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* Advances in formal methods techniques
give us hope

* The selL4 microkernel is one such example:
around 10 thousand lines of code formally proven
— approximately 25 person years of effort
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Computers and Trust

* Advances in formal methods techniques
give us hope

* The selL4 microkernel is one such example:
around 10 thousand lines of code formally proven
— approximately 25 person years of effort

 Atypical smartphone consists of
over 10 million lines of code

How can we provide any formal assurance to
real-world systems of such size?



Our Vision

* Provide full system guarantees for
targeted properties

* |solate the software parts that are not
critical to the target property

— And then prove that nothing more needs to be
said about it

* Formally prove that the remaining parts
satisfy the target property
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Case Study: Secure Access Controller

* Verification of all code in the system is infeasible

* Instead, split up code into components
— Trusted / untrusted components
— Only give components access to resources they need
— Principle of least privilege

 To do this, we need some mechanism to
enforce this split



selL4 Microkernel

« Small operating system kernel
— Threads
— Address Spaces
— Communication primitives

« Capability based
— All system resources require a cap to be accessed

— Provides access control, allowing threads to be isolated
by using an appropriate cap distribution

* Proven functionally correct

—sel4’s C code shown to correctly implement its specification

» Assumes correctness of hardware, compiler, initialisation code,
assembly paths
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NICTA

O ‘ Secure Access Controller

Logged in as: test
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SAC Prototype

 Router

— Virtualised Linux
—Routing Code / NAT

« SAC Controller

— Virtualised Linux
—mini-httpd / OpenSSL

* Timer
— Hand-written C

} 10,000,000 LoC

} 10,000,000 LoC

} 300 LoC

» Router Manager } 1500 LoC

— Hand-written C

* seL4 Kernel
— Hand-written C

} 8300 LoC
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SAC Prototype (e

NICTA

 Router

— Virtualised Linux } 10,000,000 LoC
—Routing Code / NAT
{ ~20,000,000 }

. SAC Controuer %, lines of code
— Virtualised Linux } 10,000,000 LoC ™
— mini-httpd / OpenSSL

+ fimer } 300 LoC

— Hand-written C

— Hand-written C 0

%, linesofcode J/

 selL4 Kernel
— Hand-written C

} 38300 LoC
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Full System Verification

* Merely reducing the amount of code isn't sufficient
to provide any security guarantee

* Our goal is to provide a formal guarantee

* How can we achieve this?
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@ Security
Architecture

® Trusted
Component
Behaviour

@ Kernel
Security
Model

® Formal
Security
Property

Control Network

Classified Networks

Nic-C Nic-A | Il
H A A4
Router
g i Manager 4 ............ v
SAC PO :
Controller |q...... T S Router
: : -
Timer | i 7
Server -
v v
Nic-D
User Terminal
RM_1id -> Some ({rw_to_NIC_A, rw_to_NIC_B, ...}, not_contaminated)
SAC_C_id -> Some ({rw_to_NIC_C, w_to_RM, ...}, not_contaminated)
TIMER_id -> Some ({w_to_SAC_C, w_to_RM, ...}, not_contaminated)

ROUTER_id -> None

NIC_A_id
NIC_B_id
NIC_C_id
NIC_D_id

-> Some ({}, not_contaminated)
-> Some ({}, contaminated)
-> Some ({}, not_contaminated)
-> Some ({}, not_contaminated)
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H s A A
Router
g i Manager 4 ............ v
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: : :
Timer | i 1
Server -
v v
Nic-D [
User Terminal
RM_1id -> Some ({rw_to_NIC_A, rw_to_NIC_B, 47 .}, not_contaminated)
SAC_C_id -> Some ({rw_to_NIC_C, w_to_RM, . .4#%, not_contaminated)
TIMER_id -> Some ({w_to_SAC_C, w_to_RM, #7.}, not_contaminated)

ROUTER_id -> None

NIC_A_id
NIC_B_id
NIC_C_id
NIC_D_id

-> Some ({},.notzeomtaminated)
-> Some ({}, contaminated)
-> Some ({}, Notueontamitidted)
-> Some ({}, not_contaminated)
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Control Network

Nic-C
4
Router
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Controller |q...... T S Rogter
: : :
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Server -
v v
Nic-D [
User Terminal
RM_1id -> Some ({rw_to_NIC_A, rw_to_NIC_B, 47 .}, not_contaminated)
SAC_C_id -> Some ({rw_to_NIC_C, w_to_RM, . .4#%, not_contaminated)
TIMER_id -> Some ({w_to_SAC_C, w_to_RM, #7.}, not_contaminated)
ROUTER_id -> None
NIC_A_id -> Some ({}., netseombaminated)
NIC_B_id -> Some @i}, contaminated)
NIC_C_id -> Some ({}, Hoeseonbamdritted)
NIC_D_id -> Some ({}, not_contaminated)
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i

[ AnyLegaloperation 1

| |
0 UNTRUSTED_prg =

_

@ Security | ——

Architecture

RM_prg =
® Trusted [ (¥ 00: Wait for command, delete Router. *)
Component SysOp (SysRead cap_R_to_SAC_C),

Behaviour SysOp (SysRemoveAll cap_C_to_R),

SysOp (SysDelete cap_C_to_R),
SysOp (SysWriteZero cap_RW_to_NIC_D).

()I<erhel (* 09: Non-deterministic “goto” *)
Security Jump [0, 10, 19],
Model

(* 10: Setup Router between NIC-A and NIC-D *)
SysOp (SysCreate cap_C_to_R),

SysOp (SysNormalWrite cap_RWGC_to_R),
® Formal ysOp (Sy aliri ap ),

Security
Property ]
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High Level System Model

i

@ Security
Architecture

® Trusted
Component
Behaviour

@ Kernel
Security
Model

® Formal
Security
Property

step state e (SysRead ¢) =
write_operation (entity c) e state

—
f

What operations do user
system calls perform?

write_operation source target ss =
(case (ss target) of

NICTA

legal s e (SysRead cap) =
(is_entity s e
A is_entity s (entity cap)
A cap € entity_caps_in_state s e
A Read € rights cap)

—I —‘

When is a system call allowed
by the kernel?

Some target_entity =
ss(target - target_entity(

contaminated :

is_contaminated ss target
v is_contaminated ss source)

| _ = ss)
What effect do

system calls have?
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Control Network

@ Security
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® Trusted
Component
Behaviour

NICTA

Classified Networks

@ Kernel
Security
Model

® Formal
Security
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Nic-A B
Nic-C - .
H
% ROUEET | (b
e > :
v (Managerj
SAC A 1 )
Controller g A >
Timer
Server
Nic-D

User Terminal

theorem sac_is_secure:

(SAC-startup »* ss) = = 1is_contaminated (sac-entity-ss) NicA

R — —
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Nic-C e
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ROULEr | (b
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Conclusion

* Full system verification of modern systems infeasible
— But verification of specific, targeted properties feasible

* Presented a framework for proving security

— Break code into components, avoid needing to
trust the bulk of our functionality

— Formally verify components capable of violating desired
property

* Built SAC as a case-study
— Uses selL4 microkernel as a secure foundation
— Showed a model of the system is secure

* Ongoing work is to join security model with
existing selL4 proof
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