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Abstract 
 

Some tasks in a dataspace (a loose collection of heterogeneous data sources) require integration of fine-grained data 

from diverse sources. This work is often done by end users knowledgeable about the domain, who copy-and-paste 

data into a spreadsheet or other existing application. Inspired by this kind of work, in this paper we define a data 

curation setting characterized by data that are explicitly selected, copied, and then pasted into a target dataset where 

they can be confirmed or replaced.  Rows and columns in the target may also be combined, for example, when re-

dundant. Each of these actions is an integration decision, often of high quality, that when taken together comprise the 

provenance of a data value in the target.  In this paper, we define a conceptual model for data and provenance for 

these user actions, and we show how questions about data provenance can be answered. We note that our model can 

be used in automated data curation as well as in a setting with the manual activity we emphasize in our examples.  

 

1. Introduction 

When a user is confronted with a potentially large 

number of diverse data sources of variable maturity or 

quality, i.e., a dataspace [1], she may have limited tools 

available to integrate or query data from these sources.  

A user typically uses a weak tool such as a spreadsheet 

to gather data and almost always uses a copy-and-paste 

action to transfer data from sources into an integrated 

target dataset. This kind of work differs substantially 

from traditional information integration, including up-

date exchange, as discussed in the literature [2,3,4,5], 

though aspects of it have been addressed in literature 

concerning curated databases [10,11,18,19]. Perhaps 

the most compelling differences between this type of 

work and traditional integration are that the user works 

with individual data values, rather than sets of rows at a 

time, and that provenance is needed at the level of 

these individual values. These differences and others 

we discuss in Section 2 lead us to describe and address 

a data curation setting. 

As an example, consider Anne, a battalion informa-

tion officer working in a theatre of military operation. 

Anne gathers and organizes information from a variety 

of sources to help her commanders make decisions. A 

typical task for Anne might be to assemble a table of 

casualty information due to explosive device incidents 

during the prior week in a given patrol area. Data 

sources for assembling this report may include incident 

databases from friendly forces in the area, e-mail ex-

changes with local police, patrol logs for the week, and 

medical-team records. Anne uses her personal knowl-

edge of the operations area, recent events, reliability of 

sources, and her commander’s preferences for data as 

she works. She may begin gathering data by writing a 

query against an existing database, as in traditional 

information integration. However, she then proceeds 

along non-traditional lines: adding rows to her table as 

she identifies incidents of interest; selecting data values 

from external sources and inserting them into rows and 

columns in the evolving data table by using copy-and-

paste actions; adding columns to her table as needed; 

manually overriding data values directly or with data 

from other sources; merging rows that she realizes rep-

resent the same incident into new rows (entity resolu-

tion), and choosing correct values for each column in 

the resulting row from those being merged; combining 

information from multiple columns that she realizes are 

redundant (attribute resolution), and choosing correct 

values for each row in the resulting column from those 

being merged; confirming data elements she knows to 

be accurate; correcting mistakes; and issuing further 

updates. 

Each of Anne’s actions is an information integration 

decision, and each data value in her report is the prod-

uct of such decisions. This provenance is often lost 

with current tools, but is key to answering questions 

such as, “Where did we get the date for incident 105?” 
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We seek to enable this kind of data integration and 

provenance exploration with minimal interference with 

a user’s workflow. We make the following contribu-

tions toward our goal in this paper. We elaborate the 

example above in order to describe the differences be-

tween this and traditional information integration set-

tings. We extend the set of user integration actions de-

fined in our prior work [6,7] to include user confirma-

tion, so that a user can express confidence in a data 

value, even if the value is not changing. We show how 

to derive from a record of user integration actions the 

provenance, plurality of support, and trust of each data 

value in the assembled data set, and how to use this 

information to answer questions that might arise in our 

setting. 

Although our work was inspired by manual curation, 

it is applicable to an automated or mixed manual-plus-

automatic setting. A user can copy data in bulk from a 

query answer or view into the data curation setting. 

Whether manual or automated, we only require that the 

“paste” part of the action specify precisely which cell is 

the target for each value.  In this paper, we describe the 

actions in a data curation setting as if a user performed 

them manually. The remainder of our paper is organ-

ized as follows. In Section 2, we elaborate our example 

of a data curation setting and describe a conceptual 

model to support this setting, including the new user 

confirmation action. In Section 3, we describe an im-

plementation approach to support our conceptual 

model. In Section 4, we relate copy-and-paste, entity 

resolution, and attribute resolution operations to data 

provenance. In Section 5, we show how our model is 

able to answer interesting questions about provenance. 

In Section 6, we evaluate our approach with regard to 

storage overhead. Section 7 discusses related work and 

Section 8 concludes. 

2. Use Model for a Data Curation Setting 

We assume that Anne uses a tool for data integration 

that records each of her actions. In our example (and in 

the prototype implementation of our data model), 

Anne’s actions may include: initially populating a data 

table via a query over an external source; adding or 

deleting rows (entities) and columns (attributes); copy-

ing data values from external information sources and 

pasting them into rows and columns of the table (either 

updating or adding information); and performing entity 

and attribute resolution operations. We have not in-

cluded here the notion of copying a value from within a 

data table and pasting it elsewhere in the table, as Bun-

eman et al. do [10,11]. Suppose Anne writes a query to 

gather some initial data, with result as follows: 

IncidID Mapl1 Mapl2 T Dev 

101 34.3998 70.4986  ied 

102   2 art 

103 34.3998 70.4985 1  

 

    Here, IncidID is Anne’s identifier for incidents, 

Mapl1 and Mapl2 are map coordinates, T is some un-

specified attribute, and Dev is the type of munition 

involved. Implicit in this table (and not visible to the 

user), is a unique, system-generated key for each row in 

the table, used by the system for recording the history 

of data manipulation in the row. Next, Anne gathers 

more data using copy-and-paste, and finds information 

on casualties and dates for the incidents (adding new 

columns Cas and Date), along with other data (new 

columns ME, MLat, and MLng), which she does not 

fully understand yet. Her data table now is shown in 

Table 1. 

    At this point, Anne determines that incidents 101 

and 103 are the same, and that incidents 102 and 104 

are the same. Selecting “entity resolution” from a 

menu, she creates a new entity from incidents 101 and 

103, and as part of the operation she selects, on an at-

tribute-by-attribute basis, which values to propagate 

from the original incidents into the new (merged) row 

whenever the source rows disagree. The original rows 

are then hidden from Anne’s view, leaving only the 

new entity. She then resolves incidents 102 and 104. 

Choices made during the resolutions are highlighted in 

Table 2. 

ID Mapl1 Mapl2 T Dev Cas ME MLat MLng Date 

101 34.3998 70.4986 1 ied 3 3 3423.99 7029.92 03mar 

102 34.3996 70.4985 2 art 7 6 3423.96 7029.90 05mar 

103 34.3998 70.4985 1 ied 4 3 3423.99 7029.91 03mar 

104 34.3996 70.4985 2 msl 7 6 3423.96 7029.90 04mar 

105 34.3994 70.4988 1 ied 12 12 3423.94 7029.88 06mar 

Table 1. Intermediate data table after first round of copy-and-paste integration. 
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ID Mapl1 Mapl2 T Dev Cas ME Mlat MLng Date 

101 34.3998 70.4986 1 ied 4 3 3423.99 7029.92 03 mar 

104 34.3996 70.4985 2 art 7 6 3423.96 7029.90 04 mar 

105 34.3994 70.4988 1 ied 12 12 3423.94 7029.88 06 mar 

Table 2. Data table after initial entity resolution. 

 

Next, Anne finds that columns Mapl1 and Mlat are 

the same geographical location data, though in differ-

ent formats. Similarly, Mapl2 and MLng are redundant. 

She then determines that Cas (Casualties) and ME 

(which she discovers to mean the count of soldiers 

MedEvac’d from the scene) also represent the same 

information, which she chooses to call Injured. Resolv-

ing these columns proceeds in fashion similar to the 

entity resolution operations. Anne chooses new, mean-

ingful column names for the new columns, and her 

table takes the form: 

 

ID Lat Long T Dev Injured Date 

101 34.3998 70.4986 1 ied 4 03mar 

104 34.3996 70.4985 2 art 6 04mar 

105 34.3994 70.4988 1 ied 12 06mar 

 

Review of the data against other information reveals 

inconsistencies. She changes the “Injured” column of 

incident 105 to 9 from 12, and the date of incident 105 

to 07mar. From personal knowledge, she confirms the 

“injured” column of incident 104 as 6. At last, her re-

port is in final form: 

ID Lat Long T Dev Injured Date 

101 34.3998 70.4986 1 ied 4 03mar 

104 34.3996 70.4985 2 art 6 04mar 

105 34.3994 70.4988 1 ied 9 07mar 

 

From the point at which Anne began gathering data 

to the point at which the report is in final form, 95 re-

cordable history actions occurred. At this point, Anne 

might need to examine the history behind selected data. 

She might for example ask the following questions: 

 “Which incidents were combined from others in the 

table?”  

 “Which incidents in the table had casualty data 

that was inconsistent and was corrected?”  

 “For each incident merged from redundant inci-

dents, what were the incident IDs of the original 

rows that we chose to resolve?”  

 “How many information sources have we found to 

support the casualty count for the IED incident in 

row 112?”  

 “What other names did column Long in this table 

have in earlier versions of the data you gathered?”  

 “What information about incident 109, if any, was 

derived differently than the rest?”  

 

To answer these, Anne can click on a data value in her 

table and be presented with a graph of the provenance 

for the value, as shown in Figure 1. This graph shows 

not only the origins (external sources) for the selected 

data value, but also the intermediate values that con-

tributed to its current state. All user actions that led to 

the current state are also shown, including which values 

were preferred over others during resolution opera-

tions, as well as confirmations made by users. For ex-

ample, the figure shows that the value for incident 104 

in the Injured column was most recently derived by 

attribute resolution (A), where the value at {104, 

wounded} in the table was preferred by the user over 

the value at {104, cas} (the dashed edge indicates non-

preferred). The figure also shows that the current value 

was confirmed by user input (X). The conceptual 

model visible to the user in our setting consists of the 

data table she constructed, along with a provenance 

graph for each “cell” in the table.  

This setting has a number of novel characteristics: 

 Access to the collection of data sources found in a 

dataspace may be varied. For example, sources may 

come and go over time. In addition, we may wish to 

produce a snapshot in time of a dataspace that is 

dynamic. Because of this requirement, queries are 

answered using only the target instance. 

 Information is most often integrated at the data 

level by selecting individual data values from 

sources. However, traditional integration may also 

play a role. 
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 A data value (once selected) is inserted into a spe-

cific location in the target instance, identified by an 

internal, unique row-id and a column name (distin-

guished by means of the user pointing to a table 

cell).  The user is implicitly joining each new value 

with a row that already exists and specifying a par-

ticular existing column into which the data value 

goes. 

 

 

Fig. 1. Provenance tree for (104,“Injured”) where the 

current value is 6. Edges represent user actions (A for 

attribute resolution, E for entity resolution,  for con-

firmation,  for update). Nodes show state of values 

in the data table. Non-preferred edges are shown us-

ing a dashed line. 

 

 The target instance may include new data inserted 

from the user’s knowledge and not from an identi-

fied data source. 

 The user can confirm that a data value in the target 

is valid, either by pasting in the same value from a 

second source, or by locally confirming the value. 

 A data value gathered by a user may arise from 

multiple sources, be the result of multiple human 

judgements, have multiple attribute name designa-

tions, and have multiple entity associations during 

the integration process. As a result, a user may want 

to review the reliability of her data, understand how 

much support there is for a given data value, and 

possibly review the set of values that a given data 

value has had over time. 

3. An Implementation Approach 

We developed a prototype end-user application 

called CHIME (Capturing Human Intension Metadata 

with Entities) that supports the kind of integration task 

outlined above. CHIME supports creation and manipu-

lation of a single, entity-centric data table, while cap-

turing the history of manipulation operations (inser-

tions and updates, entity resolutions, attribute resolu-

tions, and confirmations) that comprise the provenance 

of data in the table. Rows in this table correspond to 

entity instances, while columns correspond to attributes 

of the entities. (In this paper, we use the term “entity” 

to refer to an entity instance.) Each entity in a CHIME 

dataset (i.e., the data shown in one row) has an inter-

nally generated, unique identifier, called KeyVal in the 

schema, which is not made visible to the user. 

CHIME data can be modelled by two relations. We 

define schema R with instance r to represent entities: 

 KeyVal, a unique system-generated identifier that 

functions as a candidate key for R 

 {Attr1, Col.Visible1, Attr2, Col.Visible2…AttrN, 

Col.VisibleN}, where each Attr is a user-defined at-

tribute name and each Col.Visible a Boolean that 

specifies whether Attr is visible to the user and eli-

gible for CHIME operations. 

 Row.Visible, a Boolean attribute that specifies 

whether this tuple in r is visible to the user and eli-

gible for CHIME operations.  

 

We define a history table schema H, with instance h. 

Each user action on the data relation r adds new entries 

to h. H has attributes: 

 SeqNum, a monotonic integer (e.g., a timestamp) 

 KeyVal, a foreign key referencing R 

 AttrName, an attribute with domain {Attr1, Attr2, 

…AttrN} from R 

 AttrVal, the value given to attribute AttrName in 

the row in r with key KeyVal as a result of this ac-

tion 

 Action, an attribute with domain {A, E, , X} (for 

attribute resolution, entity resolution, update, and 

user confirmation, respectively) 

 Preferred, an attribute with domain {Left, Right, 

Both} that indicates which parent tuple or column 

was preferred for item (KeyVal, AttrName) by the 

user during a resolution operation 

 LeftParent, an attribute with domain 

{dom(AttrName)  dom(KeyVal)  NULL}, indi-

cating one parent row (for entity resolution) or col-

umn (for attribute resolution), or NULL otherwise 
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 RightParent, an attribute with domain 

{dom(AttrName)  dom(KeyVal)  NULL }, in-

dicating the other of two parents resolved to form 

the new data value 

 Source, a string-valued attribute with domain con-

sisting of the distinguished value “User-supplied” 

and names of data sources 

 

Taken together, Seqnum, KeyVal, and AttrName 

form a candidate key for H. Note that multiple entries 

in H may have the same SeqNum. For example, all 

entries associated with a resolution operation have the 

same timestamp, though each entry affects a different 

target data value. 

We envision a user interface (much like our CHIME 

prototype interface) where data in r is shown in table 

form, with only rows and columns with Visible flags 

set to True visible to the user. In the interface, the user 

can easily see the corresponding data from h in the 

form of a provenance graph for any data value shown, 

e.g. by clicking on the data value. 

4. Relating User Actions to Provenance 

We map information from CHIME actions to fields 

of entries in the CHIME history table (h) in order to 

compute provenance and answer user questions.  Copy-

and-paste actions that insert new (or different) values 

into a data value are mapped to entries in h as follows: 

 SeqNum = (automatically generated) sequence 

number of this update in the overall history 

 KeyVal = internal identifier of target row 

 AttrName =  name of target column 

 AttrVal = value pasted 

 Action = Update  

 Preferred = NULL  

 LeftParent = NULL  

 RightParent = NULL  

 Source = source identifier or “User-supplied” 

 

    Users can copy-and-paste the same value into a data 

value again, possibly from a different source. In this 

case, we add an entry to the history table, recording the 

user action as Confirm. The user may also Confirm a 

value directly without a copy-and-paste operation, 

when there is no external source. 

Entity resolution in our model consists of merging 

two entities into a new entity, then making the original 

entities not visible. For each attribute (column) of the 

resulting entity where source data values differ (note 

that the schema of source entities and result entity are 

the same), the user must choose which source attribute 

value to propagate. When source attribute values are 

identical, we consider both to be propagated, for 

provenance purposes. Attribute resolution in our model 

works in a similar fashion. Two attributes are merged 

into a new attribute, and the two original columns are 

made non-visible. In rows where the two source values 

differ, the user chooses column values to propagate to 

the new column. We map entity resolution and attribute 

resolution operations to entries in h as follows: 

 SeqNum = (automatically generated) sequence 

number of this update in the overall history. (Be-

cause resolutions affect multiple data values, and it 

is useful to identify all effects of a resolution, all 

such effect are recorded with one SeqNum) 

 KeyVal = internal identifier for row of the data 

value resulting from entity or attribute resolution 

 AttrName = column name of the data value result-

ing from entity or attribute resolution 

 AttrVal = value of the data value after resolution 

 Action = Entity or Attribute resolution  

 Preferred = Left, Right, or Both referring to one or 

both of the Parent values below  

 LeftParent = one of the KeyVals (if entity resolu-

tion) or column names (if attribute resolution) in-

volved in entity or attribute resolution 

 RightParent = the other KeyVal or column name 

involved in entity or attribute resolution 

 Source = NULL 

5. Computing and Expressing Provenance 

In this section we explore the use of the history rela-

tion to generate provenance graphs. We then define a 

set of predicates and algorithms to traverse these 

graphs in order to answer user questions. 

We define a provenance tree TP(V,E) for a data 

value in the user’s table as a directed acyclic graph 

with V a set of vertices and E a set of edges. A vertex v 

 V in Tp corresponds to 

 the current state of the data value of interest, if the 

vertex is the root of Tp 

 a prior state (ancestor) of the data value of interest, 

if the vertex is neither the root nor a leaf in the tree 

 the source of an update or confirmation, if the ver-

tex is a leaf in the tree (either the name of an exter-

nal source, or a constant user-supplied value when 

the user confirms the value directly) 

 

Each edge e  E exits a vertex in V (other than the 

root) and enters a distinct, non-leaf vertex in V.  
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A provenance graph represents an Update operation 

by adding a leaf vertex to represent the source from 

which the data was copied (or to represent a constant 

supplied directly by the user), and an Update edge from 

the source vertex to the affected data value vertex. If 

the data value is new (that is, if the Update corresponds 

to insertion of a data value for the first time), a vertex 

is added to represent the data value in the table. A Con-

firm operation is represented similarly, but the connect-

ing edge is labelled Confirm. If two data values are 

merged during an entity or attribute resolution, a new 

vertex is added to represent the resulting merged data 

value. E includes two edges for the operations, one 

exiting each vertex representing a “parent” data value 

and both entering the vertex representing the new 

(merged) data value. Where the two values resolved 

are not equal, each edge indicates whether the parent 

vertex held the value preferred by the user, or the over-

ridden (not preferred) value. In a resolution with iden-

tical parent data values, both edges are preferred. In the 

absence of resolution operations, a provenance graph 

for a data value consists only of a root vertex and any 

leaf (source) vertices. Intermediate (non-root, non-leaf) 

vertices are only introduced by resolutions. 

We represent Tp(V,E) for one data value as a pair of 

relations, Node and Edge, that are temporary, and gen-

erated on-the-fly when the provenance graph is created 

by user request. Node includes attributes: 

 Nodenum, a candidate key for Node 

 KeyValue, an foreign key referencing KeyVal in H 

 AttrName, an attribute with domain {Attr1, Attr2, 

… AttrN} from R, equal to AttrName in the corre-

sponding entry in h 

 AttrVal, = AttrVal in the corresponding entry in h 

 Source, = Source in the corresponding row in h 

The attributes for Edge are: 

 Descendant – a foreign key referencing Node 

 Ancestor –a foreign key referencing Node 

 Action, with domain {Attribute Resolution, Entity 

Resolution, Update, Confirm} equal to Action in 

the entry in h for the Descendant’s KeyValue 

 Preferred, a Boolean value equal to TRUE if An-

cestor’s value was preferred during the action creat-

ing Descendant, and FALSE otherwise. This attrib-

ute is ignored if Action is not a resolution action 

 

We construct TP(V,E) for a data value in r (specified 

by the user selecting a row and column) by retrieving 

from the history table the list of actions performed on 

the value and its ancestors. Figure 2 shows an abstrac-

tion of the Prolog implementation of our algorithm. 

The get_history predicate retrieves from h a list of user 

actions performed on the value at row-id Key and col-

umn Attr. The setpref predicate sets the value of the 

“Preferred” indicator for edges in Tp. Our algorithm 

constructs a textual version of Tp via write statements. 

  

make_ptree(Key, Attr, Root) :- 

               get_history(Key, Attr, [H|Rest]), 

              history(H,_,_,Val,_,_,_,_,Src), 

              build_ptree(Key, Attr, H, [H|Rest], true), 

 write("node(",H,Key,Attr,Val,Src,")."), 

 Root is H. 

% most recent action was an update 

build_ptree(Key, Attr, Root, [H|Rest], Pref_flag) :- 

 history(H,_,_,Val,u,_,_,_,Src), 

 S is 0 - Root, 

 write("node(",S,Key,Attr,Val,Src,")."), 

 write("edge(",Root,S,u,Pref_flag,")."), 

 build_ptree(Key, Attr, Root, Rest, false). 

% most recent action was a confirmation 

build_ptree(Key, Attr, Root, [H|Rest], Pref_flag) :- 

 history(H,_,_,Val,c,_,_,_,Src), 

 S is 0 - Root, 

 write("node(",S,Key,Attr,Val,Src,")."), 

 write("edge(",Root,S,u,Pref_flag,")." 
 build_ptree(Key,Attr,Root,Rest,Pref_flag). 

% most recent action was an attribute resolution 

build_ptree(Key, Attr, Root, [H|Rest], Pref_flag) :- 

 history(H,_,_,_,a,Pref, LeftP, RightP, _), 

 make_ptree(Key, LeftP, NewRoot1), 

 setpref(Pref_flag, Pref, left, P), 

 write("edge(",Root,NewRoot1, a, P,")."), 

 make_ptree(Key, RightP, NewRoot2), 

 setpref(Pref_flag, Pref, right, Q), 

 write("edge(",Root,NewRoot2, a, Q,")."), 

 build_ptree(Key, Attr, Root, Rest, false),!. 

% most recent action was an entity resolution 

build_ptree(Key, Attr, Root, [H|Rest], Pref_flag) :- 

 history(H,_,_,_,e,Pref, LeftP, RightP, _), 

 make_ptree(LeftP, Attr, NewRoot1), 

 setpref(Pref_flag, Pref, left, P),  

 write("edge(",Root,NewRoot1,e,P,")."), 

 make_ptree(RightP, Attr, NewRoot2), 

 setpref(Pref_flag, Pref, right, Q),  

 write("edge(",Root,NewRoot2,e,Q,")."), 

 build_ptree(Key, Attr, Root, Rest, false),!. 

% base condition - empty history list 

build_ptree(_,_,_,[],_). 

 
 

Figure 2. Provenance tree construction algorithm 

 

The provenance tree generated for the attribute 

value “Injured” for incident 104 in the final data table 

of Section 2 is shown in Figure 1. Nodes are labelled 

for clarity in this example with a row key (IncidID in 
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this case) and a column name to indicate the data value 

represented. The tree shows that the data value of in-

terest has value 6, which was inherited from ancestor 

{104, wounded} and preferred over an alternate value 

in ancestor {104, cas} during attribute resolution of 

attributes “cas” and “wounded” into the new attribute 

named “injured”. The tree also shows that this value 

was confirmed by user input. The value at {104, cas} is 

shown to be inherited from earlier values at {102, cas} 

and {104, cas} during entity resolution of incidents 102 

and 104 into a new incident ID that the user chose to 

also call 104. In this case, both values were the same, 

so both edges are preferred. The value from {102, cas} 

is shown in the tree to have its origin in an update made 

by the user from a source document called “document 

3”.  

We have defined a set of predicates over the Node 

and Edge tables to assist in answering common queries. 

We omit their Datalog definitions and define them in-

formally here: 

 view_origins – returns the list of node numbers of 

leaf nodes connected to the root node by preferred 

edges 

 view_sources – returns the names of data sources 

from all leaf nodes connected to the root by pre-

ferred edges 

 view_all_predecessors – returns the list of node 

numbers of all leaf nodes in the tree 

 view_support – returns a count of the number of 

non-root nodes with the same data value as the root 

 view_attribnames – returns the list of attribute 

names found in the tree nodes 

 view_entityIDs – returns the list of entity (row) 

identifiers found in the tree nodes 

 

Using these predicates, relational algebra, and the 

provenance graph for a selected data value, we can 

answer the kind of questions described in Section 2. To 

answer the question, “How did we find out the date of 

incident 105?” we build the provenance graph for the 

“Date” column of the row for incident 105, and evalu-

ate the query view_sources(). We answer, “Which in-

cidents were combined from others in the table?” us-

ing relational algebra over the history and data tables: 

 

IncidID (Row.Visible=True,Action=E (h  r)) 

 

The join in this expression produces a tuple for 

every entity that has a history table entry associated 

with one of its data values. The selection operator 

chooses those where the history table entry represents 

an entity resolution, and where the entity is still visible 

to the user. 

The question, “For each incident merged from re-

dundant incidents, what were the incident IDs of the 

two predecessor rows we chose to resolve?” can be 

answered by 

 

merged, original-1,original-2  

 ((incidID 


 original-1 (merged, IncidID ((incidID 


 merged  

             (incidID,LeftParent(Row.Visible=True, Action=E (h  r))))  

             LeftParent = KeyVal r ))) 

    merged 

    (incidID 


 original-2 (merged, IncidID ((incidID 


 merged  

           (IncidID,RightParent(Row.Visible=True, Action=E (h  r))))  

           RightParent = KeyVal r )))) 

 

To answer the question, “How many information 

sources have we found to support the casualty count 

for the IED incident in row 102?” we can apply the 

view_origins() predicate to the provenance graph for 

the data value “Injured” in the row for incident 102. 

“What other names did column Long in this table have 

in earlier versions of the data you gathered?” can be 

answered by building a provenance tree for each data 

value in column Long, and taking the Union of 

view_attribnames() on each provenance graph. “What 

information about incident 109, if any, was derived 

differently than the rest?” can be answered by using 

make_ptree() to construct provenance trees for each 

data value in the selected row, then computing the tree 

edit distance [8] for each possible pairing of these val-

ues, and looking at the distribution of edit distances. 

Provenance queries can also be written against the 

history table using the recursion capabilities supported 

in SQL:1999. As an example, to answer the question, 

“Where did we find the date of incident 105?”, one can 

write the following query, implicitly selecting the row 

identifier of the row for incident 105 (called X in this 

example) via a user interface. 

 

WITH RECURSIVE 

Value_Events(KeyVal, AttrName, Action, Preferred,    

          LeftParent, RightParent, Source)  

AS  

(SELECT KeyVal, AttrName, Action, Preferred, Left      

   Parent, RightParent, Source 

  FROM History h 

 WHERE h.KeyVal = X 

  AND  h.AttrName = “Date” 

  AND  h.SeqNum =  

  (SELECT MAX (Seqnum) 

   FROM History h 

   WHERE h.KeyVal = X 

   AND h.AttrName = “Date” 

   AND h.Action != “Confirm”)) 
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UNION 

(SELECT KeyVal, AttrName, Action, Preferred, 

    LeftParent, RightParent, Source 

 FROM History h, Value_Events v1 

 WHERE (h.KeyVal = v1.LeftParent  

     AND v1.Preferred = Left  

     AND h.AttrName = v1.AttrName  

     AND h.Action = E) OR 

  (h.KeyVal = v1.RightParent  

           AND v1.Preferred = Right  

     AND h.AttrName = v1.AttrName  

     AND h.Action = E)  OR 

  (h.AttrName = v1.LeftParent  

   AND v1.Preferred = Left  

   AND h.KeyVal = v1.KeyVal  

   AND h.Action = A) OR 

 (h.AttrName = v1.RightParent  

   AND v1.Preferred = Right  

   AND h.KeyVal = v1.KeyVal  

   AND h.Action = A)) 

 

SELECT Source  

FROM Value_Events v2 

WHERE Source != "" 

6. Overhead of Provenance Storage 

Provenance overhead grows with the number of user 

actions. If a dataset is constructed using individual 

copy-and-paste actions, then the history table grows by 

one entry per data value pasted into the data table, plus 

entries for each update, confirmation, and resolution 

later affecting that data value. Let N be the number of 

data values pasted by the user, r the average number of 

updates  made to each value, and c the average number 

of confirmations applied to each value. Note that the 

number of resolutions cannot exceed N - 1, because 

once a pair of values is resolved to form a new value, 

the original pair becomes non-visible and cannot be 

resolved further. The number of history table entries 

may be as large as 

 

   N   (due to initial population) 

+ N * r  (due to revisions) 

+ N * c  (due to confirmations) 

+ N - 1  (due to resolutions) 

Then the number of history table entries is less than  

 

(2 + r + c) N  

 

Revisions (r) and confirmations (c) per data value 

are potentially unlimited, but in practice, we expect 

that each data value will only be revised or confirmed a 

small number of times, and that number is independent 

of the total number of data values in the table. The 

overhead for storing provenance also must include a 

factor for the size of each history entry relative to the 

average size of each data value. The size of a history 

entry is constant in our implementation, and if we as-

sume that the average size of a data value is also a con-

stant, we can express the ratio of these as a constant kh. 

This lets us express a bound on the overhead for stor-

ing provenance as 

 

    kh * ((2 + r + c) N), or O(N) 

7. Related Work 

Buneman, Chapman, Cheney, and Vansummeren 

[10,11] address provenance for manually curated data 

in scientific disciplines. Their work shares many of the 

same goals as ours. They address two forms of prove-

nance (“where” and “why” [17]), but do not seem to 

address the ability to reconstruct the history of actions 

affecting data values (“what”). However, if historical 

data values and actions were included in their prove-

nance tables, the expressive power of our approach and 

theirs, with regard to updates, would be the same. Their 

work addresses a limited set of user actions: copy-and-

paste, insertion, and deletion (all of which we call up-

dates). Our user action model includes entity resolu-

tion, attribute resolution (schema modification), and 

confirmation, though it does not at present include de-

letions. 

Substantial work has been reported on computing 

provenance of data exchanged between structured, dis-

tributed scientific data stores. Orchestra [4], a proto-

type Collaborative Data Sharing System (CDSS), pro-

vides a general-purpose platform for data sharing be-

tween structured data sources maintained by distinct 

collaborating teams. Orchestra employs a detailed 

provenance model based on polynomials in semi-rings 

[12], where each term in a polynomial describes a par-

tial mapping from source relations to target relations. 

The polynomial approach allows Orchestra to track 

several ancestors for one tuple, much like CHIME does 

for individual data values. As a result, Orchestra and 

CHIME support trust evaluation based on whether a 

user trusts the various sources described in the prove-

nance polynomial. Orchestra also differs from our 

work. First, Orchestra computes provenance on a per-

tuple basis, while we compute provenance on a per-

value basis. Second, Orchestra focuses on only map-

pings expressed at the schema level, while our work 

focuses on mappings expressed at the individual data-
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value level. In Orchestra, provenance data is computed 

when explicit “update exchange” events are issued. In 

our setting, we continuously record the history of user 

actions, and at any time allow the user to construct 

from this history a provenance tree to support useful 

queries. We also have a richer model for user confir-

mation, where the user can explicitly confirm a value; 

Orchestra has a simpler negative confirmation at the 

tuple level: a tuple that originated from another site, 

once deleted locally, will not be imported again. 

Uncertainty-Lineage Databases (ULDBs) [13] store 

the lineage of database tuples along with data. A line-

age function  is defined for each relational operator 

available in the database, and lineage for each tuple is 

computed using the appropriate lineage functions each 

time an operation is performed. Both CHIME and 

ULDBs rely on well-behaved lineage: For example, 

lineage computation must be free of cycles. CHIME 

prevents cycles in lineage because the set of user ac-

tions on a data value is by definition cycle-free. Our 

work differs from the ULDB approach in that the 

source data for our provenance calculations are stored 

as a history table, which also enables other functional-

ity, while ULDBs appear to store only lineage. Our 

work also differs in that CHIME retains provenance on 

a per-value basis rather than per tuple.  

AutoMed [14] defines the notion of schema-

transformation pathways that express data transforma-

tion and integration in a relational (data warehouse) 

environment. In AutoMed, transformation pathways are 

evolved dynamically to record the evolution of the 

warehouse schema. Lineage tracing of tuples may be 

derived from this pathway data. Our work is similar, 

but at the granularity of data values rather than tuples. 

We retain a history table that resembles the transforma-

tion pathways of AutoMed, and use it to compute 

provenance of individual data values, much as 

AutoMed does for tuples. 

8. Conclusions and Future Work 

We have defined a new data-management setting 

distinct from traditional information integration (in-

cluding update exchange). We have shown how the 

history of user actions in our setting defines the Where, 

What, and Why provenance of the integrated datasets 

users create in that setting. Whether by automated or 

manual means, our data curation setting permits the 

provenance of sets of data values, including data from 

query answers or views, to be captured as long as the 

collective gathering work can be expressed in a set of 

value-at-a-time actions. 

Using this model, we have shown how to answer 

user questions about data provenance. To test our 

ideas, we have implemented a prototype version of 

CHIME, supporting copy-and-paste, drag-drop, entity 

resolution, and search-browse with a Windows user 

interface; a Prolog implementation supporting all user 

actions defined here (update, confirmation, entity reso-

lution, attribute resolution, and de-resolution), that cre-

ates the user data table and history table; and a Prolog 

implementation for creation and querying of prove-

nance trees from history tables, as described in this 

paper. 

At present, the CHIME data model is limited to first 

normal form. That is, though an attribute value may 

have a history of several values, at any point in time it 

has exactly one value. As Halevy, Franklin, and Maier 

point out, a realistic dataspace model must represent 

inconsistent and uncertain attribute values [2]. We are 

currently extending this work to cover representation 

and manipulation of such non-first normal form struc-

tures, incorporating some of the ideas of Jaeschke and 

Schek [15] and Arisawa, Moriya, and Miura [16]. 

CHIME provides integration that takes advantage of 

the high-quality decisions derivable from direct user 

actions. This trade-off in favor of high quality necessi-

tates relaxing integration throughput. Other ap-

proaches, such as Orchestra [4], favor enabling high 

throughput by automated execution of a set of pre-

constructed TGDs against incoming data sets. We plan 

to explore blending these approaches. 
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