Oe
Towards proving security NICTA
in the presence of large

untrusted components

June Andronick
David Greenaway
Kevin Elphinstone

' Australian Government

2
LY 1$~>:“:,}-}.
“E8de# X Department of Communications,
Information Technology and the Arts

Australian Research Council

—

Computers and Trust

NICTA

Computers and Trust ®

S— . AIR CANADA @
) ooooro. ooooooooooooooo [- '-::ooo (B[FRO000 Sann snnnnnnnnnnn b v seennnnnnnens |y 2 P

Computers and Trust

visit
Phone right now!

insecure! Please
secure your

| your THes

T N0 5 secut
sour iPhone secure

31 ‘.-'

Computers and Trust

Computers and Trust J®

Computers and Trust

* Advances in formal methods techniques
give us hope

* The selL4 microkernel is one such example:
around 10 thousand lines of code formally proven
— approximately 25 person years of effort

Computers and Trust

* Advances in formal methods techniques
give us hope

* The selL4 microkernel is one such example:
around 10 thousand lines of code formally proven
— approximately 25 person years of effort

 Atypical smartphone consists of
over 10 million lines of code

Computers and Trust

* Advances in formal methods techniques
give us hope

* The selL4 microkernel is one such example:
around 10 thousand lines of code formally proven
— approximately 25 person years of effort

 Atypical smartphone consists of
over 10 million lines of code

Computers and Trust

* Advances in formal methods techniques
give us hope

* The selL4 microkernel is one such example:
around 10 thousand lines of code formally proven
— approximately 25 person years of effort

 Atypical smartphone consists of
over 10 million lines of code

How can we provide any formal assurance to
real-world systems of such size?

Our Vision

* Provide full system guarantees for
targeted properties

* |solate the software parts that are not
critical to the target property

— And then prove that nothing more needs to be
said about it

* Formally prove that the remaining parts
satisfy the target property

Case Study: Secure Access Controller §/®

NICTA

Classified Networks

DB REIRE]

o]

User Terminal

Case Study: Secure Access Controller /@

NICTA

Classified Networks

DB REIRE]

o]

User Terminal

Case Study: Secure Access Controller o

NICTA

Classified Networks

KIREIREIRES
SN

SAC «
SAC

Control
User Terminal

Case Study: Secure Access Controller

Classified Networks
« Data from one classified

twork t not h
EI giov’:/r?err must not reac
N \

* Assumptions:
—> . — User terminal will not

leak data
Csﬁ‘tf | — Only verify overt
Ontro communication channels
EI — All networks are otherwise

malicious
User Terminal

Case Study: Secure Access Controller /)@

NICTA

SAC

Case Study: Secure Access Controller /@

NICTA

Gigabit
. Network Card }§
N Drivers

SAC

Case Study: Secure Access Controller /@

NICTA

Gigabit
. Network Card }§

TCP/IP
Stack

SAC

Case Study: Secure Access Controller §/®

NICTA

Gigabit
. Network Card

TCP/IP
Stack

SAC

* Network
Address
% Translation

Case Study: Secure Access Controller §/®

Gigabit
. Network Card }§
% - - Drivers P, r

Web Server

TCP/IP
Stack

SAC

Network
Address
%% Translation

Case Study: Secure Access Controller §/®

Gigabit
. Network Card }§
% - - Drivers P, r

Web Server

TCP/IP
Stack

SAC

* Network
Address
% Translation

Case Study: Secure Access Controller §/®

Gigabit
. Network Card }§
N . Drivers .

Web Server

TCP/IP
Stack

SAC

" Network
Address
% Translation

Case Study: Secure Access Controller ®

Control Network Confidential Networks
Nic-C Nic-A |—] Nic-B
Nic-D

User Terminal

10

Case Study: Secure Access Controller ®

Control Network Confidential Networks
Nic-C Nic-A |—] Nic-B
Nic-D

User Terminal

10

Case Study: Secure Access Controller

Control Network
Nic-C

Confidential Networks

Nic-A

1 Nic-B

Nic-D

User Terminal

10

Case Study: Secure Access Controller ®

’ e e ol
\ v n
'.\ ' I 3

—
" 1\ F 1

Control Network Confidential Networks
Nic-C Nic-A |—] Nic-B

Nic-D

User Terminal

10

Case Study: Secure Access Controller

* Verification of all code in the system is infeasible

* Instead, split up code into components
— Trusted / untrusted components
— Only give components access to resources they need
— Principle of least privilege

 To do this, we need some mechanism to
enforce this split

selL4 Microkernel

« Small operating system kernel
— Threads
— Address Spaces
— Communication primitives

« Capability based
— All system resources require a cap to be accessed

— Provides access control, allowing threads to be isolated
by using an appropriate cap distribution

* Proven functionally correct

—sel4’s C code shown to correctly implement its specification

» Assumes correctness of hardware, compiler, initialisation code,
assembly paths

SAC Security Architecture

Control Network Confidential Networks

Nic-Cpb— INic-A || Nic-B

Nic-D

User Terminal

SAC Security Architecture

Control Network Confidential Networks

Nic-Cpb— INic-A || Nic-B

Router

Nic-D
User Terminal

SAC Security Architecture

Control Network Confidential Networks
Nic-Cpb—— INic-A |—{ Nic-B
Router
A
H
Nic-D

User Terminal

SAC Security Architecture

Control Network Confidential Networks

Nic-Cpb— INic-A || Nic-B

Nic-D

User Terminal

SAC Security Architecture

Control Network Confidential Networks
Nic-Cpb—— INic-A |—{ Nic-B
A
H
Router
A
;.
Nic-D

User Terminal

SAC Security Architecture

Control Network Confidential Networks
Nic-Cp— I Nic-A |—{Nic-B
4 A A
Router ; P
0 R . "o
Manager ; v
;—V Router
: A
i v
Nic-D

User Terminal

SAC Security Architecture

Control Network Confidential Networks
Nic-Cpb—— INic-A |—{ Nic-B
A A A A
. Router ; ::
PRLEERRTLLTE } 4....:
v_: Manager ; v
>AC ;—b Router
Controller
A
E
Nic-D

User Terminal

SAC Security Architecture

Control Network Confidential Networks

Nic-Cpb—— INic-A |—{ Nic-B

A 4 A4
. Router ; P
: ETPTPPPPrS > 0 R . T
A Manager : v
SAC A
: l——b Router
Controller | ... S S
S N A
Timer e
Server : e
v v
Nic-D

User Terminal

SAC Security Architecture

Control Network Confidential Networks

Nic-Cpb—— INic-A |—{ Nic-B

4 4 44
. Router ; P
: ETPTPPPPrS > 0 R . T
v Manager : v
SAC A
; ;—b Router
Controller | ... N S
T N N A
Timer e
Server : -
A A
Nic-D

User Terminal

[1@
SAC Prototype

NICTA

O ‘ Secure Access Controller

Logged in as: test

NICTA

Availabje Networks:

Disconnect from al|
Network 1
- Network 2

Switch Network

I —

21

SAC Prototype " ®

NICTA
* Router

— Virtualised Linux
— Routing Code / NAT

« SAC Controller

— Virtualised Linux
— mini-httpd / OpenSSL

e Timer
— Hand-written C

* Router Manager
— Hand-written C

 selL4 Kernel
— Hand-written C

SAC Prototype

 Router

— Virtualised Linux
—Routing Code / NAT

« SAC Controller

— Virtualised Linux
—mini-httpd / OpenSSL

* Timer
— Hand-written C

} 10,000,000 LoC

} 10,000,000 LoC

} 300 LoC

» Router Manager } 1500 LoC

— Hand-written C

* seL4 Kernel
— Hand-written C

} 8300 LoC

23

SAC Prototype (e

NICTA

 Router

— Virtualised Linux } 10,000,000 LoC
—Routing Code / NAT
{ ~20,000,000 }

. SAC Controuer %, lines of code
— Virtualised Linux } 10,000,000 LoC ™
— mini-httpd / OpenSSL

+ fimer } 300 LoC

— Hand-written C

— Hand-written C 0

%, linesofcode J/

 selL4 Kernel
— Hand-written C

} 38300 LoC

24

Full System Verification

* Merely reducing the amount of code isn't sufficient
to provide any security guarantee

* Our goal is to provide a formal guarantee

* How can we achieve this?

Full System Verification

Hardware

NICTA

26

Full System Verification

selL4 kernel

Hardware

®
NICTA

27

Full System Verification

Trusted Component

Component Code

Components

selL4 kernel

Hardware

28

Full System Verification

Trusted Component

Component Code

Components

selL4 kernel

Hardware

&0

0-Q
\ ©

—0

G0

.
)
N

¥\
o]e)

¥

O

O\
O"O

\
\}
o0

@ Formal Cap
Distribution

Full System Verification

Trusted Component

Component Code

O .0 e
8/ ?‘fé O‘é»@’g
'> // o ® -> T T
,o° 000 On | |
/5. o o N
. : : @ Formal Cap @ Security
Components Distribution Architecture

selL4 kernel

Hardware

Full System Verification

Trusted Component ® Trusted
L eee==eescccccccccccccaas P | Component
o7 Behaviour
Component Code 2
'0
e
0' O
0 5 o
& ?‘/C’D O‘é»@’g
R - 7 caclPp T T
R 000 o |,
'o' O o~ | |
: : : @ Formal Cap @ Security
Components Distribution Architecture
seL4 kernel

Hardware

Full System Verification

Trusted Component

Component Code

Components

selL4 kernel

Hardware

".- >

O 5 e
8/%6 O‘é»@’g

e g o

/ >0~ é,O
@ Formal Cap

Distribution

~..- *

® Trusted
Component
Behaviour

=

—

@ Security
Architecture

@ Kernel
Security
Model

Full System Verification

Trusted Component

Component Code

Components

selL4 kernel

Hardware

".- >

O 5 e
8/%6 O‘é»@’g

e g o

/ >0~ é,O
@ Formal Cap

Distribution

~..- *

® Trusted
Component
Behaviour

=

—

@ Security
Architecture

® Formal
Security
Property

@ Kernel
Security
Model

High Level System Model

B

—

@ Security
Architecture

® Trusted
Component
Behaviour

@ Kernel
Security
Model

® Formal
Security
Property

Control Network

Classified Networks

Nic-C Nic-A | Il
H A A4
Router
g i Manager 4 v
SAC PO :
Controller |q...... T S Router
: : -
Timer | i 7
Server -
v v
Nic-D
User Terminal
RM_1id -> Some ({rw_to_NIC_A, rw_to_NIC_B, ...}, not_contaminated)
SAC_C_id -> Some ({rw_to_NIC_C, w_to_RM, ...}, not_contaminated)
TIMER_id -> Some ({w_to_SAC_C, w_to_RM, ...}, not_contaminated)

ROUTER_id -> None

NIC_A_id
NIC_B_id
NIC_C_id
NIC_D_id

-> Some ({}, not_contaminated)
-> Some ({}, contaminated)
-> Some ({}, not_contaminated)
-> Some ({}, not_contaminated)

T —

34

High Level System Model

B

—

@ Security
Architecture

® Trusted
Component
Behaviour

@ Kernel
Security
Model

® Formal
Security
Property

Control Network

Classified NetWorks

Nic-C Nic-A |- Il
H s A A
Router
g i Manager 4 v
SAC PO :
Controller |q...... T S Rogter
: : :
Timer | i 1
Server -
v v
Nic-D [
User Terminal
RM_1id -> Some ({rw_to_NIC_A, rw_to_NIC_B, 47 .}, not_contaminated)
SAC_C_id -> Some ({rw_to_NIC_C, w_to_RM, . .4#%, not_contaminated)
TIMER_id -> Some ({w_to_SAC_C, w_to_RM, #7.}, not_contaminated)

ROUTER_id -> None

NIC_A_id
NIC_B_id
NIC_C_id
NIC_D_id

-> Some ({},.notzeomtaminated)
-> Some ({}, contaminated)
-> Some ({}, Notueontamitidted)
-> Some ({}, not_contaminated)

T —

34

High Level System Model

B

—

@ Security
Architecture

® Trusted
Component
Behaviour

@ Kernel
Security
Model

® Formal
Security
Property

Control Network

Nic-C
4
Router
i Manager 4 v
SAC PO
Controller |q...... T S Rogter
: : :
Timer | i 1
Server -
v v
Nic-D [
User Terminal
RM_1id -> Some ({rw_to_NIC_A, rw_to_NIC_B, 47 .}, not_contaminated)
SAC_C_id -> Some ({rw_to_NIC_C, w_to_RM, . .4#%, not_contaminated)
TIMER_id -> Some ({w_to_SAC_C, w_to_RM, #7.}, not_contaminated)
ROUTER_id -> None
NIC_A_id -> Some ({}., netseombaminated)
NIC_B_id -> Some @i}, contaminated)
NIC_C_id -> Some ({}, Hoeseonbamdritted)
NIC_D_id -> Some ({}, not_contaminated)

T —

34

High Level System Model (Je

NICTA

i

[AnyLegaloperation 1

| |
0 UNTRUSTED_prg =

_

@ Security | ——

Architecture

RM_prg =
® Trusted [(¥ 00: Wait for command, delete Router. *)
Component SysOp (SysRead cap_R_to_SAC_C),

Behaviour SysOp (SysRemoveAll cap_C_to_R),

SysOp (SysDelete cap_C_to_R),
SysOp (SysWriteZero cap_RW_to_NIC_D).

()I<erhel (* 09: Non-deterministic “goto” *)
Security Jump [0, 10, 19],
Model

(* 10: Setup Router between NIC-A and NIC-D *)
SysOp (SysCreate cap_C_to_R),

SysOp (SysNormalWrite cap_RWGC_to_R),
® Formal ysOp (Sy aliri ap),

Security
Property]

35

High Level System Model

i

@ Security
Architecture

® Trusted
Component
Behaviour

@ Kernel
Security
Model

® Formal
Security
Property

step state e (SysRead ¢) =
write_operation (entity c) e state

—
f

What operations do user
system calls perform?

write_operation source target ss =
(case (ss target) of

NICTA

legal s e (SysRead cap) =
(is_entity s e
A is_entity s (entity cap)
A cap € entity_caps_in_state s e
A Read € rights cap)

—I —‘

When is a system call allowed
by the kernel?

Some target_entity =
ss(target - target_entity(

contaminated :

is_contaminated ss target
v is_contaminated ss source)

| _ = ss)
What effect do

system calls have?

36

AT
\

High Level System Model

B

| |
@ Security Control Network Classified Networks
Architecture Nic-C
4
A Trusted gresseaeess > MROUter 4.
Component T anager T
Behaviour SAC 4 L > Router
Controller |q..... S S
T N S A
@ Kernel Timer “““““““
Security Server H v
Model :
Nic-D

User Terminal

High Level System Model

B

—

@ Security
Architecture

Control Network

Nic-C

® Trusted
Component
Behaviour

@ Kernel
Security
Model

Classified Networks

SAC

Controller |.....

® Formal
Security
Property

Nic-A
4
Router :
R NN
Manager
A l >
...................... >
Timer
Server :
v v
Nic-D

User Terminal

38

High Level System Model

B

—

@ Security
Architecture

Control Network

Nic-C

® Trusted
Component
Behaviour

@ Kernel
Security
Model

Classified Networks

SAC

Controller |.....

® Formal
Security
Property

Nic-A
4
Router ;
R NN
Manager
A L >
RS S
Timer
Server
v b
Nic-D

User Terminal

39

High Level System Model

B

—

@ Security
Architecture

Nic-C

® Trusted
Component
Behaviour

Control Network

Classified Networks

SAC
Controller

@ Kernel
Security
Model

Router E
D N N
Manager ;
T |
—
Timer §
Server 5
v

® Formal
Security
Property

User Terminal

40

High Level System Model

B

—

@ Security
Architecture

Control Network

® Trusted
Component
Behaviour

@ Kernel
Security
Model

Classified Networks

Nic-C
4
Router
e LRI >
v Manager
SAC A
Controller |g... ¢
Timer
Server

User Terminal

High Level System Model

=

T

| T

@ Security
Architecture

Control Network

® Trusted
Component
Behaviour

@ Kernel
Security
Model

Classified Networks

Nic-C
4
5 Router
O TS S P PPN
v Manager i
SAC A | >
Controller | ... O S
Timer E
Server :
v
Nic-D

User Terminal

High Level System Model @ L

i

i

Control Network

@ Security
Architecture

® Trusted
Component
Behaviour

NICTA

Classified Networks

@ Kernel
Security
Model

® Formal
Security
Property

Nic-A B
Nic-C - .
H
% ROUEET | (b
e > :
v (Managerj
SAC A 1)
Controller g A >
Timer
Server
Nic-D

User Terminal

theorem sac_is_secure:

(SAC-startup »* ss) = = 1is_contaminated (sac-entity-ss) NicA

R — —

43

High Level System Model

Control Network

NICTA

Classified Networks

@ Security
Architecture

® Trusted
Component
Behaviour

@ Kernel
Security
Model

® Formal
Security
Property

fT‘(SAC—startUp Sk Ssiié-

ic-A D
Nic-C e
A :
ROULEr | (b
.: » H
v (Manager“
SAC A L———%——P’
Controller g >
Timer
Server
Nic-D _
User Terminal
thepJ:qﬁb?*wﬂJ;;:Q;re:

— 1s_contaminated (sac-entity-ss) NicA

B

43

High Level System Model (Je

NICTA

T | | T Control Network
—_
| Nic-C

@ Security :
Architecture H

SAC
Controller |4

® Trusted
Component
Behaviour

vNic—D r

User Terminal

@ Kernel
Security
Model

MEECaTR <
a2 Pt

. “., C; DEC 1S LU e : - o & '_‘:.",‘_ : '_‘_-'" RSN

(SAC-startup -»*

® Formal is_contaminated (sac-entity-ss) NicA 1

Security ’ e s R T —
Property O ———

43

Progress

Components

selL4 kernel

Hardware

20
O
T

0 g
O\O»O

'o> |

|
P FON
) 8\0,0

O~
T O
O/'

@ Formal Cap
Distribution

-._-_--_--_--_--_--_-_-*

® Trusted
Component
Behaviour

=

3F

@ Security
Architecture

® Formal
Security
Property

@ Kernel
Security
Model

Progress

Components

selL4 kernel

Hardware

-0
| a2 3
8/?‘9 R5.0

>

o Q
&5 &°

@ Formal Cap
Distribution

-._-_--_--_--_--_--_-_-*

® Trusted
Component
Behaviour

=

3F

@ Security
Architecture

® Formal
Security
Property

@ Kernel
Security
Model

Progress

® Trusted
Behaviour
e)
g— ?‘fg 0\80,8 ® Formal
0:9+J O
&o 50 T» Property
. . . e ® Formal Cap @ Security
Components . Distribution Architecture
selL4 kernel “
g . @ Kernel
ardware ~‘--....--.--.--........* Security
Model

Progress

Components

selL4 kernel

Hardware

O .o .0
8/?‘\? O'\é*o‘/g
// o® ->
FON
8‘0*0 20
@ Formal Cap
Distribution
~~.--‘-----'..-.u.-.‘.-.-‘.u.>

® Trusted
Component
Behaviour

=0

—

@ Security
Architecture

® Formal
Security
Property

@ Kernel
Security
Model

Progress

Components A

selL4 kernel ‘.

Hardware

~O
Q1 2 &
8/?‘9 8.0

/
o’ e Onh
O O

® Formal Cap
Distribution

~~
‘--‘-----‘M

® Trusted
Component
Behaviour

=0

—

@ Security
Architecture

® Formal
Security
Property

@ Kernel
Security
Model

Conclusion

* Full system verification of modern systems infeasible
— But verification of specific, targeted properties feasible

* Presented a framework for proving security

— Break code into components, avoid needing to
trust the bulk of our functionality

— Formally verify components capable of violating desired
property

* Built SAC as a case-study
— Uses selL4 microkernel as a secure foundation
— Showed a model of the system is secure

* Ongoing work is to join security model with
existing selL4 proof

Thank You

