
the thought process that led to the creation of the
newer document. Working with such settings is pre-

cisely what data mining excels at. This appears to
be a reasonable idea, and since most work is incre-
mental, i.e., builds slowly upon previously existing
work, it would seem reasonable that at each step of
the knowledge creation process, there is a high degree
of similarity between what existed and what has just
been created based upon that. As one gets farther
and farther away from a particular document, the
documents that have evolved from it will bear lesser
and lesser resemblance to it. This is typical of any
evolutionary process.

Thus, when documents undergo typical processes
such as edits, merges, derivations (where an author
is influenced by an earlier document, but does not
necessary use any text from it directly) etc. they
do “leave a trace” of the original document. This
trace can be captured using any notion of similarity
between documents. Clearly, the more intensive a
process, the lesser the similarity between the docu-
ment(s) that existed at the start of the process and
those at the finish. But there is always some residual
similarity. It follows that if we could trace back doc-
ument chains along similarity metrics, we would have
unearthed its provenance. This is the basic intuition
behind our approach.

This leads to a conceptually simple (and as we shall
see in the experimental results section, very effective)
algorithm. The idea is to extract all the documents
that could potentially be in the provenance of the
given document by “drawing” a sphere of a certain
similarity radius around the document. Since we are
using the vector space model, this simply means iden-
tifying all documents that lie within a certain angle
of the vector representing our document. In prac-
tise, this just translates to clustering the document
universe at the required granularity.

Once we have unearthed the documents in the
provenance of the original document, it only remains
to order them by time. For this, we use the ctime
(creation time stamp) that is available on both UNIX
and Windows file systems. We could also use mtime
(time of last modification).

4.2 Algorithm

We can now describe our algorithm. The first issue
we must tackle is the lack of scale-up of clustering
algorithms. We get around this by employing the
technique of two-stage clustering. In the first stage,
we cluster our document universe coarsely so that the
average cluster size is V. The number of clusters are
this stage depends only on the size of the document
universe. For our experimental study, the document
universe had size roughly 15K, and our first stage
clustering was into 1000 clusters. This can be done
once and for all. Now, a provenance query comes in
for a document D. The first thing we must do is to
estimate a tight upper bound n on the size of the
result to the provenance query. For instance, if the
query is regarding a research paper, it is unlikely that
there have been more than 50 initial drafts, merged
earlier papers etc. that occurred in the development
cycle of the research paper. Thus, we are looking
for clusters that have roughly n ~ 50 documents.
Based on this desideratum, we cluster the relevant
coarse cluster into finer sub-clusters so that the finer
sub-clusters have the size we would expect from the
provenance result. We look up which of the coarse
clusters D falls in, and now only re-cluster this par-
ticular cluster more finely so that the resulting second
stage clusters will have 50 documents on the average.

One must note here that clustering takes into ac-
count natural groupings. So if indeed the provenance
of D has 75 documents and these are cohesive, it is
quite likely that there will be a cluster of size at least
75 that will emerge, even though the average cluster
size is 50. Clustering aims to mimic the spatial distri-
bution of document vectors in the high-dimensional
space of representation, and so one has only to esti-
mate a rough mean cluster size - the algorithm will
take care of variances around this mean as long as
the data reflects this grouping.

4.3 Pseudo-code

The following is the pseudo-code for our algorithm.
Here N is the estimate for cluster size following
coarse clustering, while n is the desired cluster size
after finer clustering. Note that N is just a sys-

CLUSTER
HEAD

QUERY
DOCUMENT

Figure 1: The choice of final cluster size after sec-
ond stage clustering of the relevant first stage cluster.
Note that we cannot guarantee that the query doc-
ument is the cluster head. We must estimate what
cluster size will result in all the provenance docu-
ments being inside the cluster.

tem imposed constraint because clustering the en-
tire document corpus finely can be prohibitive given
the issues clustering algorithms have with scaling
up.

1: Input: Document D and %

2: Determine N based on |%|

3: Do coarse clustering
Ensure: Cluster size ~ N

4: Input: Document D and %
Ensure: D € %

5: Determine n based on D

6: Identify coarse cluster containing D

7: Do fine clustering

Ensure: Cluster size for cluster Cp containing D
~n
8: Sort documents in Cp by ctime
9: Output sorted list

5 Experimental setup and re-
sults

The first task in testing the algorithm described
above is to gather a “universe” of documents. We
were helped in this regard by a storage system that
had been built for research purposes at HP Labs,
called Jumbo store [2]. The Jumbo storage system
provided us with a corpus of research documents from
HP Labs whose creation times began in 2003, and it
is still operational (so that creation times of files vary
over a period of 5 years).

We created a corpus of around 15K documents
which did not include source code files, in order to
test our algorithm. The statistics of this corpus are
given in Tables 1 and 2. From these 15K files, we
isolated files that had filenames ending in “_final” or
“_submitted” in order to obtain files that were the
end nodes of their development. Mostly, these files
were the final versions of submitted research papers
written by groups of 5-10 researchers. The papers
had varying provenances. Some were essentially solo
works, where one author began with an initial draft
and refined it over time to produce her final submis-
sion. Others had more complex provenances with
multiple merges and edits, forming fairly complex
HDAGsS.

We then queried the document corpus using the
files with names ending in “_final” or “_submitted”
and recorded the resulting provenance results. We
compared these to the known ground truth regarding
these paper submissions to obtain our precision and
recall numbers.

We should stress that we envision this algorithm
being used in a closed loop fashion. In other words,
we would start with an initial query document, which
would result in a provenance result. We would then
perhaps wish to query one of the resulting documents
to obtain its provenance, and so on.

Table 1: Breakup of documents by type in our docu-
ment corpus.

Document Type Number
MS Word (doc) 2349
MS Powerpoint (ppt) 1496
Rich text format (rtf) 468
ASCII (txt) 9124
MS Excel (xls) 1176
Total 14613

There are inherent problems in measuring the per-
formance of such an algorithm. Precision is not hard
to compute since we could easily go through the list
of provenance results and verify whether they indeed
had been in the provenance of the document. Re-
call is a different matter since it is not easy to rule
out that some document that does not appear in the
list had something to do with the development of the
queried document. We might be able to “verify” with
a certain degree of confidence that no major interme-
diate version was left out by the algorithm.

We ran the algorithm on multiple queries. In each
case, we were able to obtain very high precision and
recall. While we can say that the precision was indeed
almost 100%, we cannot make such a statement about
recall for the reasons described above. We provide
two sample results in the appendix. In both these
cases, the precision and recall, as far as we could
tell by examining various sources that might reveal
ground truth, was nearly 100%.

Acknowledgements

We thank Mark Lillibridge and Brad Morrey for pro-
viding us with the research corpus of documents from
the Jumbo store for our study.

References

[1] BUNEMAN, P., CHAPMAN, A., and CH-
ENEY, J. 2006. Provenance management in cu-

Table 2: Table of various statistics of size of docu-
ments in the corpus. Size is measured in number of
words.

Statistic on word counts Value
Mean word count 11516
Variance 65947586333
Standard deviation 256802
Trimmed Mean(.25) 217
Max 20431991
Min 0
Percentile(25) 22
Percentile(50) 137
Percentile(75) 752
Percentile(90) 2570

rated databases. In Proceedings of the 2006
ACM SIGMOD international Conference on
Management of Data (Chicago, IL, USA, June
27 - 29, 2006). SIGMOD ’06. ACM, New York,
NY, 539-550.

ESHGHI, K., LILLIBRIDGE, M., WILCOCK,
L., BELROSE, G., HAWKES, R. Jumbo
Store: Providing Efficient Incremental
Upload and Versioning for a Utility Ren-
dering Service. HP Labs technical re-
port HPL-2006-144R1. Available online at
http://www.hpl.hp.com/techreports/2006 /HPL-
2006-144R1.html

NOST. Definition of the flexible image transport
system (FITS), 1999.

CUTTING, D.R,, PEDERSEN, J.O.,
KARGER, D.R., and TUKEY, J.W. Scat-
ter /gather: A cluster-based approach to
browsing large document collections. In Pro-
ceedings of the ACM SIGIR, pages pages

318329, Copenhagen, 1992.

SALTON, G., WONG, A., and YANG, C. S.
”A Vector Space Model for Automatic Index-
ing,” Communications of the ACM, vol. 18(11),
613620, (1975).

[6]

GOLBECK, J. and HENDLER, J. A Semantic
Web approach to the provenance challenge. Con-
curr. Comput. : Pract. Exper. 20, 5 (Apr. 2008),
431-439.

HAN, J., KAMBER, M., and TUNG, A.K.H.
Spatial clustering methods in data mining: A
survey. In H. Miller and J. Han, editors, Geo-
graphic Data Mining and Knowledge Discovery.
Taylor and Francis, 2001.

JAIN, A K., and DUBES, R.C . Algorithms for
Clustering Data. Prentice Hall, 1988.

JAIN, A K., MURTY, M.N., and FLYNN, P.J.
Data clustering: A review. ACM Computing
Surveys, 31(3):264323, 1999.

GROTH, P., JIANG, S., MILES, S., MUNROE,
S., TAN, V., TSASAKOU, S., AND MOREAU,
L. D3.1.1: An architecture for provenance sys-

tems. Tech. rep., University of Southampton,
Feb. 2006.

KING, B. Step-wise clustering procedures. Jour-
nal of the American Statistical Association,
69:86101, 1967.

Lineage File System.
http://crypto.stanford.edu/Xcao/lineage.html

MacQUEEN, J. Some methods for classifica-
tion and analysis of multivariate observations.
In Proc. 5th Symp. Math. Statist, Prob., pages
281297, 1967.

MUNISWAMY-REDDY, K.-K., HOLLAND,
D. A., BRAUN, U., AND SELTZER, M.
Provenance-aware storage systems. In Proceed-
ings of the 2006 USENIX Annual Technical Con-
ference (June 2006).

SNEATH, P. H., and SOKAL, R. R. Numerical
Taxonomy. Freeman, London, UK, 1973.

WIDOM, J. Trio: A System for Integrated
Management of Data, Accuracy, and Lineage.
In Conference on Innovative Data Systems Re-
search (Asilomar, CA, January 2005).

Table 3: The output of the Provenance algorithm. It gives a list of documents sorted by the time of creation.
The date and time of creation, obtained from the ctimme metadata that is available from the filesystem, both
in UNIX and Windows. The actual provenance for the paper is given in Fig. 2. The precision and recall of
this particular result were almost 100%. Notice that the provenance spanned a period of around 3 years, and
all of it was recovered by the algorithm. Both where and when provenance are answered. The user “mdl”
was lead author on the paper, which is also reflected in the provenance results.

Date created | Time created || File name and path

2005-09-08 16:03:29 root_C/Documents/Double Hash /Project_0.doc

2006-08-31 10:47:57 mdl/Project_2/seed /paper/pre-submission versions/urs10.doc

2006-09-01 14:03:06 mdl/Project_2/seed/paper/pre-submission versions/urs16.doc

2006-09-01 14:09:20 mdl/Project_2/seed /paper/pre-submission versions/urs17.doc

2006-09-01 14:16:16 mdl/Project_2/seed /paper/pre-submission versions/urs18.doc

2006-09-01 16:16:14 mdl/Project_2/seed /paper /pre-submission versions/urs19.doc

2006-09-03 18:08:27 root_C/Documents/Project_1/urs2.doc

2006-09-03 18:08:51 root_C/Documents/Project_1/urs3.doc

2006-09-03 18:09:07 root_C/Documents/Project_1/urs4.doc

2006-09-04 15:09:35 mdl/Project_2/seed /paper/pre-submission versions/merged10.doc

2006-09-04 18:19:48 root_C/Documents/Project_1/merged15.doc

2006-09-04 18:20:10 root_C/Documents/Project_1/merged16.doc

2006-09-04 18:36:25 mdl/Project_2/seed/paper/pre-submission versions/postl.doc

2006-09-04 20:46:57 mdl/Project_2/seed/paper/pre-submission versions/post5.doc

2006-09-04 23:47:50 mdl/Project_2/seed /paper/pre-submission versions/post8.doc

2006-09-04 23:49:11 mdl/Project_2/seed /paper/pre-submission versions/post9.doc

2006-09-05 08:12:01 mdl/Project_2/seed /paper/pre-submission versions/post10.doc

2006-09-05 09:20:01 mdl/Project_2/seed/paper/pre-submission versions/post11.doc

2006-09-05 13:52:07 root_C/Documents/Project_1/merged10.doc

2006-09-05 13:58:20 root_C/Documents/Project_1/related.doc

2006-09-05 14:03:21 root_C/Documents/Project_1/Related work.doc

2006-09-05 19:34:16 root_C/Documents/Project_1/References.doc

2006-09-06 11:00:01 root_C/Documents/Project_1/Conclusion.doc

2006-09-06 16:42:57 mdl/Project_2/seed/paper/submission/Conf_Name submission.doc

2006-09-12 16:25:59 mdl/Project_2/seed /paper/submission/Conf_Name submission
before blinding2.doc

2006-09-12 16:38:04 mdl/Project_2/seed /paper/submission/Conf_Name submission
before blinding3.doc

2006-10-10 10:46:28 mdl/Project_2/seed/paper/abstract.rtf

2006-10-10 11:04:28 mdl/Project_2/seed /paper/short-abstract.txt

2006-12-16 00:12:43 mdl/Project_2/seed /paper/Conf Name final copy.doc

2006-12-16 14:26:03 root_C/Documents/Project_1/Conf_Name final draft-final.doc

2007-11-27 09:02:54 mdl/Published /Internal /Jumbo/abstract.txt

ct_O

Project_2

Original File
modified,
Project_1

begins

__{ Project_1

\/\

» Merged
A,
Project_3
initial draft

Before
@ ding | Abstract
N

Y

Final Copy

Figure 2: The provenance DAG (directed acyclic graph) captured by Table 3. The provenance of the query
document, which was the final version of a conference paper, included edits, derivations, and merges. The
project had remote roots in Project_0, from which a process of derivation resulted in the first files for
Project_1. These were edited, and later merged with files from Project_2 to give the initial files of Project_3.

These were modified and sections merged, to produce the final document. These flows were successfully
captured by the provenance algorithm.

Files

Project_3

Table 4: The output of the Provenance algorithm. Names have been obfuscated. There were 3 users who
contributed to this paper, and this is reflected in the provenance results. The date and time of creation,
obtained from the ctime metadata that is available from the filesystem, both in UNIX and Windows. The
precision and recall of this particular result were almost 100%. The provenance here spanned roughly a year,
and was recovered by the algorithm. Both where and when provenance are answered.

Date created | Time created || File name and path

2003-10-16 16:41:06 usrname_1/p5/talks/usrname_2-final-talk.ppt

2003-10-16 16:41:07 usrname_1/p5/talks/Conf Name2003/Conf_Name-draft-1.ppt
2003-10-16 16:41:07 usrname_1/p5/talks/Conf Name2003/Conf_Name-draft-2.ppt
2003-10-16 16:41:08 usrname_1/p5 /talks/Conf_Name2003/Conf_Name-draft-4.ppt
2003-10-16 17:00:28 usrname_1/p5 /talks/Conf_Name2003/Conf_Name-draft-5.ppt
2003-11-10 18:11:06 usrname_1/p5/talks/Conf Name2003/Conf_Name-draft-6.ppt
2003-11-10 18:11:07 usrname_1/p5/talks/Conf Name2003/usrname_3-Conf_Name-final.ppt
2003-11-10 22:21:50 usrname_1/p5/talks/usrname_1-ietl-2003.ppt

2004-01-30 15:46:42 usrname_1/p5/talks/future-12-03.ppt

2004-05-24 10:39:46 usrname_1/p5 /talks/Conf_Name2003 /usrname_1-Conf_Name.ppt
2004-11-09 17:20:14 usrname_1/p5 /presentation/wisp /wisp.ppt

2004-11-15 16:59:34 usrname_1/p5/presentation/wisp /wisp-posted.ppt

10

