
1

A Framework for Fine-grained Data Integration and Curation,

with Provenance, in a Dataspace

David W. Archer, Lois M. L. Delcambre, David Maier

Department of Computer Science, Portland State University

Portland, OR 97207 USA

{darcher, lmd, maier @cs.pdx.edu}

Abstract

Some tasks in a dataspace (a loose collection of heterogeneous data sources) require integration of fine-grained data

from diverse sources. This work is often done by end users knowledgeable about the domain, who copy-and-paste

data into a spreadsheet or other existing application. Inspired by this kind of work, in this paper we define a data

curation setting characterized by data that are explicitly selected, copied, and then pasted into a target dataset where

they can be confirmed or replaced. Rows and columns in the target may also be combined, for example, when re-

dundant. Each of these actions is an integration decision, often of high quality, that when taken together comprise the

provenance of a data value in the target. In this paper, we define a conceptual model for data and provenance for

these user actions, and we show how questions about data provenance can be answered. We note that our model can

be used in automated data curation as well as in a setting with the manual activity we emphasize in our examples.

1. Introduction

When a user is confronted with a potentially large

number of diverse data sources of variable maturity or

quality, i.e., a dataspace [1], she may have limited tools

available to integrate or query data from these sources.

A user typically uses a weak tool such as a spreadsheet

to gather data and almost always uses a copy-and-paste

action to transfer data from sources into an integrated

target dataset. This kind of work differs substantially

from traditional information integration, including up-

date exchange, as discussed in the literature [2,3,4,5],

though aspects of it have been addressed in literature

concerning curated databases [10,11,18,19]. Perhaps

the most compelling differences between this type of

work and traditional integration are that the user works

with individual data values, rather than sets of rows at a

time, and that provenance is needed at the level of

these individual values. These differences and others

we discuss in Section 2 lead us to describe and address

a data curation setting.

As an example, consider Anne, a battalion informa-

tion officer working in a theatre of military operation.

Anne gathers and organizes information from a variety

of sources to help her commanders make decisions. A

typical task for Anne might be to assemble a table of

casualty information due to explosive device incidents

during the prior week in a given patrol area. Data

sources for assembling this report may include incident

databases from friendly forces in the area, e-mail ex-

changes with local police, patrol logs for the week, and

medical-team records. Anne uses her personal knowl-

edge of the operations area, recent events, reliability of

sources, and her commander’s preferences for data as

she works. She may begin gathering data by writing a

query against an existing database, as in traditional

information integration. However, she then proceeds

along non-traditional lines: adding rows to her table as

she identifies incidents of interest; selecting data values

from external sources and inserting them into rows and

columns in the evolving data table by using copy-and-

paste actions; adding columns to her table as needed;

manually overriding data values directly or with data

from other sources; merging rows that she realizes rep-

resent the same incident into new rows (entity resolu-

tion), and choosing correct values for each column in

the resulting row from those being merged; combining

information from multiple columns that she realizes are

redundant (attribute resolution), and choosing correct

values for each row in the resulting column from those

being merged; confirming data elements she knows to

be accurate; correcting mistakes; and issuing further

updates.

Each of Anne’s actions is an information integration

decision, and each data value in her report is the prod-

uct of such decisions. This provenance is often lost

with current tools, but is key to answering questions

such as, “Where did we get the date for incident 105?”

2

We seek to enable this kind of data integration and

provenance exploration with minimal interference with

a user’s workflow. We make the following contribu-

tions toward our goal in this paper. We elaborate the

example above in order to describe the differences be-

tween this and traditional information integration set-

tings. We extend the set of user integration actions de-

fined in our prior work [6,7] to include user confirma-

tion, so that a user can express confidence in a data

value, even if the value is not changing. We show how

to derive from a record of user integration actions the

provenance, plurality of support, and trust of each data

value in the assembled data set, and how to use this

information to answer questions that might arise in our

setting.

Although our work was inspired by manual curation,

it is applicable to an automated or mixed manual-plus-

automatic setting. A user can copy data in bulk from a

query answer or view into the data curation setting.

Whether manual or automated, we only require that the

“paste” part of the action specify precisely which cell is

the target for each value. In this paper, we describe the

actions in a data curation setting as if a user performed

them manually. The remainder of our paper is organ-

ized as follows. In Section 2, we elaborate our example

of a data curation setting and describe a conceptual

model to support this setting, including the new user

confirmation action. In Section 3, we describe an im-

plementation approach to support our conceptual

model. In Section 4, we relate copy-and-paste, entity

resolution, and attribute resolution operations to data

provenance. In Section 5, we show how our model is

able to answer interesting questions about provenance.

In Section 6, we evaluate our approach with regard to

storage overhead. Section 7 discusses related work and

Section 8 concludes.

2. Use Model for a Data Curation Setting

We assume that Anne uses a tool for data integration

that records each of her actions. In our example (and in

the prototype implementation of our data model),

Anne’s actions may include: initially populating a data

table via a query over an external source; adding or

deleting rows (entities) and columns (attributes); copy-

ing data values from external information sources and

pasting them into rows and columns of the table (either

updating or adding information); and performing entity

and attribute resolution operations. We have not in-

cluded here the notion of copying a value from within a

data table and pasting it elsewhere in the table, as Bun-

eman et al. do [10,11]. Suppose Anne writes a query to

gather some initial data, with result as follows:

IncidID Mapl1 Mapl2 T Dev

101 34.3998 70.4986 ied

102 2 art

103 34.3998 70.4985 1

 Here, IncidID is Anne’s identifier for incidents,

Mapl1 and Mapl2 are map coordinates, T is some un-

specified attribute, and Dev is the type of munition

involved. Implicit in this table (and not visible to the

user), is a unique, system-generated key for each row in

the table, used by the system for recording the history

of data manipulation in the row. Next, Anne gathers

more data using copy-and-paste, and finds information

on casualties and dates for the incidents (adding new

columns Cas and Date), along with other data (new

columns ME, MLat, and MLng), which she does not

fully understand yet. Her data table now is shown in

Table 1.

 At this point, Anne determines that incidents 101

and 103 are the same, and that incidents 102 and 104

are the same. Selecting “entity resolution” from a

menu, she creates a new entity from incidents 101 and

103, and as part of the operation she selects, on an at-

tribute-by-attribute basis, which values to propagate

from the original incidents into the new (merged) row

whenever the source rows disagree. The original rows

are then hidden from Anne’s view, leaving only the

new entity. She then resolves incidents 102 and 104.

Choices made during the resolutions are highlighted in

Table 2.

ID Mapl1 Mapl2 T Dev Cas ME MLat MLng Date

101 34.3998 70.4986 1 ied 3 3 3423.99 7029.92 03mar

102 34.3996 70.4985 2 art 7 6 3423.96 7029.90 05mar

103 34.3998 70.4985 1 ied 4 3 3423.99 7029.91 03mar

104 34.3996 70.4985 2 msl 7 6 3423.96 7029.90 04mar

105 34.3994 70.4988 1 ied 12 12 3423.94 7029.88 06mar

Table 1. Intermediate data table after first round of copy-and-paste integration.

3

ID Mapl1 Mapl2 T Dev Cas ME Mlat MLng Date

101 34.3998 70.4986 1 ied 4 3 3423.99 7029.92 03 mar

104 34.3996 70.4985 2 art 7 6 3423.96 7029.90 04 mar

105 34.3994 70.4988 1 ied 12 12 3423.94 7029.88 06 mar

Table 2. Data table after initial entity resolution.

Next, Anne finds that columns Mapl1 and Mlat are

the same geographical location data, though in differ-

ent formats. Similarly, Mapl2 and MLng are redundant.

She then determines that Cas (Casualties) and ME

(which she discovers to mean the count of soldiers

MedEvac’d from the scene) also represent the same

information, which she chooses to call Injured. Resolv-

ing these columns proceeds in fashion similar to the

entity resolution operations. Anne chooses new, mean-

ingful column names for the new columns, and her

table takes the form:

ID Lat Long T Dev Injured Date

101 34.3998 70.4986 1 ied 4 03mar

104 34.3996 70.4985 2 art 6 04mar

105 34.3994 70.4988 1 ied 12 06mar

Review of the data against other information reveals

inconsistencies. She changes the “Injured” column of

incident 105 to 9 from 12, and the date of incident 105

to 07mar. From personal knowledge, she confirms the

“injured” column of incident 104 as 6. At last, her re-

port is in final form:

ID Lat Long T Dev Injured Date

101 34.3998 70.4986 1 ied 4 03mar

104 34.3996 70.4985 2 art 6 04mar

105 34.3994 70.4988 1 ied 9 07mar

From the point at which Anne began gathering data

to the point at which the report is in final form, 95 re-

cordable history actions occurred. At this point, Anne

might need to examine the history behind selected data.

She might for example ask the following questions:

 “Which incidents were combined from others in the

table?”

 “Which incidents in the table had casualty data

that was inconsistent and was corrected?”

 “For each incident merged from redundant inci-

dents, what were the incident IDs of the original

rows that we chose to resolve?”

 “How many information sources have we found to

support the casualty count for the IED incident in

row 112?”

 “What other names did column Long in this table

have in earlier versions of the data you gathered?”

 “What information about incident 109, if any, was

derived differently than the rest?”

To answer these, Anne can click on a data value in her

table and be presented with a graph of the provenance

for the value, as shown in Figure 1. This graph shows

not only the origins (external sources) for the selected

data value, but also the intermediate values that con-

tributed to its current state. All user actions that led to

the current state are also shown, including which values

were preferred over others during resolution opera-

tions, as well as confirmations made by users. For ex-

ample, the figure shows that the value for incident 104

in the Injured column was most recently derived by

attribute resolution (A), where the value at {104,

wounded} in the table was preferred by the user over

the value at {104, cas} (the dashed edge indicates non-

preferred). The figure also shows that the current value

was confirmed by user input (X). The conceptual

model visible to the user in our setting consists of the

data table she constructed, along with a provenance

graph for each “cell” in the table.

This setting has a number of novel characteristics:

 Access to the collection of data sources found in a

dataspace may be varied. For example, sources may

come and go over time. In addition, we may wish to

produce a snapshot in time of a dataspace that is

dynamic. Because of this requirement, queries are

answered using only the target instance.

 Information is most often integrated at the data

level by selecting individual data values from

sources. However, traditional integration may also

play a role.

4

 A data value (once selected) is inserted into a spe-

cific location in the target instance, identified by an

internal, unique row-id and a column name (distin-

guished by means of the user pointing to a table

cell). The user is implicitly joining each new value

with a row that already exists and specifying a par-

ticular existing column into which the data value

goes.

Fig. 1. Provenance tree for (104,“Injured”) where the

current value is 6. Edges represent user actions (A for

attribute resolution, E for entity resolution,  for con-

firmation,  for update). Nodes show state of values

in the data table. Non-preferred edges are shown us-

ing a dashed line.

 The target instance may include new data inserted

from the user’s knowledge and not from an identi-

fied data source.

 The user can confirm that a data value in the target

is valid, either by pasting in the same value from a

second source, or by locally confirming the value.

 A data value gathered by a user may arise from

multiple sources, be the result of multiple human

judgements, have multiple attribute name designa-

tions, and have multiple entity associations during

the integration process. As a result, a user may want

to review the reliability of her data, understand how

much support there is for a given data value, and

possibly review the set of values that a given data

value has had over time.

3. An Implementation Approach

We developed a prototype end-user application

called CHIME (Capturing Human Intension Metadata

with Entities) that supports the kind of integration task

outlined above. CHIME supports creation and manipu-

lation of a single, entity-centric data table, while cap-

turing the history of manipulation operations (inser-

tions and updates, entity resolutions, attribute resolu-

tions, and confirmations) that comprise the provenance

of data in the table. Rows in this table correspond to

entity instances, while columns correspond to attributes

of the entities. (In this paper, we use the term “entity”

to refer to an entity instance.) Each entity in a CHIME

dataset (i.e., the data shown in one row) has an inter-

nally generated, unique identifier, called KeyVal in the

schema, which is not made visible to the user.

CHIME data can be modelled by two relations. We

define schema R with instance r to represent entities:

 KeyVal, a unique system-generated identifier that

functions as a candidate key for R

 {Attr1, Col.Visible1, Attr2, Col.Visible2…AttrN,

Col.VisibleN}, where each Attr is a user-defined at-

tribute name and each Col.Visible a Boolean that

specifies whether Attr is visible to the user and eli-

gible for CHIME operations.

 Row.Visible, a Boolean attribute that specifies

whether this tuple in r is visible to the user and eli-

gible for CHIME operations.

We define a history table schema H, with instance h.

Each user action on the data relation r adds new entries

to h. H has attributes:

 SeqNum, a monotonic integer (e.g., a timestamp)

 KeyVal, a foreign key referencing R

 AttrName, an attribute with domain {Attr1, Attr2,

…AttrN} from R

 AttrVal, the value given to attribute AttrName in

the row in r with key KeyVal as a result of this ac-

tion

 Action, an attribute with domain {A, E, , X} (for

attribute resolution, entity resolution, update, and

user confirmation, respectively)

 Preferred, an attribute with domain {Left, Right,

Both} that indicates which parent tuple or column

was preferred for item (KeyVal, AttrName) by the

user during a resolution operation

 LeftParent, an attribute with domain

{dom(AttrName)  dom(KeyVal)  NULL}, indi-

cating one parent row (for entity resolution) or col-

umn (for attribute resolution), or NULL otherwise

{104, injured}

value: 6

{104, wounded}

value: 6

{104, cas}

value: 7

A

A




{document5}

value: 6

{user input}

value: 6

E

{104, wounded}

value: 6

{102, wounded}

value: 6

E

{document5}

value: 6

E

E

{104, cas}

value: 7
{document3}

value: 7

{102, cas}

value: 7{document3}

value: 7



{104, injured}

value: 6

{104, wounded}

value: 6

{104, cas}

value: 7

A

A




{document5}

value: 6

{user input}

value: 6

E

{104, wounded}

value: 6

{102, wounded}

value: 6

E

{document5}

value: 6

E

E

{104, cas}

value: 7
{document3}

value: 7

{102, cas}

value: 7{document3}

value: 7



5

 RightParent, an attribute with domain

{dom(AttrName)  dom(KeyVal)  NULL }, in-

dicating the other of two parents resolved to form

the new data value

 Source, a string-valued attribute with domain con-

sisting of the distinguished value “User-supplied”

and names of data sources

Taken together, Seqnum, KeyVal, and AttrName

form a candidate key for H. Note that multiple entries

in H may have the same SeqNum. For example, all

entries associated with a resolution operation have the

same timestamp, though each entry affects a different

target data value.

We envision a user interface (much like our CHIME

prototype interface) where data in r is shown in table

form, with only rows and columns with Visible flags

set to True visible to the user. In the interface, the user

can easily see the corresponding data from h in the

form of a provenance graph for any data value shown,

e.g. by clicking on the data value.

4. Relating User Actions to Provenance

We map information from CHIME actions to fields

of entries in the CHIME history table (h) in order to

compute provenance and answer user questions. Copy-

and-paste actions that insert new (or different) values

into a data value are mapped to entries in h as follows:

 SeqNum = (automatically generated) sequence

number of this update in the overall history

 KeyVal = internal identifier of target row

 AttrName = name of target column

 AttrVal = value pasted

 Action = Update

 Preferred = NULL

 LeftParent = NULL

 RightParent = NULL

 Source = source identifier or “User-supplied”

 Users can copy-and-paste the same value into a data

value again, possibly from a different source. In this

case, we add an entry to the history table, recording the

user action as Confirm. The user may also Confirm a

value directly without a copy-and-paste operation,

when there is no external source.

Entity resolution in our model consists of merging

two entities into a new entity, then making the original

entities not visible. For each attribute (column) of the

resulting entity where source data values differ (note

that the schema of source entities and result entity are

the same), the user must choose which source attribute

value to propagate. When source attribute values are

identical, we consider both to be propagated, for

provenance purposes. Attribute resolution in our model

works in a similar fashion. Two attributes are merged

into a new attribute, and the two original columns are

made non-visible. In rows where the two source values

differ, the user chooses column values to propagate to

the new column. We map entity resolution and attribute

resolution operations to entries in h as follows:

 SeqNum = (automatically generated) sequence

number of this update in the overall history. (Be-

cause resolutions affect multiple data values, and it

is useful to identify all effects of a resolution, all

such effect are recorded with one SeqNum)

 KeyVal = internal identifier for row of the data

value resulting from entity or attribute resolution

 AttrName = column name of the data value result-

ing from entity or attribute resolution

 AttrVal = value of the data value after resolution

 Action = Entity or Attribute resolution

 Preferred = Left, Right, or Both referring to one or

both of the Parent values below

 LeftParent = one of the KeyVals (if entity resolu-

tion) or column names (if attribute resolution) in-

volved in entity or attribute resolution

 RightParent = the other KeyVal or column name

involved in entity or attribute resolution

 Source = NULL

5. Computing and Expressing Provenance

In this section we explore the use of the history rela-

tion to generate provenance graphs. We then define a

set of predicates and algorithms to traverse these

graphs in order to answer user questions.

We define a provenance tree TP(V,E) for a data

value in the user’s table as a directed acyclic graph

with V a set of vertices and E a set of edges. A vertex v

 V in Tp corresponds to

 the current state of the data value of interest, if the

vertex is the root of Tp

 a prior state (ancestor) of the data value of interest,

if the vertex is neither the root nor a leaf in the tree

 the source of an update or confirmation, if the ver-

tex is a leaf in the tree (either the name of an exter-

nal source, or a constant user-supplied value when

the user confirms the value directly)

Each edge e  E exits a vertex in V (other than the

root) and enters a distinct, non-leaf vertex in V.

6

A provenance graph represents an Update operation

by adding a leaf vertex to represent the source from

which the data was copied (or to represent a constant

supplied directly by the user), and an Update edge from

the source vertex to the affected data value vertex. If

the data value is new (that is, if the Update corresponds

to insertion of a data value for the first time), a vertex

is added to represent the data value in the table. A Con-

firm operation is represented similarly, but the connect-

ing edge is labelled Confirm. If two data values are

merged during an entity or attribute resolution, a new

vertex is added to represent the resulting merged data

value. E includes two edges for the operations, one

exiting each vertex representing a “parent” data value

and both entering the vertex representing the new

(merged) data value. Where the two values resolved

are not equal, each edge indicates whether the parent

vertex held the value preferred by the user, or the over-

ridden (not preferred) value. In a resolution with iden-

tical parent data values, both edges are preferred. In the

absence of resolution operations, a provenance graph

for a data value consists only of a root vertex and any

leaf (source) vertices. Intermediate (non-root, non-leaf)

vertices are only introduced by resolutions.

We represent Tp(V,E) for one data value as a pair of

relations, Node and Edge, that are temporary, and gen-

erated on-the-fly when the provenance graph is created

by user request. Node includes attributes:

 Nodenum, a candidate key for Node

 KeyValue, an foreign key referencing KeyVal in H

 AttrName, an attribute with domain {Attr1, Attr2,

… AttrN} from R, equal to AttrName in the corre-

sponding entry in h

 AttrVal, = AttrVal in the corresponding entry in h

 Source, = Source in the corresponding row in h

The attributes for Edge are:

 Descendant – a foreign key referencing Node

 Ancestor –a foreign key referencing Node

 Action, with domain {Attribute Resolution, Entity

Resolution, Update, Confirm} equal to Action in

the entry in h for the Descendant’s KeyValue

 Preferred, a Boolean value equal to TRUE if An-

cestor’s value was preferred during the action creat-

ing Descendant, and FALSE otherwise. This attrib-

ute is ignored if Action is not a resolution action

We construct TP(V,E) for a data value in r (specified

by the user selecting a row and column) by retrieving

from the history table the list of actions performed on

the value and its ancestors. Figure 2 shows an abstrac-

tion of the Prolog implementation of our algorithm.

The get_history predicate retrieves from h a list of user

actions performed on the value at row-id Key and col-

umn Attr. The setpref predicate sets the value of the

“Preferred” indicator for edges in Tp. Our algorithm

constructs a textual version of Tp via write statements.

make_ptree(Key, Attr, Root) :-

 get_history(Key, Attr, [H|Rest]),

 history(H,_,_,Val,_,_,_,_,Src),

 build_ptree(Key, Attr, H, [H|Rest], true),

 write("node(",H,Key,Attr,Val,Src,")."),

 Root is H.

% most recent action was an update

build_ptree(Key, Attr, Root, [H|Rest], Pref_flag) :-

 history(H,_,_,Val,u,_,_,_,Src),

 S is 0 - Root,

 write("node(",S,Key,Attr,Val,Src,")."),

 write("edge(",Root,S,u,Pref_flag,")."),

 build_ptree(Key, Attr, Root, Rest, false).

% most recent action was a confirmation

build_ptree(Key, Attr, Root, [H|Rest], Pref_flag) :-

 history(H,_,_,Val,c,_,_,_,Src),

 S is 0 - Root,

 write("node(",S,Key,Attr,Val,Src,")."),

 write("edge(",Root,S,u,Pref_flag,")."
 build_ptree(Key,Attr,Root,Rest,Pref_flag).

% most recent action was an attribute resolution

build_ptree(Key, Attr, Root, [H|Rest], Pref_flag) :-

 history(H,_,_,_,a,Pref, LeftP, RightP, _),

 make_ptree(Key, LeftP, NewRoot1),

 setpref(Pref_flag, Pref, left, P),

 write("edge(",Root,NewRoot1, a, P,")."),

 make_ptree(Key, RightP, NewRoot2),

 setpref(Pref_flag, Pref, right, Q),

 write("edge(",Root,NewRoot2, a, Q,")."),

 build_ptree(Key, Attr, Root, Rest, false),!.

% most recent action was an entity resolution

build_ptree(Key, Attr, Root, [H|Rest], Pref_flag) :-

 history(H,_,_,_,e,Pref, LeftP, RightP, _),

 make_ptree(LeftP, Attr, NewRoot1),

 setpref(Pref_flag, Pref, left, P),

 write("edge(",Root,NewRoot1,e,P,")."),

 make_ptree(RightP, Attr, NewRoot2),

 setpref(Pref_flag, Pref, right, Q),

 write("edge(",Root,NewRoot2,e,Q,")."),

 build_ptree(Key, Attr, Root, Rest, false),!.

% base condition - empty history list

build_ptree(_,_,_,[],_).

Figure 2. Provenance tree construction algorithm

The provenance tree generated for the attribute

value “Injured” for incident 104 in the final data table

of Section 2 is shown in Figure 1. Nodes are labelled

for clarity in this example with a row key (IncidID in

7

this case) and a column name to indicate the data value

represented. The tree shows that the data value of in-

terest has value 6, which was inherited from ancestor

{104, wounded} and preferred over an alternate value

in ancestor {104, cas} during attribute resolution of

attributes “cas” and “wounded” into the new attribute

named “injured”. The tree also shows that this value

was confirmed by user input. The value at {104, cas} is

shown to be inherited from earlier values at {102, cas}

and {104, cas} during entity resolution of incidents 102

and 104 into a new incident ID that the user chose to

also call 104. In this case, both values were the same,

so both edges are preferred. The value from {102, cas}

is shown in the tree to have its origin in an update made

by the user from a source document called “document

3”.

We have defined a set of predicates over the Node

and Edge tables to assist in answering common queries.

We omit their Datalog definitions and define them in-

formally here:

 view_origins – returns the list of node numbers of

leaf nodes connected to the root node by preferred

edges

 view_sources – returns the names of data sources

from all leaf nodes connected to the root by pre-

ferred edges

 view_all_predecessors – returns the list of node

numbers of all leaf nodes in the tree

 view_support – returns a count of the number of

non-root nodes with the same data value as the root

 view_attribnames – returns the list of attribute

names found in the tree nodes

 view_entityIDs – returns the list of entity (row)

identifiers found in the tree nodes

Using these predicates, relational algebra, and the

provenance graph for a selected data value, we can

answer the kind of questions described in Section 2. To

answer the question, “How did we find out the date of

incident 105?” we build the provenance graph for the

“Date” column of the row for incident 105, and evalu-

ate the query view_sources(). We answer, “Which in-

cidents were combined from others in the table?” us-

ing relational algebra over the history and data tables:

IncidID (Row.Visible=True,Action=E (h  r))

The join in this expression produces a tuple for

every entity that has a history table entry associated

with one of its data values. The selection operator

chooses those where the history table entry represents

an entity resolution, and where the entity is still visible

to the user.

The question, “For each incident merged from re-

dundant incidents, what were the incident IDs of the

two predecessor rows we chose to resolve?” can be

answered by

merged, original-1,original-2

 ((incidID


 original-1 (merged, IncidID ((incidID


 merged

 (incidID,LeftParent(Row.Visible=True, Action=E (h  r))))

 LeftParent = KeyVal r)))

 merged

 (incidID


 original-2 (merged, IncidID ((incidID


 merged

 (IncidID,RightParent(Row.Visible=True, Action=E (h  r))))

 RightParent = KeyVal r))))

To answer the question, “How many information

sources have we found to support the casualty count

for the IED incident in row 102?” we can apply the

view_origins() predicate to the provenance graph for

the data value “Injured” in the row for incident 102.

“What other names did column Long in this table have

in earlier versions of the data you gathered?” can be

answered by building a provenance tree for each data

value in column Long, and taking the Union of

view_attribnames() on each provenance graph. “What

information about incident 109, if any, was derived

differently than the rest?” can be answered by using

make_ptree() to construct provenance trees for each

data value in the selected row, then computing the tree

edit distance [8] for each possible pairing of these val-

ues, and looking at the distribution of edit distances.

Provenance queries can also be written against the

history table using the recursion capabilities supported

in SQL:1999. As an example, to answer the question,

“Where did we find the date of incident 105?”, one can

write the following query, implicitly selecting the row

identifier of the row for incident 105 (called X in this

example) via a user interface.

WITH RECURSIVE

Value_Events(KeyVal, AttrName, Action, Preferred,

 LeftParent, RightParent, Source)

AS

(SELECT KeyVal, AttrName, Action, Preferred, Left

 Parent, RightParent, Source

 FROM History h

 WHERE h.KeyVal = X

 AND h.AttrName = “Date”

 AND h.SeqNum =

 (SELECT MAX (Seqnum)

 FROM History h

 WHERE h.KeyVal = X

 AND h.AttrName = “Date”

 AND h.Action != “Confirm”))

8

UNION

(SELECT KeyVal, AttrName, Action, Preferred,

 LeftParent, RightParent, Source

 FROM History h, Value_Events v1

 WHERE (h.KeyVal = v1.LeftParent

 AND v1.Preferred = Left

 AND h.AttrName = v1.AttrName

 AND h.Action = E) OR

 (h.KeyVal = v1.RightParent

 AND v1.Preferred = Right

 AND h.AttrName = v1.AttrName

 AND h.Action = E) OR

 (h.AttrName = v1.LeftParent

 AND v1.Preferred = Left

 AND h.KeyVal = v1.KeyVal

 AND h.Action = A) OR

 (h.AttrName = v1.RightParent

 AND v1.Preferred = Right

 AND h.KeyVal = v1.KeyVal

 AND h.Action = A))

SELECT Source

FROM Value_Events v2

WHERE Source != ""

6. Overhead of Provenance Storage

Provenance overhead grows with the number of user

actions. If a dataset is constructed using individual

copy-and-paste actions, then the history table grows by

one entry per data value pasted into the data table, plus

entries for each update, confirmation, and resolution

later affecting that data value. Let N be the number of

data values pasted by the user, r the average number of

updates made to each value, and c the average number

of confirmations applied to each value. Note that the

number of resolutions cannot exceed N - 1, because

once a pair of values is resolved to form a new value,

the original pair becomes non-visible and cannot be

resolved further. The number of history table entries

may be as large as

 N (due to initial population)

+ N * r (due to revisions)

+ N * c (due to confirmations)

+ N - 1 (due to resolutions)

Then the number of history table entries is less than

(2 + r + c) N

Revisions (r) and confirmations (c) per data value

are potentially unlimited, but in practice, we expect

that each data value will only be revised or confirmed a

small number of times, and that number is independent

of the total number of data values in the table. The

overhead for storing provenance also must include a

factor for the size of each history entry relative to the

average size of each data value. The size of a history

entry is constant in our implementation, and if we as-

sume that the average size of a data value is also a con-

stant, we can express the ratio of these as a constant kh.

This lets us express a bound on the overhead for stor-

ing provenance as

 kh * ((2 + r + c) N), or O(N)

7. Related Work

Buneman, Chapman, Cheney, and Vansummeren

[10,11] address provenance for manually curated data

in scientific disciplines. Their work shares many of the

same goals as ours. They address two forms of prove-

nance (“where” and “why” [17]), but do not seem to

address the ability to reconstruct the history of actions

affecting data values (“what”). However, if historical

data values and actions were included in their prove-

nance tables, the expressive power of our approach and

theirs, with regard to updates, would be the same. Their

work addresses a limited set of user actions: copy-and-

paste, insertion, and deletion (all of which we call up-

dates). Our user action model includes entity resolu-

tion, attribute resolution (schema modification), and

confirmation, though it does not at present include de-

letions.

Substantial work has been reported on computing

provenance of data exchanged between structured, dis-

tributed scientific data stores. Orchestra [4], a proto-

type Collaborative Data Sharing System (CDSS), pro-

vides a general-purpose platform for data sharing be-

tween structured data sources maintained by distinct

collaborating teams. Orchestra employs a detailed

provenance model based on polynomials in semi-rings

[12], where each term in a polynomial describes a par-

tial mapping from source relations to target relations.

The polynomial approach allows Orchestra to track

several ancestors for one tuple, much like CHIME does

for individual data values. As a result, Orchestra and

CHIME support trust evaluation based on whether a

user trusts the various sources described in the prove-

nance polynomial. Orchestra also differs from our

work. First, Orchestra computes provenance on a per-

tuple basis, while we compute provenance on a per-

value basis. Second, Orchestra focuses on only map-

pings expressed at the schema level, while our work

focuses on mappings expressed at the individual data-

9

value level. In Orchestra, provenance data is computed

when explicit “update exchange” events are issued. In

our setting, we continuously record the history of user

actions, and at any time allow the user to construct

from this history a provenance tree to support useful

queries. We also have a richer model for user confir-

mation, where the user can explicitly confirm a value;

Orchestra has a simpler negative confirmation at the

tuple level: a tuple that originated from another site,

once deleted locally, will not be imported again.

Uncertainty-Lineage Databases (ULDBs) [13] store

the lineage of database tuples along with data. A line-

age function  is defined for each relational operator

available in the database, and lineage for each tuple is

computed using the appropriate lineage functions each

time an operation is performed. Both CHIME and

ULDBs rely on well-behaved lineage: For example,

lineage computation must be free of cycles. CHIME

prevents cycles in lineage because the set of user ac-

tions on a data value is by definition cycle-free. Our

work differs from the ULDB approach in that the

source data for our provenance calculations are stored

as a history table, which also enables other functional-

ity, while ULDBs appear to store only lineage. Our

work also differs in that CHIME retains provenance on

a per-value basis rather than per tuple.

AutoMed [14] defines the notion of schema-

transformation pathways that express data transforma-

tion and integration in a relational (data warehouse)

environment. In AutoMed, transformation pathways are

evolved dynamically to record the evolution of the

warehouse schema. Lineage tracing of tuples may be

derived from this pathway data. Our work is similar,

but at the granularity of data values rather than tuples.

We retain a history table that resembles the transforma-

tion pathways of AutoMed, and use it to compute

provenance of individual data values, much as

AutoMed does for tuples.

8. Conclusions and Future Work

We have defined a new data-management setting

distinct from traditional information integration (in-

cluding update exchange). We have shown how the

history of user actions in our setting defines the Where,

What, and Why provenance of the integrated datasets

users create in that setting. Whether by automated or

manual means, our data curation setting permits the

provenance of sets of data values, including data from

query answers or views, to be captured as long as the

collective gathering work can be expressed in a set of

value-at-a-time actions.

Using this model, we have shown how to answer

user questions about data provenance. To test our

ideas, we have implemented a prototype version of

CHIME, supporting copy-and-paste, drag-drop, entity

resolution, and search-browse with a Windows user

interface; a Prolog implementation supporting all user

actions defined here (update, confirmation, entity reso-

lution, attribute resolution, and de-resolution), that cre-

ates the user data table and history table; and a Prolog

implementation for creation and querying of prove-

nance trees from history tables, as described in this

paper.

At present, the CHIME data model is limited to first

normal form. That is, though an attribute value may

have a history of several values, at any point in time it

has exactly one value. As Halevy, Franklin, and Maier

point out, a realistic dataspace model must represent

inconsistent and uncertain attribute values [2]. We are

currently extending this work to cover representation

and manipulation of such non-first normal form struc-

tures, incorporating some of the ideas of Jaeschke and

Schek [15] and Arisawa, Moriya, and Miura [16].

CHIME provides integration that takes advantage of

the high-quality decisions derivable from direct user

actions. This trade-off in favor of high quality necessi-

tates relaxing integration throughput. Other ap-

proaches, such as Orchestra [4], favor enabling high

throughput by automated execution of a set of pre-

constructed TGDs against incoming data sets. We plan

to explore blending these approaches.

Acknowledgments

This work was supported in part by NSF grant IIS-

0534762 and by DARPA.

References

[1] Halevy, A., Franklin, M., and Maier, D. “Principles

of dataspace systems,” In Proceedings of the Twen-

ty-Fifth ACM SIGMOD-SIGACT-SIGART Sympo-

sium on Principles of Database Systems (PODS

'06). ACM, 2006.

[2] Fagin, R., Kolaitis, P. G., Miller, R. J., and Popa, L.

“Data exchange: semantics and query answering,”

Theoretical Computer Science 336, 2005.

[3] Green, T. J., Karvounarakis, G., Ives, Z. G., Tan-

nen, V. “Update exchange with mappings and prov-

enance,” In Proceedings of the 33rd international

Conference on Very Large Data Bases (VLDB ’07).

VLDB Endowment, 2007.

10

[4] Green, T., Karvounarakis, G., Taylor, N., Biton, O.,

Ives, Z., Tannen, V. “ORCHESTRA: facilitating

collaborative data sharing,” In Proceedings of the

2007 ACM SIGMOD international Conference on

Management of Data (SIGMOD '07). ACM, 2007.

[5] Green, T., Karvounarakis, G., Ives, Z., Tannen, V.

“Update exchange with mappings and provenance,”

In Proceedings of the 33rd international Confe-

rence on Very Large Data Bases (VLDB’07).

VLDB Endowment, 2007.

[6] Archer, D., Delcambre, L. “Capturing Users’ Eve-

ryday, Implicit Information Integration Decisions,”

Conferences in Research and Practice in Informa-

tion Technology vol. 83. Auckland, NZ, 2007.

[7] Archer, D., Delcambre, L. “Definition and Formali-

zation of Entity Resolution Functions for Everyday

Information Integration,” In Proceedings of SDKB

2008, Nantes, France, 2008.

[8] Bille, P. “A survey on tree edit distance and related

problems”Theoretical Computer Science 337, 2005.

[9] Abiteboul, S. and Duschka, O. M. “Complexity of

answering queries using materialized views,” In

Proceedings of the Seventeenth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Da-

tabase Systems (PODS '98). ACM, 1998.

[10] P. Buneman, A. Chapman, J. Cheney, and S. Van-

summeren. “A provenance model for manually cu-

rated data,” In Proceedings of the International

Provenance and Annotation Workshop (IPAW’06),

2006.

[11] Buneman, P., Chapman, A., and Cheney, J. “Prov-

enance management in curated databases,” In Pro-

ceedings of the 2006 ACM SIGMOD international

Conference on Management of Data (SIGMOD

'06). ACM, 2006.

[12] Green, T., Karvounarakis, G., Tannen, V. “Prov-

enance semirings,” In Proceedings of the Twenty-

Sixth ACM SIGMOD-SIGACT-SIGART Symposium

on Principles of Database Systems (PODS '07).

ACM, 2007.

[13] Benjelloun, O., Das Sarma, A., Halevy, A., Theo-

bald, M., Widom, J. 2008. “Databases with uncer-

tainty and lineage,” VLDB Journal 17, 2, 2008.

[14] Fan, Hao, Poulovassilis, A. “Using schema trans-

formation pathways for data lineage tracing,” Lec-

ture Notes in Computer Science 3567, 2005.

[15] Jaeschke, G., Schek, H. “Remarks on the Algebra

of Non First Normal Form Relations,” In Proceed-

ings of the 1st ACM SIGACT-SIGMOD Symposium

on Principles of Database Systems (PODS '82),

ACM, 1982.

[16] Arisawa, H., Moriya, K., and Miura, T. “Opera-

tions and Properties on Non-First-Normal-Form Re-

lational Databases,” In Proceedings of the 9th inter-

national Conference on Very Large Data Bases

(VLDB ’83) VLDB Endowment, 1983.

[17] Buneman, P., Khanna, S., Tan, W. C. “Why and

Where: A Characterization of Data Provenance,” In

Proceedings of the 8th International Conference on

Database Theory (2001). J. V. Bussche and V. Via-

nu, Eds. Lecture Notes In Computer Science, vol.

1973. Springer-Verlag, London, 2001.

[18] Buneman, P., Cheney, J., Tan, W. C., Vansumme-

ren, S. “Curated Databases,” In Proceedings of the

27
th

 ACM SIGACT-SIGMOD Symposium on Prin-

ciples of Database Systems (PODS'08), ACM, 2008.

[19] Buneman, P. “Curated Databases,” In Proceedings

of the 4th International Conference on Web Infor-

mation Systems Engineering (WISE’03), 2003.

