
dBug: Systematic Evaluation of
Distributed Systems

Jiří Šimša
Randy Bryant, Garth Gibson

PARALLEL DATA LABORATORY

Carnegie Mellon University

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 2

Concurrency Bugs Everywhere

Why Do Concurrency Bugs Exist?

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 3

Server 1 Server i Server j Server n...

Client

2

31

4

Why Do Concurrency Bugs Exist?

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 4

Server 1 Server i Server j Server n...

Client Client

1 1

2

2

Motivating Example Lessons
•  Locking across RPC = bad idea

•  Explosion of possible scenarios

•  Corner case errors easy to miss

•  Testing concurrent systems is hard:
•  Control / Enumerate possible scenarios

•  Tackle state space explosion

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 5

Need For Better Testing Methods
•  Hardware performance

•  Software complexity

•  Formal specifications impractical

•  New systems rarely written from scratch

•  Common testing mechanism: stress testing

•  Imprecise, falling behind

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 6

Outline
•  Motivation

•  dBug Design

•  dBug Prototype

•  Prototype Case Studies

•  Ongoing & Future Work

•  Conclusion

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 7

dBug Design
•  Goal: Enable systematic enumeration of (all)

possible execution scenarios of a test

•  Repeated execution of the same test is
guaranteed to explore different scenarios

•  Light-weight model checking
•  Fixed initial state
•  User provided test as a specification
•  State space of the actual implementation explored

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 8

Motivating Example dBug-ed

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 9

Server 1 Server i Server j Server n...

Client ClientArbiter
1 2
3

4 5 6

dBug Design Decisions
•  What events to control on and how?
•  When to signal a request?
•  How to (re)store a state of the system?
•  How to explore the state space?

•  Parallel exploration
•  Exploration heuristics
•  State space reduction

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 10

Outline
•  Motivation

•  dBug Design

•  dBug Prototype

•  Prototype Case Studies

•  Ongoing & Future Work

•  Conclusion

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 11

Event Control Mechanism

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 12

Application

OS + Libraries

Application

OS + Libraries

dBug interposition

Compile-time Interposition
Source code annotation of:

•  Creation of threads (processes)
•  Destruction of threads (processes)
•  Coordination primitives:

–  Thread synchronization
–  Remote procedure calls
–  “Your coordination primitive here”

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 13

Client-Server Architecture

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 14

dBug

Original Distributed System

dBug arbiter

Thread 1

dBug client

Thread n

dBug client

. . .

dBug server

When to Signal a Request?
•  Blind Mode:

•  Uses a timeout
•  Pros: Easy to implement
•  Cons: Overhead, Imprecise

•  Informed Mode
•  Uses application idle/progress hints
•  Pros: Fast, Accurate
•  Cons: Expert knowledge, Annotation

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 15

State Space Exploration

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 16

dBug

Original Distributed System

dBug arbiter

Thread 1

dBug client

Thread n

dBug client

. . .

dBug server

dBug

Original Distributed System

dBug arbiter

Thread 1

dBug client

Thread n

dBug client

. . .

dBug server

dBug

Original Distributed System

dBug arbiter

Thread 1

dBug client

Thread n

dBug client

. . .

dBug server

dBug

Original Distributed System

dBug arbiter

Thread 1

dBug client

Thread n

dBug client

. . .

dBug server

Outline
•  Motivation

•  dBug Design

•  dBug Prototype

•  Prototype Case Studies

•  Ongoing & Future Work

•  Conclusion

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 17

Fast Array of Wimpy Nodes
•  Energy-efficient architecture
•  FAWN-KV = distributed key-value storage
•  put()/get() interface, strong consistency
•  get() returns value of the last acked put()

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 18

KV	
 Ring	
 Front-­‐end	

Back-­‐end	

Back-­‐end	

Switch	

. . .

Case Study 1: Multi-threading

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 19

Log-structured writes

Need for clean-up

Rewrite Operation
•  sequential scan
•  atomic swap

Obsolete data
Up-to-date data

Integrating FAWN-KV and dBug
•  Creation and destruction of threads

•  20 lines of annotations

•  Acquiring and releasing locks
•  Compile-time interposition on pthread interface

•  Test case:
put(key,value1);
if (fork() == 0) { rewrite(); }
else { put(key,value2); get(key); }

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 20

Case Study Results
•  Evaluated with the blind mode for ~24 hours
•  Over 7000 possible scenarios
•  Test always executed correctly

•  Introduced and detected a data race bug
•  The bug showed up in ~700 scenarios

•  Two person weeks of work

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 21

Case Study 2: Including RPCs

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 22

	
 	
 H	

G	

F	

D	

C	

B	

A	

Integrating FAWN-KV with dBug
•  Creation and destruction of agents

•  20 lines of annotations

•  Issuing remote procedure calls
•  Modified Apache Thrift library (2 lines)

•  Test case:
put(key,value1);
If (fork() == 0) { join(); }
else { if (fork() == 0) put(key,value2); else get(key); }

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 23

Case Study Results
•  Evaluated with blind mode for 45 minutes
•  Total of 173 possible scenarios
•  Found a bug

•  The bug showed up in only 3 scenarios
•  get(key) returns “not found”

•  Two person weeks of work

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 24

Outline
•  Motivation

•  dBug Design

•  dBug Prototype

•  Prototype Case Studies

•  Ongoing & Future Work

•  Conclusion

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 25

dBug Evolution

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 26

dBug 2nd Generation
•  Open source Autotools project
•  dBug interposition as a shared library
•  Precise and automatic detection of when to

signal a request

•  Educational use of dBug:
•  In use to evaluate student solutions for 15-213
•  Found bugs in the TA implementation
•  Available to students to test their solutions

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 27

Future Work

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 28

Interface support State Space Case Studies Event Injection

Parallel ExplorationPOSIX threads

Local I/O

Network I/O

UNIX processes

POSIX threads

Local I/O

Network I/O

UNIX processes

Fault Injection

Time Distortion

15-213

RAIDTool

FAWN-KV

PVFS

Manual Ad hoc

FAWN-KV

PVFS

PRESENT

PAST

FUTURE

Outline
•  Motivation

•  dBug Design

•  dBug Prototype

•  Prototype Case Studies

•  Ongoing & Future Work

•  Conclusion

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 29

Related Work
•  Verisoft [Godefroid98]

•  manual, exhaustive, multi-threaded, C and C++ sources

•  MaceMC [Killian07]
•  automated, selective, distributed, Mace sources

•  CHESS [Musuvathi08]
•  automated, selective, multi-threaded, Windows binaries

•  MoDist [Yang09]
•  automated, selective, distributed, Windows binaries

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 30

Conclusion
•  Systematic and automatic evaluation of

distributed system test cases

•  Open source implementation of dBug
•  Experiments with:

•  Parallel Virtual File System (C)
•  FAWN-based key value storage (C++)
•  CMU student class projects (C and C++)
•  RAIDTool (Java)

•  Finding real bugs

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 31

References
•  [Godefroid98] P. Godefroid, VeriSoft: A Tool for the Automatic

Analysis of Concurrent Reactive Software, CAV 1997.
•  [Killian07] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat:

Life, Death, and the Critical Transition: Detecting Liveness Bugs
in Systems Code, NSDI 2007.

•  [Musuvathi08] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P.
A. Nainar, I. Neamtiu. Finding and Reproducing Heisenbugs in
Concurrent Programs, OSDI 2008.

•  [Yang09] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M.
Yang, F. Long, L. Zhang, L. Zhou: MODIST: Transparent Model
Checking of Unmodified Distributed Systems, NSDI 2009.

•  [Simsa10] J. Simsa, G. Gibson, R. Bryant: dBug: Systematic
Evaluation of Distributed Systems, SSV 2010.

Jiri Simsa © October 10!http://www.pdl.cmu.edu/ 32

