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Abstract

We investigate the problem of learning the
dependencies among servers in large networks
based on failure patterns in their up-time be-
haviour. We model up-times in terms of ex-
ponential distributions whose inverse lifetime
parameters lmay vary with the state of other
servers. Based on a conjugate Gamma prior
over inverse lifetimes we identify the most
likely network con�guration given that any
node has at most one parent. The method
can be viewed as a special case of learning a
continuous time Bayesian network. Our ap-
proach enables us to easily incorporate ex-
isting expert prior knowledge. Furthermore
our method enjoys advantages over a state-
of-the-art rule-based approach. We validate
the approach on synthetic data and apply it
to �ve year data for a set of over 500 servers
at a server farm of a major Microsoft web
site.

1. Introduction

Murphy's Law1 states that �Anything that can go
wrong will go wrong!� and thus emphasises the un-
avoidability and pervasiveness of failure in the world.
Building on Murphy's insight, this article proposes a
Bayesian methodology for making use of failure data
from server event logs for inferring the (failure) struc-
ture of networks.

Modern server farms exhibit highly complex, often in-
crementally grown network architectures with up to

1Named after Capt. Edward A. Murphy, who intro-
duced the law in response to an inept technician at Ed-
wards Airforce Base in 1949.

several thousand nodes which can be functionally and
physically related. In such an environment the causes
of system failures (crashes) cannot solely be attributed
to isolated hardware or software defects, rather system
management and environmental activities can be the
dominant factors. The complex con�guration of these
sites increases the risk that a failure on one system
can induce failures on other related systems (i.e. cas-
cading failures) [4] (see also [2] for failure statistics
on Windows systems). This complexity also increases
the di�culty of diagnosing these cascading failures. A
crucial �rst step in improving this situation was to
develop an automated data collection process contin-
uously capturing behavioural information from pro-
duction systems on customer sites, such as the Dig-
ital Product Performance Programme at Digital, and
later the Microsoft Reliability Analysis Service at Mi-
crosoft2. These systems require an on-system event
logging mechanism which creates a continuous record
of events occurring on the system, with event codes in-
dicating the kind of event together with a time-stamp.
In order to analyse the dependencies between nodes
in a network, the server event logs of all the systems
involved are collected, cleaned and stored in a SQL
database. Following earlier work [4] we focus on the
three events clean shutdown, dirty shutdown and
start eventlog. In contrast to Murphy's DOWS
process [3], which identi�es temporally related clus-
ters of events from the time series, we learn a contin-
uous time Bayesian network (CTBN) [6, 7]. In the
CTBN framework the up-times of any given node are
modelled based on an exponential distribution with
piece-wise constant hazard rates that may depend on
the states of other, related nodes. CTBNs are mod-
els similar to dynamic Bayesian networks (DBNs) ([1],

2See http://www.microsoft.com/windowsserver2003/
mras/default.mspx.
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Figure 2.1. (Left) A segment of a (discrete time) dynamic
Bayesian network with three servers. Note that this model
does not contain any loops even if we consider the limit of
∆→ 0. (Right) A sample drawn from (a) for servers D1,
D2 and D3.

and see [5] for a more general overview) but avoid the
problems associated with the discretisation of time re-
quired for the application of conventional DBNs.

The paper is structured as follows: In Section 2 we in-
troduce a Bayesian up-time model which can be viewed
as a special case of the CTBN framework. In Sec-
tion 3 we describe experiments on synthetic data to
validate our model, compare the results to a state-of-
the-art rule-based approach, and present our results
for a server farm of a major Microsoft web site.

2. A Bayesian Up-time Model

2.1. Dynamic Bayesian Networks

In this section we describe our basic modelling ap-
proach which corresponds to a CTBN [6, 7] with at
most one parent per node.

Consider N servers and denote the data of the ith
server by Di. In its purest form the data Di is a list of
times ti,k ∈ R and event codes ei,k taking e�ectively3

two di�erent values shutdown and start eventlog.
There exist a variety of reasons why a server might
be stopped at any moment in time including power
failure, server maintenance, software updates, an erro-
neous process, etc.

In a �rst attempt, we discretise the time axis into in-
tervals of length ∆ and measure the state Di (t) ∈
{↑, ↓, ?} =: S of the ith server at time t = k∆. In our
particular case, we have three states: ↑ ≡ server is

running, ↓ ≡ server is down and ? ≡ server is

in an unknown state. The unknown state is neces-
sary to take account of inconsistencies in the server
event logs: A server can never be started/stopped
twice in a row without having been stopped/started

3For the purpose of our analysis, we are group-
ing the events clean shutdown and dirty shutdown into
shutdown.

in between. Also, servers are sometimes taken o� the
network. We can specify a dependency structure be-
tween servers by modelling the transition probabilities
between states Di (t) and Di (t + ∆) given the states
{Dj (t) |j ∈ pa (i)} of all the parents pa (i) of the ith
server at time t. Note that such a network never ex-
hibits loops because we condition every server's state
at time t + ∆ only on the states of servers at time
t (see Figure 2.1). As a consequence, the entire net-
work structure S can be fully represented by all parent
relationships, S := {pa (i) |i = 1, . . . , N }.

In a Bayesian setting we are interested in computing
the distribution over all possible network structures
given the data {Di} of all servers, that is,

P (S |{Di} ) ∝ P ({Di} |S ) · P (S)

=

[
N∏

i=1

P (Di| {Dj |j ∈ pa (i)})

]
P (S) . (2.1)

In this paper we shall only consider the case of
at most one parent for every server, which already
amounts to considering NN possible network struc-
tures. We aim at �nding the most likely network struc-
ture S∗({Di}) := argmaxS P (S |{Di} ). Furthermore,
our structural prior P (S) =

∏
i P (pa (i)) factors over

the N servers and each term P (pa (i)) ∝ g (|pa (i)|) is
a (normalised) function of the number of parents only.
Let us now focus on the data dependent terms P (Di)
and P (Di |Dj ).

2.2. Continuous Time Bayesian Networks

In the above argument, our resulting network structure
S∗ may be strongly dependent on the discretisation ∆.
In order to overcome this artifact we consider the limit
of ∆ → 0 by introducing the notion of hazard rates. A
hazard rate λ (t) speci�es the inverse average waiting
time for the occurrence of an event, that is, a large
hazard rate λ (t) corresponds to high probability of
the event in an in�nitely small time interval around
t (and vice versa). This is made more formal in the
following proposition.

Proposition 1 (Generalised Exponential Distri-
bution). Let λ : R+ → R+ be any integrable function.
The generalised exponential distribution is the limit
distribution of the waiting time for an event where the
average inverse waiting time at any moment t ∈ R+ is
speci�ed by λ (t). It has the following density

∀d ∈ R+ : GEx (d;λ) :=
λ (d) exp (−Λ (d))

Z [λ]
,

where Λ (d) :=
∫ d

0
λ (x) dx and Z [λ] := 1 −

limd→+∞ exp (−Λ (d)).



Proof. For any ∆ > 0, let us divide the positive real
line into consecutive intervals of length ∆ and de�ne
π (t, ∆) := 1−exp (−∆λ (t)) which speci�es the proba-
bility that an event occurs in the time interval [t, t+∆).
Then, following the geometric distribution, the proba-
bility that an event occurs for the �rst time at d = k∆
is

P∆ (d) :=
∏ d

∆−1
i=1 (1− π (i∆,∆)) π (d, ∆)

c (∆)
,

where c (∆) ensures normalisation. Taking limits and
using l'Hospital's rule we �nd lim∆→0(P∆ (d) /∆) =
GEx (d;λ) .

Going from event probabilities to hazard rates, the
data is converted to a list of durations di,k := ti,k+1 −
ti,k. We shall assume that the hazard rate of the up-
state ↑ is constant if the state of the parent does not
change. Note that this assumption would be doubtful
for the down-state ↓, which may depend on response
time and availability of the system administrators. Let
us characterise the piecewise exponential distribution
which we will use to model up-times.

Proposition 2 (Piecewise Exponential Distribu-

tion). Suppose we are given l hazard rates λ ∈ (R+)l

and l sets Tk of non-overlapping intervals such that(⋃
k

⋃
T∈Tk

T
)

= R+ and
(⋂

k

⋂
T∈Tk

T
)

= ∅ where
the average waiting time in each of the intervals T in
Tk is governed by the hazard rate λk. The waiting time
distribution of the piecewise exponential distribution
has the following density.

PEx (d;λ,T ) :=
l∏

k=1

λ
ak(d,Tk)
k e−λkbk(d,Tk) ,(2.2)

ak (d, Tk) :=
∑

[t0,t1)∈Tk

Id∈[t0,t1) , (2.3)

bk (d, Tk) :=
∑

[t0,t1)∈Tk

(t1 − t0) Id>t1

+(d− t0) Id∈[t0,t1) . (2.4)

Proof. This follows from Proposition 1 using λ (t) =∑l
k=1 ak(t, Tk)·λk which equals

∏l
k=1 λ

ak(t,Tk)
k because

for every t exactly one ak (t) is non-zero and equal to
one.

The appeal of this up-time model becomes apparent
when considering that it still enjoys a conjugate prior
w.r.t. λ.

Proposition 3 (Conjugate Prior). Let
PGa (λ;α,β) denote the density of the product

of Gamma distribution,

PGa (λ;α,β) :=
l∏

k=1

λαk−1
k exp (−λkβk)

Z (αk, βk)
,(2.5)

Z (α, β) :=
Γ (α)
βα

. (2.6)

Then, using (2.3) and (2.4), we have the following re-
lationships

p (d |λ ) = PEx (d;λ,T ) ,

p (λ) = PGa (λ;α,β) ,

p (λ |d ) = PGa (λ;α + a (d,T ) ,β + b (d, T )) ,

p (d) =
l∏

k=1

Z (αk + ak (d, Tk) , βk + bk (d, Tk)) .

Proof. Since p (λ |d ) ∝ p (d |λ ) p (λ) is a function of λ,
the update equations for α and β follow directly from
(2.2) and (2.5). Note that the normalisation constant
is simply p (d) whose form follows from (2.5).

2.3. Structure from Failure

Returning to the original problem of learning a net-
work structure S∗, we are now in a position to formu-
late the data-dependent terms P (Di |Dj ) and P (Di).
Note that we only model the up-time of the ith
server and will subdivide each up-time interval Ti,k =
[0, di,k) of length di,k of the ith server into three non-
overlapping sets of intervals T i,k = {T ↑i,k, T ↓i,kT ?

i,k} de-
pending on the state of the jth server in the interval
Ti,k. Hence, using Proposition 3 we have

P (Di |Dj ) =
∏
s∈S

Z

(
αs +

ni∑
k=1

as

(
di,k, T s

i,k

)
,

βs +
ni∑

k=1

bs

(
di,k, T s

i,k

))
,

P (Di) = Z

(
α + ni, β +

ni∑
k=1

di,k

)
.

Note that these equations implicitly incorpo-
rate Occams' razor because of the constraints∑

s∈S as(di,k, T s
i,k) = 1 and

∑
s∈S bs(di,k, T s

i,k) = di,k.
The more complex parent model P (Di |Dj ) must
provide a much better �t to the data than the
independent model P (Di) in order to compensate for
the additional parameters.

Choosing prior parameters for (α, β) and (αs, βs)s∈S
induces an odds ratio of

∏
s∈S Z(αs, βs)/Z (α, β)

which should e�ectively be incorporated into the



Figure 3.1. Learning a tree structure from two years of syn-
thetic data. Results using CTBNs exactly recovering the
ground truth.

structural prior P (S) from (2.1). We are now in
a position to select a network structure S∗({Di})
by deciding with regard to the ith server whether
there is su�cient evidence to justify a parent server
(P (Di|Dj)P (pa (i) = j) > P (Di)P (pa (i) = ∅) for
at least one server j), and if so, which is the most
likely parent server j. Repeating this procedure over
all nodes leads to a (possibly cyclic) network struc-
ture S maximising the posterior over structures with
at most one parent per node.

3. Experiments and Results

Since ground truth is not available for the task of de-
termining the failure structure of large networks we
pursue the following methodology. We study the prop-
erties of our up-time data model and the network
model selection procedure on synthetic data generated
from a distribution that plausibly represents data one
may �nd in real world failure analysis. This experi-
ment also serves to elucidate the relation between the
CTBN model and Murphy's DOWS process [3]. Af-
ter this validation step we apply both DOWS and our
CTBN model to data from a server farm of a major
Microsoft web site4.

4Due to space restrictions, we only present a small sub-
set of our results; the complete set of results can be found at
http://www.research.microsoft.com/~rherb/icml_failure.htm.
The resulting complex network structures can be browsed
interactively including zoom/pan/search and node
annotations using Internet Explorer.

Figure 3.2. Learning a tree structure from two years of syn-
thetic data. Results using the DOWS process (see also
Figure 3.1 for comparison).

3.1. The DOWS Process

DOWS refers to a state-of-the-art rule-based analysis
process developed by B. Murphy in interaction with
domain experts. After extracting and cleaning the
event data, DOWS identi�es related groups of events
(bursts) based on temporal proximity governed by a
duration parameter δt. The strength of a relationship
between two nodes is calculated as a combination of
di�erent rule-based criteria including the number of
co-occurring events in the same bursts and the string-
distance between the server names. Note that a direct
comparison with DOWS is di�cult for two reasons.
Firstly, DOWS uses extra information such as the
server names, and secondly, DOWS aims at identify-
ing short-term failure relationships between machines
rather than general statistical dependencies.

3.2. Incorporation of Expert Knowledge

Incorporating prior knowledge of domain experts into
data analysis can be di�cult due to the typically in-
tangible nature of human experience. In this par-
ticular case, it amounts to setting the parameters
(αs, βs), s ∈ S for servers with a parent and (α, β) for
servers without a parent. Clearly, setting the parame-
ter α and β directly is di�cult as they do not enjoy a
meaningful interpretation individually. One idea that
comes to mind is to let the expert decide on mean µ
and variance σ2 of the distribution of up-times and
calculate the shape parameters as functions of µ and
σ2. Since this approach disregards the skew of the
Gamma distribution we decided to specify the prior
in terms of the symmetrical 10%- and 90%-quantiles
d0.1, d0.9 of the up-time from which the shape param-
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Figure 3.3. Learning parameters of the structure from two
years of synthetic data. Each server with a parent has a
true expected up-time (x-axis) and a posterior estimate (y-
axis) shown as a 5%�95% posterior quantile interval with
a mark indicating the median. Up-times for parent up.

eters (α, β)(d0.1, d0.9) of the Gamma distribution can
be obtained by Newton-Raphson.

3.3. Synthetic Data

We created a synthetic server event log by �rst sam-
pling a random tree and generating random hazard
rates for all servers in the random tree according to a
Gamma prior. For each server, we then sampled ran-
dom up-times according to its piecewise exponential
distribution but �xed the down-time such that it cov-
ered 90% of the average up-time given a parent is in
the down state ↓.

In one experiment we generated data for
100 servers over two years where the pri-
ors were set to (α, β)(7 days, 25 days),
(α↑, β↑)(10 days, 30 days), (α↓, β↓)(5 mins, 30 mins)
and (α?, β?)(7 days, 25 days). As a sanity check, we
used the same prior for inferring the network structure
and identi�ed all parent relations correctly (see Fig-
ure 3.1 for the largest connected tree). Furthermore,
for each server we compared the true hazard rates
with the posterior estimates (see Figure 3.3 and 3.4)
which consistently cover the true value within the
5%-95% quantile interval. In order to be able to
compare these results to those of the DOWS process
(see Figure 3.2) we took the DOWS matrix of pairwise
relation strengths and used it to �nd the tree with
the strongest relations. This tree was found to be a
proper subtree of the ground truth indicating that the
DOWS process implicitly uses similar distributional
assumptions.

We decreased the length of the logging period
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Figure 3.4. Learning parameters of the structure from two
years of synthetic data. Each server with a parent has a
true expected up-time (x-axis) and a posterior estimate (y-
axis) shown as a 5%�95% posterior quantile interval with
a mark indicating the median. Up-times for parent down.

down to 3 months (≈6 up-time samples per server)
and chose a vague prior (α, β)(3 days, 40 days),
(α↑, β↑)(5 days, 60 days), (α↓, β↓)(3 mins, 120 mins)
and (α?, β?)(3 days, 40 days) for inference which re-
sulted only in a 2% mismatch of the true parental rela-
tionship. In further experiments we found that in gen-
eral the performance of the system degrades gracefully
when altering the prior used for learning. In summary,
our experiments validated that our method is capable
of learning structure and parameters from very small
data sets.

3.4. Major Microsoft Website

In a second experiment, we applied our method to
event logs taken over �ve years from a major Microsoft
web site. The site is comprised of 564 servers with
various servers added and removed from the site at
di�erent times. With this problem, we set our struc-
tural prior P (S) to 1:1,000,000,000 against the parent
model. Despite these rather unfavourable odds, we
found 105 parent relationships. Figure 4.2 (a) displays
an exemplary structure discovered by our method.
The structure constitutes a replicated tree, a con�g-
uration not uncommon in web server farms. In the
absence of ground truth, similarities of server names
indicate plausible relationships. For example, the loop
in Figure 4.2 (a) is between servers SEKDEXIRH01 and
SEKDEX[A]01, with children servers SEKDEX[A]02 and
SEKDEX[A]03. Figure 4.2 (b) shows relations between
some of the same servers as found by the DOWS pro-
cess. We are currently in the process of �closing the
loop� with the network administrators in order to val-
idate the structures found by our methods and re�ne
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Figure 4.1. Learning a structure from �ve years of real
world data of a major Microsoft web site. An exemplary
structure learned using CTBNs.

them.

4. Discussion and Conclusions

We have brought the power of probabilistic modelling
to the important problem of structural failure analysis
in large scale computer networks. Continuous time
Bayesian networks provide an appealing and e�cient
framework for analysing this data and can represent
even loopy structures as found in tree-structured web
farms with replication. Note, that our method �nds
statistical dependencies which can only provide as a
basis for the discovery of causal failure relationships.

Ideally, one would like to extend the model to more
than one parent per server. However, for a typical size
of 1000 servers and at most k parents this requires the
update, search and storage of 1000k+1 × 3k × 2 shape
parameters corresponding to 72 Gigabyte of data for
k = 2. Another interesting idea is to le[t nodes in the
CTBN correspond to other, possibly external, in�u-
ences such as time of day and day of week. Consid-
ering a small number of non-server in�uences in the
structure learning can be done e�ciently and is the
focus of future work.

Acknowledgements Thanks to Patrick O'Broin for
helping with data pre-processing.
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