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Concurrency Bugs Everywhere 



Why Do Concurrency Bugs Exist? 
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Motivating Example Lessons 
•  Locking across RPC = bad idea 

•  Explosion of possible scenarios  

•  Corner case errors easy to miss 

•  Testing concurrent systems is hard: 
•  Control / Enumerate possible scenarios 

•  Tackle state space explosion 
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Need For Better Testing Methods 
•  Hardware performance 

•  Software complexity   

•  Formal specifications impractical 

•  New systems rarely written from scratch 

 

•  Common testing mechanism: stress testing 

•  Imprecise, falling behind 
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Outline 
•  Motivation 

•  dBug Design 

•  dBug Prototype 

•  Prototype Case Studies 

•  Ongoing & Future Work 

•  Conclusion 
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dBug Design 
•  Goal: Enable systematic enumeration of (all) 

possible execution scenarios of a test 

•  Repeated execution of the same test is 
guaranteed to explore different scenarios 

•  Light-weight model checking 
•  Fixed initial state 
•  User provided test as a specification 
•  State space of the actual implementation explored 
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Motivating Example dBug-ed 
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dBug Design Decisions 
•  What events to control on and how? 
•  When to signal a request? 
•  How to (re)store a state of the system? 
•  How to explore the state space? 

•  Parallel exploration 
•  Exploration heuristics 
•  State space reduction  
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Event Control Mechanism 
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Compile-time Interposition 
Source code annotation of: 

•  Creation of threads (processes) 
•  Destruction of threads (processes) 
•  Coordination primitives: 

–  Thread synchronization 
–  Remote procedure calls 
–  “Your coordination primitive here” 
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Client-Server Architecture 
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When to Signal a Request? 
•  Blind Mode: 

•  Uses a timeout 
•  Pros: Easy to implement 
•  Cons: Overhead, Imprecise 

•  Informed Mode 
•  Uses application idle/progress hints 
•  Pros: Fast, Accurate 
•  Cons: Expert knowledge, Annotation 
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State Space Exploration 
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Fast Array of Wimpy Nodes 
•  Energy-efficient architecture 
•  FAWN-KV = distributed key-value storage 
•  put()/get() interface, strong consistency 
•  get() returns value of the last acked put() 
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Case Study 1: Multi-threading 
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Log-structured writes 

Need for clean-up 

Rewrite Operation 
•  sequential scan 
•  atomic swap 

Obsolete data 
Up-to-date data 



Integrating FAWN-KV and dBug 
•  Creation and destruction of threads 

•  20 lines of annotations 

•  Acquiring and releasing locks 
•  Compile-time interposition on pthread interface 

•  Test case: 
put(key,value1);  
if (fork() == 0) { rewrite(); }  
else { put(key,value2); get(key); } 
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Case Study Results 
•  Evaluated with the blind mode for ~24 hours 
•  Over 7000 possible scenarios 
•  Test always executed correctly 

•  Introduced and detected a data race bug 
•  The bug showed up in ~700 scenarios 

•  Two person weeks of work 
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Case Study 2: Including RPCs 
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Integrating FAWN-KV with dBug 
•  Creation and destruction of agents 

•  20 lines of annotations 

•  Issuing remote procedure calls 
•  Modified Apache Thrift library (2 lines) 

•  Test case: 
put(key,value1);  
If (fork() == 0) { join(); }  
else { if (fork() == 0) put(key,value2); else get(key); } 
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Case Study Results 
•  Evaluated with blind mode for 45 minutes 
•  Total of 173 possible scenarios 
•  Found a bug 

•  The bug showed up in only 3 scenarios 
•  get(key) returns “not found” 

•  Two person weeks of work 
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dBug Evolution 
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dBug 2nd Generation 
•  Open source Autotools project 
•  dBug interposition as a shared library 
•  Precise and automatic detection of when to 

signal a request 

•  Educational use of dBug: 
•  In use to evaluate student solutions for 15-213 
•  Found bugs in the TA implementation 
•  Available to students to test their solutions 
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Future Work 
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Related Work 
•  Verisoft [Godefroid98] 

•  manual, exhaustive, multi-threaded, C and C++ sources 

•  MaceMC [Killian07] 
•  automated, selective, distributed, Mace sources 

•  CHESS [Musuvathi08] 
•  automated, selective, multi-threaded, Windows binaries 

•  MoDist [Yang09] 
•  automated, selective, distributed, Windows binaries 
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Conclusion 
•  Systematic and automatic evaluation of 

distributed system test cases 

•  Open source implementation of dBug 
•  Experiments with: 

•  Parallel Virtual File System (C) 
•  FAWN-based key value storage (C++) 
•  CMU student class projects (C and C++) 
•  RAIDTool (Java) 

•  Finding real bugs 
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