
Typed Assembly Language for Implementing OS Kernels

in SMP/Multi-Core Environments with Interrupts

Toshiyuki Maeda

University of Tokyo

Akinori Yonezawa

University of Tokyo

Abstract

Although many people still think that it is difficult or

even impossible to implement OS kernels in a strictly

typed programming language, we dispelled the myth in

our previous works by designing and implementing a

typed assembly language which is flexible enough to

implement essential functionalities of OS kernels (e.g.,

memory and multi-thread management facilities).

Taking a step further, in this paper, we show

an extended typed assembly language which supports

SMP/multi-core environments with CPU hardware inter-

rupts and illustrate how to implement synchronization

primitives, which are essential for implementing OS ker-

nels in the environments.

1 Introduction

It has been considered difficult to implement system soft-

ware (e.g., OS kernels) in strictly typed languages. This

is because conventional strictly typed languages were not

expressive enough to implement fundamental compo-

nents of system software, such as memory management

and multi-thread management facilities. Several previ-

ous works tried to implement OS kernels in strictly typed

programming languages, but the fundamental compo-

nents were out of their scope [2, 10] or rely on other

verification approaches [20].

On the other hand, we have been working on imple-

mentation of an OS kernel in Typed Assembly Language

(TAL) [16]. TAL is an ordinary assembly language ex-

cept for being strictly typed and its memory safety (pro-

grams perform no illegal memory accesses) and control-

flow safety (programs perform no illegal code execution)

can be verified through its type checking. In fact, we

designed and implemented a variant of TAL which is

expressive enough to implement OS kernels and imple-

mented a simple OS kernel (including the memory and

multi-thread management facilities) in it [14, 13, 15].

However, there exists one problem; our previous

works did not support SMP/multi-core environments

with interrupts where programs run physically concur-

rently and asynchronously.

To solve the problem, this paper shows an extension

of our previous TAL that supports the SMP/multi-core

environments with interrupts. More precisely, this paper

shows how to extend the type system for implementing

synchronization primitives themselves that are essential

for OS kernels in the SMP/multi-core environments.

There are two issues to be addressed for supporting the

SMP/multi-core environments: safety of shared memory

(that is, memory regions that may be accessed simultane-

ously by several programs) and its memory consistency

model. This paper mainly focuses on the safety of shared

memory, and discusses the consistency model briefly.

The rest of this paper is organized as follows. First,

Sec. 2 shows problems for ensuring the safety of shared

memory. Then, Sec. 3 describes our approach to the

problems and Sec. 4 presents our extended TAL based

on our approach. Next, Sec. 5 argues about the mem-

ory consistency model briefly. Finally, Sec. 6 discusses

related work and Sec. 7 concludes the paper.

2 Problems in Handling Shared Memory

In the SMP/multi-core environments, one memory re-

gion can be accessed simultaneously by several pro-

grams. In order to achieve TAL which is able to ensure

safety of shared memory and yet expressive enough to

implement system software, we have to deal with mem-

ory updates that may alter the types of memory regions

(we call them strong updates in this paper) and track

pointer aliases between multiple threads.

2.1 Strong Updates

In typical and conventional strictly typed languages, the

problem of strong updates does not apply simply because

they are not allowed (the types of memory regions are

invariant). Therefore, the memory safety is not violated

even if the memory regions are updated simultaneously

(as long as the updates are atomic).

However, in order to implement memory and multi-

thread management facilities, it is necessary to allow

programs to perform strong updates. For example, typi-

cal implementation of memory management (e.g., mal-

loc/free) requires to handle allocation and release of

memory regions, that is, a memory region which is al-

located as a certain type may be released and reused (re-

allocated) as a different type from the original one.

In order to achieve type-safe strong updates in single-

core environments, we designed and implemented a

TAL [14] whose type system is integrated with alias

types [18] and dependent types [19]. More precisely, il-

legal memory accesses are prevented by tracking pointer

aliases with the type system. We also implemented the

memory and multi-thread management facilities for the

single-core environments in the extended TAL.

However, in order to adapt the language for the multi-

core environments, it is necessary to address another

problem described in the next section.

2.2 Pointer Aliases between Threads

In order to adapt the extended TAL mentioned in Sec. 1

for the multi-core environments, we need to track pointer

aliases between multiple threads.

Conventional programming languages are equipped

with synchronization mechanisms as language primi-

tives. Therefore, pointer aliases are analyzed by utilizing

the synchronization primitives as a hint. For example,

let us consider the situation where a program accesses

a shared memory region. We are able to know whether

multiple threads access the shared memory region simul-

taneously by checking whether the synchronization lock

associated to the memory region is always held.

However, our goal is to design a TAL which per-

mits implementation of synchronization primitives them-

selves. That is, it cannot have such language primi-

tives and only atomic instructions provided by CPU (e.g.,

atomic swap and/or compare-and-swap instructions) are

available. Thus, we have to track pointer aliases between

multiple threads only with the atomic instructions.

3 Our Approach for Ensuring Safety of

Shared Memory

This section describes our approach to the problems

shown in Sec. 2. The key idea is to allow strong updates

only in atomic memory operations and ensure the types

of memory regions do not change before and after exe-

cuting each atomic memory operation. Here, one atomic

1: { p -> exists(i).

2: { q -> data if [i == 0]}.

3: (i, q) }

4: (r1 : p)

5: lock:

6: mov r2 <- 1

7: unpack r1

8: xchg [r1], r2

9: pack r1

10: bne r2, 0, lock

11: jmp unlock

12:

13: { p -> exists(i).

14: { q -> data if [i == 0]}.

15: (i, q),

16: q -> data }

17: (r1 : p)

18: unlock:

19: unpack r1

20: mov [r1] <- 0

21: pack r1

22: ...

Figure 1: Example of acquiring and releasing a spin lock

memory operation consists of one atomic instruction of

CPU whose runtime effects on one processor are all visi-

ble or all invisible to others, and pseudo instructions that

only affect types and have no runtime effects.

In our approach, for example, spin locks can be imple-

mented as in Fig. 1. In the figure, line 1 to 4 and line 13

to 17 represents label types, which are given to all the la-

bels and represent the conditions that should be satisfied

when a control reaches the labels. For example, line 1

to 3 represents the heap type which represents the mem-

ory state when a control reaches to the label lock and

line 4 represents the state of registers. More concretely,

line 1 to 4 indicates that the register r1 holds a certain

integer value p (line 4) and there exists data at the ad-

dress p (line 1) (Please note that p, q and i are singleton

integer types [19, 14]). Here, we assume that the data

is shared between threads. The data has the existential

type whose base is the tuple consists of two integer val-

ues (i and q) and there exists data of the type data at

the address q only if i is 0 (line 2 and 3). The first el-

ement of the tuple (i) represents a lock and the second

element (q) represents a pointer to the data guarded by

the lock which is inaccessible unless unpacking the exis-

tential type [18, 14].

Type checking of lock acquisition (lock) is per-

formed as follows. First, the unpack pseudo instruc-

tion (line 7) unpacks the existential type of the data in

2

the address p. The heap type becomes as follows:

{ p -> (i, q), q -> data if [i == 0]}

Here, the type of the memory region at the address p is

modified, but it passes the type check because unpack

is a pseudo instruction.

Next, xchg (line 8) atomically exchanges the content

of the address which is specified by the register r1 and

that of the register r2. Then, the register r2 has the

singleton type i and the heap type becomes as follows:

{ p -> (1, q), q -> data if [i == 0]}

Here, because we assume that xchg is atomic, it is

unnecessary to revert the heap type to the original one.

Then, the pack pseudo instruction modified the heap

type as follows (please note that the heap type {q ->

data if [i == 0] } is not encapsulated because

we know that i is not equal to 0):

{ p -> exists(i).

{ q -> data if [i == 0]}.

(i, q)

q -> data if [i == 0] }

Here, the type of the memory region at the address p

is reverted to the original one. These instructions of line

7 to 9 make up one atomic operation.

Next, the bne instruction loops back to the label

lock if i is not equal to 0 or jumps to the label unlock

if i is equal to 0. This means that it tries to acquire the

lock again if the lock is already acquired, or releases the

lock otherwise. In this example, the lock is immediately

released after acquisition but in fact the memory region at

the address q can be accessed before releasing the lock.

More concretely, when jumping to the label lock, the

condition specified in its label type is satisfied because

i 6= 0 and the heap type is equal to as follows:

{ p -> exists(i).

{ q -> data if [i == 0]}.

(i, q) }

In addition, when jumping to the label unlock, the

condition specified in its label type is also satisfied be-

cause i = 0 and the heap type is equal to as follows:

{ p -> exists(i).

{ q -> data if [i == 0]}.

(i, q)

q -> data }

On the other hand, type checking of lock release

(unlock) is performed as follows. First, the unpack

pseudo instruction (line 19) unpacks the existential type

and modifies the heap type as follows (please note

that the heap type {q -> data if [i == 0] } is
merged with {q -> data } because the former is a

subset of the latter.):

{ p -> (i, q), q -> data}

Next, mov (line 20) modifies the heap type as follows:

1: { p -> exists(i).

2: { q -> data if [i == 0]}.

3: (i, q) }

4: (r1 : p)

5: lock:

6: mov r2 <- 1

7: unpack r1

8: mov r3 <- [r1]

9: mov [r1] <- r2

10: mov r2 <- r3

11: pack r1

12: bne r2, 0, lock

13: jmp unlock

14: ...

Figure 2: Another example of lock acquisition (wrong)

{ p -> (0, q), q -> data}

Finally, the pack pseudo instruction (line 21) modi-

fies the heap type as follows:

{ p -> exists(i).

{ q -> data if [i == 0]}.

(i, q) }

Please note again that the type of the memory region

at the address p is reverted to the original one and the

memory region at the address q is no longer accessible

because it is packed to the existential type, unless re-

acquiring the lock. These instructions of line 19 to 21

make up one atomic memory operation.

Thus, we can express the spin locks that are memory

safe even if they are used in the environmentswhere mul-

tiple threads run concurrently.

Here, let us consider the slightly modified example as

shown in Fig. 2. More specifically, the xchg instruction

in Fig. 1 is replaced with the three mov instructions, that

is, one atomic memory operation is divided into three

atomic memory operations (line 7 to 8, line 9, and line

10 to 11). In this case, after the mov instruction at line 9,

the heap type becomes as follows:

{ p -> (i, q), q -> data if [i == 0]}

At this point, the type checking fails because the type

of the memory region at the address p is not reverted to

the original existential type after the atomic operation.

In fact, the program of Fig. 2 is wrong because race

conditions may occur between line 8 and 9.

4 Our Typed Assembly Language

This section explains the details of our TAL based on the

approach of Sec. 3. The syntax of the abstract machine is

shown in Fig. 3, and that of the types is shown in Fig. 4.

3

(register) r ::= r1 | r2 | . . . | rn | sp
(operand) o ::= d | r | [r + d]
(inst.) ι ::= mov o← o | bcc o, o, o

| jmp o | push o | pop o | ret | cli | sti
| pushf | popf | iret | block | unblock

| pack [c̄|Ψ] o as τ | unpack o with ∆

(insts) I ::= · | ι ; I
(tuple) t ::= 〈d, . . . , d〉 | pack [c̄|Ψ].t

(value) v ::= t | ∀∆.C.Φ.i.i.I
(heap) H ::= · | {d 7→ v}H
(registers) R ::= {r1 7→ d, . . . , rn 7→ d}
(stack) s ::= · | d :: s
(processor) P ::= (R, s, dpc, dipc , dif)

(state) M ::= (H, P , dg)

Figure 3: Syntax of the abstract machine (d represents an

integer value)

(In fact, our TAL is a bit more complicated but this paper

explains the simplified one for the sake of brevity and

space limitation.) The type system of our TAL ensures

the memory safety and control-flow safety even in the

SMP/multi-core environments with interrupts.

One difference between our TAL and conventional

TALs is that the state of the abstract machine (M) of our

TAL consists of the heap (H), the states of processors

(P), and the atomic flag (dg). The state of the proces-

sor (P) consists of the register file (R), the stack (s), the
program counter (dpc), the address of an interrupt han-

dler (dipc), and the interrupt flag (dif).

The atomic flag is just an integer value which indicates

which processor performs an atomic memory operation.

If there exists a process which performs an atomic mem-

ory operation, the flag is set to the processor ID of the

processor (the processor ID is a unique number which is

assigned statically to each processor). On the other hand,

if there is no such processor, the flag is set to 0.

The atomic flag is manipulated by the block and

unblock instructions. They indicate the beginning and

the end of an atomic memory operation, respectively.

The reason why we introduced block and unblock ,

which do not exist in typical CPUs, is to uniformly deal

with the atomic instructions of the various CPUs.

For example, the xchg instruction of the Intel ar-

chitecture [11] can be expressed with a combination of

block , unblock and memory operations, as follows:

block ; mov rtmp ← [rd]; mov [rd]← rs;

mov rs ← rtmp; unblock

The following is another example: cmpxchg.

(* cmpxchg *)

(type var) α, γ, ǫ, ρ
(type vars) ∆ ::= · | α, ∆ | . . .
(int. type) i ::= α | d | . . .
(word type) w ::= γ | i | ∀∆.C.Φ.i.i
(tuple type) τ ::= 〈w, . . . , w〉 | ∃∆.C.Ψ.τ
(heap type) Ψ ::= · | {i 7→ τ if C} Ψ

| (ǫ if C)Ψ
(stack type) σ ::= ρ | · | w :: σ
(regs. type) Γ ::= {r1 7→ w; . . . , rn 7→ w; }
(store type) Φ ::= (Ψ, Γ, σ)
(cop) cc ::= < | ≤ | . . .
(cstrts.) C ::= · | i cc i, C
(constr.) c ::= i | w | Ψ | σ

Figure 4: Syntax of the types

block ; beq ra, [rd], cmpxchg eq;
mov ra ← [rd]; jmp cmpxchg end
(* cmpxchg eq *)

mov [rd]← rs; jmp cmpxchg end
(* cmpxchg end *)

unblock

One of the benefits of the above representations is that

they can be used for implementing wait-free data struc-

tures, as pointed out in [9].

The interrupt handler is an instruction sequence which

is executed for handling interrupts. When an interrupt

occurs, the program counter and the interrupt flag are

pushed onto the stack and the interrupt handler runs.

The interrupt flag controls interrupts. More concretely,

interrupts are disabled when the flag is set to 0. On the

other hand, interrupts are enabled when the flag is set to

a non-zero value even if the interrupt handler is executed.

The cli and sti instructions set and clear the interrupt

flag, respectively. The pushf instruction pushes the in-

terrupt flag to the stack, while the popf instruction pops

a value from the stack and sets the interrupt flag to the

value. We can achieve nested interrupt disabling and

enabling with these instructions. The iret instruction is

the instruction for returning from the interrupt handler; it

sets the interrupt flag to the value stored in the stack and

jumps to the address also stored in the stack. The pack

and unpack instructions are pseudo instructions for in-

troducing and eliminating existential types, respectively.

The other instructions are the same as ordinary assem-

bly languages. Please note that arithmetic instructions

are omitted in this paper for brevity. They can be formal-

ized without large modification to the type system.

The types of our TAL are shown in Fig. 4. In the same

ways as our previous works [14, 13, 15], they consist

of the heap type for typing the heaps, the registers type

4

(H, (. . . , Pi, . . .), dg) 7→M (H ′, (. . . , P ′
i , . . .), d

′
g)

where (H, Pi, dg) 7→P,i (H ′, P ′
i , d

′
g)

i = dg (if dg 6= 0)
any processor ID (otherwise)

Figure 5: Operational semantics: the abstract machine

(H, (R, s, dpc , dipc, dif), dg) 7→P,pid L′

L′ = (H, P ′, dg)
where P ′ = (R, s′, dipc , dipc, 0)

s′ = dpc :: dif :: s (if dg = 0 ∧ dif 6= 0)

Figure 6: Operational semantics: interrupts

for typing the register files, and the stack type for typing

the stacks. Please note that the types for representing

variable length arrays [14] are omitted in this paper.

They differ from our previous works in two points.

First, the integer types i that represent the atomic flag

and the interrupt flag are added to the label type which

represents the address of instructions (∀∆.C.Φ.i.i). Sec-
ond, the constraints C can be specified to each element

of the heap type which represents the heap. For example,

the heap type {i 7→ τ if i 6= 0} indicates that there exists
a memory region at the address i and its type is τ only if

i 6= 0. If it is unnecessary to specify any constraint, we

can omit the constraints as {i 7→ τ}.

4.1 Operational Semantics

The operational semantics of our TAL is defined in

Fig. 5, 6, 7 and 8. Fig. 9 defines the auxiliary functions.

The operational semantics of the whole abstract ma-

chine is define in Fig. 5. If the atomic flag is 0, one of the

processors of the abstract machine takes a step. On the

other hand, if the atomic flag is non-zero, the processor

whose ID is equal to the atomic flag takes a step. That is,

if one processor performs an atomic memory operation,

the other processors do not execute instructions. From

the viewpoint of memory consistency, this means that

the abstract machine satisfies sequential consistency [1].

Sec. 5 discusses more relaxed memory consistency.

Although the operational semantics of the processor

follows conventional typed assembly languages, it differs

in handling the interrupt flag. More concretely, if the

atomic flag (dg) is 0 and the interrupt flag (dif) is non-

zero, then the interrupt handler (dipc) can be executed

anytime (Fig. 6). Before executing the interrupt handler,

the interrupt flag is set to 0, that is, the interrupts are

disabled. In addition, the program counter (dpc) and the

interrupt flag (dif) are pushed to the stack.

The operational semantics of the instructions is de-

(H, (R, s, dpc , dipc, dif), dg) 7→P,pid L′

if H [dpc] = then L′ =

mov o1 ← o2 (H ′, (R′, s′, d′pc , dipc , dif), dg)
where S = (H, R, s) d = get(S, o1)
(H ′, R′, s′) = update(S, o2, d)

jmp o (H, (R, s, d, dipc , dif), dg)
where d = get((H, R, s), o)

bcc o1, o2, o3 (H, (R, s, d, dipc , dif), dg)
where S = (H, R, s)
if d1 cc d2 then d = get(S, o3)
else d = d′pc
d1 = get(S, o1) d2 = get(S, o2)

push o (H, (R, s′, d′pc , dipc, dif), dg)
where S = (H, R, s)
s′ = d :: s d = get(S, o)

pop o (H ′, (R′, s′′, d′pc, dipc , dif), dg)
where s = d :: s′ S = (H, R, s′)
(H ′, R′, s′′) = update(S, o, d)

ret (H, (R, s′, d, dipc , dif), dg)
where s = d :: s′

where d′pc = dpc + 1

Figure 7: Operational semantics: instructions (1 of 2)

fined in Fig. 7 and 8. The block instruction sets the

atomic flag to the self processor ID, while the unblock

instruction clears the atomic flag to 0. The cli and sti

instructions set the interrupt flag to 0 and 1, respectively.

pushf pushes the interrupt flag to the stack, while popf

pops the value from the stack and sets the interrupt flag to

the value. The iret pops the stored program counter and

the stored interrupt flag from the stack, sets the interrupt

flag to the stored interrupt flag, and jumps to the stored

program counter. The other instructions are the same as

our previous TALs [13, 15].

4.2 Typing Rules

The selected typing rules are shown in Fig. 10, 11, 13, 14

and 15. get type and update type are auxiliary func-

tions for obtaining and updating the types of operands

according to the specified heap and registers types, re-

spectively (Fig. 12). The typing rules are decidable if the

integer constraint solving ∆, C |= C is decidable.

There are two key points in the typing rules. First is

that they statically keep track of the atomic and interrupt

flags as the singleton integer types.

Second is that the shared memory regions, that is, the

memory regions shared between the processors, and the

interrupt handler and the interrupted program, are han-

dled specially as the heap types Ψs and Ψb, respectively.

The two heap types are introduced in order to achieve

5

(H, (R, s, dpc , dipc, dif), dg) 7→P,pid L′

if H [dpc] = then L′ =

cli (H, (R, s, d′pc , dipc, 0), dg)

sti (H, (R, s, d′pc , dipc, 1), dg)

pushf (H, (R, s′, d′pc , dipc , dif), dg)
where s′ = dif :: s

popf (H, (R, s′, d′pc , dipc , d
′
if), dg)

where s = d′if :: s′

iret (H, (R, s′, d, dipc , d
′
if), dg)

where s = d :: d′if :: s′

pack [c̄|Ψ] o as τ (H ′, (R, s, d′pc, dipc , dif), dg)

where H ′ = H{d 7→ t′}
d = get((H, R, s), o)
t′ = pack [c̄|Ψ].H(d)

unpack o with ∆ (H ′, (R, s, d′pc, dipc , dif), dg)
where H ′ = H{d 7→ t′}
d = get((H, R, s), o)
H(d) = pack [c̄|Ψ].t

′

block (H, (R, s, d′pc , dipc, dif), pid)

unblock (H, (R, s, d′pc , dipc, dif), 0)

where d′pc = dpc + 1

Figure 8: Operational semantics: instructions (2 of 2)

memory safe strong updates, which are essential for im-

plementing the memory and multi-thread management

facilities, as mentioned in Sec. 2.1.

The idea of tracking the heap types of the shared mem-

ory regions is to temporarily allow the strong updates

only while an atomic memory operation is performed or

the interrupts are disabled, as described in Sec. 3.

For example, the typing rule MOV indicates that the

heap type of the shared memory between processors (Ψs)

has to be included in that of the heaps updated with the

mov instruction (denoted as ∆, C ⊢ Φ′ → Ψs) if the

atomic flag may have the value 0. In addition, the rule

also indicates that the heap type of the shared memory

between the interrupt handler and the interrupted pro-

gram (Ψb) has to be included in that of the updated heaps

(∆, C ⊢ Φ′ → Ψb) if the interrupt flag may be non-zero.

The typing rule UNBLOCK indicates that the heap

type of the shared memory (Ψs) has to be included in that

of the whole heaps because unblock clears the atomic

flag, that is, finishes an atomic memory operation and the

other processors may access the shared memory. In other

words, the strong updates are allowed after an atomic

memory operation begins with block , but the heap types

updated with the strong updates have to be reverted be-

fore the atomic memory operation finishes with unblock .

Please note that the number of addresses is fixed in the

shared memory (Ψs), but an arbitrary number of memory

regions can be handled by packing them to existentials.

get((H, R, s), o) =

d (if o is d)
R(r) (if o is r)
H(R(r))[c] (if o is [r + c])
s[c] (if o is [sp + c])

update((H, R, s), o, d) =

H, R{r 7→ d}, s (if o is r)
H{R(r) 7→ v′}, R, s (if o is [r + c])
where v = H(R(r)) v′ = v[c 7→ d]

H, R, s[c 7→ d] (if o is [sp + c])

Figure 9: Auxiliary functions for operational semantics

Brief descriptions of each typing rule are as follows.

The rule STATE checks whether the heaps and the pro-

cessors of the abstract machine state are well-typed. In

addition, it also checks whether a part of the heaps satis-

fies the heap type of the shared memory between the pro-

cessors (Ψs) if the atomic flag is 0. The rule PROCES-
SOR checks whether the registers, the stack, the instruc-

tion sequence (H(dpc)) pointed by the program counter

dpc , and the interrupt handler (H(dipc)) are well-typed.
In addition, it also checks whether a part of the heaps

satisfies the heap type of the shared memory between the

interrupt handler and the interrupted program (Ψb) if the

interrupt flag dif is non-zero. The rule HEAP checks

whether each element of the heap can be typed as a tuple

or an instruction sequence, the rule REGISTER checks

whether each register is well-typed, and the rule STACK

checks whether each element of the stack is well-typed.

The rule MOV updates the type of the operand o1

with that of the operand o2 and checks the following in-

structions I . In addition, as described above, it checks

whether the heap type of the shared memory between

the processors (Ψs) is included in the updated store type

if it cannot be proved that the type of the atomic flag

(ig) is non-zero, and the heap type of the shared memory

between the interrupt handler and the interrupt program

(Ψb) is included in the updated store type if it cannot be

proved that the type of the interrupt flag (ii) is 0. Thus,
the heap type of the shared memory is preserved even if

other processors manipulate it or the interrupts occur.

The rule JMP checks whether the operand o has a la-

bel type and the store type Φ satisfies the store type Φ′

specified in the label type (denoted as ∆, C ⊢ Φ ≤ Φ′).

In addition, it checks whether the constraints C′ can be

satisfied and the types of the atomic flag and the inter-

rupt flag specified in the label type is consistent with the

current state (∆, C |= ii = i′i ∧ ig = i′g).
The rule BCC first checks whether the operands o1 and

o2 have integer types and the operand o3 has a label type.

6

H ≡ H1 . . .Hn Ψ ≡ Ψ1 . . . Ψn

⊢ Hi : Ψi Ψi ⊢H Pi : Γi, σi, dg

dg = 0⇒⊢ Hs : Ψs where Hs ⊆ H

⊢ (H, P , dg) : (Ψ, (Γ, σ))
(STATE)

⊢ H(dpc) : ·.(Ψ, Γ, σ).dif .dg

Ψ ⊢ s : σ ∆ ≡ α, γ̄, ǫ, ρ Ψ′ ≡ Ψbǫ
Γ′ ≡ {ri 7→ γi} Φ′ ≡ (Ψ′, Γ′, ρ)

⊢ H(dipc) : ∀∆. · .(Ψ′, Γ′, Φ′.α.0 :: α :: ρ).0.0
dif 6= 0⇒⊢ Hb : Ψb where Hb ⊆ H

Ψ ⊢H (R, s, dpc , dipc, dif) : Γ, σ, dg

(PROCESSOR)

∀d ∈ Dom(H).if H(d) = t then ⊢ t : Ψ(d)
else if H(d) = ∀∆.C.Φ.ii.ig.I

then Ψ(d) = ∀∆, C, Φ, ii, ig ∆, C, Φ, ii, ig ⊢ I

⊢ H : Ψ
(HEAP)

⊢ Γ ∀ri ∈ Dom(Γ).Ψ ⊢ R(ri) : Γ(ri)

Ψ ⊢ R : Γ
(REGISTER)

Ψ ⊢ di : wi

Ψ ⊢ d1 :: . . . :: dn : w1 :: . . . :: wn

(STACK)

Figure 10: Typing rules for the abstract machine state

(excerpt)

Next, it performs the same check as the rule JMP under

the assumption that the branch is taken (C ∧ i1 cc i2).
Finally, it checks the following instructions under the as-

sumption that the branch is not taken (C ∧ ¬(i1 cc i2)).
The rule PUSH concatenates the type of the operand o

to the stack type σ and checks the following instructions

with the updated stack type. Unlike the rule MOV, it is

unnecessary to check the heap type of the shared memory

because the stacks are not included in the shared mem-

ory and push does not modify the heap type. The rule

POP removes the word type w from the top of the stack

type w :: σ. In addition, it modifies the store type with

respect to the operand o and checks the following instruc-
tions with the modified store type (Φ′). Unlike the rule

PUSH, because pop may modify the heap type, it per-

forms the same check as the rule MOV on the heap type

of the shared memory. The rule RET removes the word

type from the top of the stack type and checks whether

it is a label type and the conditions specified in the label

type are satisfied by the store type, the constraints, and

the interrupt flag of the current state. As the rule PUSH,

it is unnecessary to check the type of the shared memory

because ret does not modify the heap type.

The rule BLOCK checks the following instructions

under the assumption that the atomic flag type is 1. The
rule UNBLOCK checks the following instructions un-

der the assumption that the atomic flag type is 0. It also

w ≡ get type(∆, C, Φ, o2)
Φ′ ≡ update type(∆, C, Φ, o1, w)
∆, C 6|= ii = 0⇒ ∆, C ⊢ Φ′ → Ψb

∆, C 6|= ig 6= 0⇒ ∆, C ⊢ Φ′ → Ψs

∆, C, Φ′, ii, ig ⊢ I

∆, C, Φ, ii, ig ⊢ mov o1, o2; I
(MOV)

C′.Φ′.i′i.i
′
g ≡ get type(∆, C, Φ, o)
∆, C ⊢ Φ ≤ Φ′

∆, C |= C′ ∆, C |= ii = i′i ∧ ig = i′g

∆, C, Φ, ii, ig ⊢ jmp o
(JMP)

i1 ≡ get type(∆, C, Φ, o1)
i2 ≡ get type(∆, C, Φ, o2)

C′.Φ′.i′i.i
′
g ≡ get type(∆, C, Φ, o3)

∆, C ∧ (i1 cc i2) ⊢ Φ ≤ Φ′

∆, C ∧ (i1 cc i2) |= C′

∆, C ∧ (i1 cc i2) |= ii = i′i ∧ ig = i′t
∆, C ∧ ¬(i1 cc i2), Φ, ii, ig ⊢ I

∆, C, Φ, ii, ig ⊢ bcc o1, o2, o3; I
(BCC)

w ≡ get type(∆, C, (Ψ, Γ, σ), o)
∆, C, (Ψ, Γ, w :: σ), ii, ig ⊢ I

∆, C, (Ψ, Γ, σ), ii, ig ⊢ push o; I
(PUSH)

Φ′ ≡ update type(∆, C, (Ψ, Γ, σ), o, w)
∆, C 6|= ii = 0⇒ ∆, C ⊢ Φ′ → Ψb

∆, C 6|= ig 6= 0⇒ ∆, C ⊢ Φ′ → Ψs

∆, C, Φ′, ii, ig ⊢ I

∆, C, (Ψ, Γ, w :: σ), ii, ig ⊢ pop o; I
(POP)

∆, C ⊢ (Ψ, Γ, σ) ≤ Φ
∆, C |= C′ ∆, C |= ii = i′i ∧ ig = i′g

∆, C, (Ψ, Γ, C′.Φ.i′i.i
′
g :: σ), ii, ig ⊢ ret

(RET)

Figure 11: Typing rules for the ordinary instructions

checks whether the heap type of the shared memory (Ψs)

is included in the store type Φ because other processors

may access the shared memory after unblock .

The rule CLI checks the following instructions under

the assumption that the interrupt flag type is equal to

0. The rule STI checks the following instructions un-

der the assumption that the interrupt flag type is equal

to 1. In addition, it also checks whether the heap type of

the shared memory between the interrupt handler and the

interrupted program (Ψb) is included in the store type Φ
because interrupts may occur after sti .

The rule PUSHF concatenates the interrupt flag type

ii to the stack type and checks the following instructions
with the stack type. As the rule PUSH, it is unnecessary

to check the heap type of the shared memory Ψb because

pushf does not modify the heap type. The rule POPF

removes the word type from the top of the stack type and

checks the following instructions under the assumption

7

get type(∆, C, (Ψ, Γ, σ), o) =

d (if o is d)
Γ(r) (if o is r)
wd where ∆, C |= i = Γ(r) ∆, C |= C′

∆, C ⊢ Ψ = {i 7→ 〈. . . , wd, . . .〉 if C′}Ψ′

(if o is [r + d])
wd where σ = . . . :: wd :: . . . (if o is [sp + d])

update type(∆, C, (Ψ, Γ, σ), o, w) =

(Ψ, Γ′, σ) where Γ′ = Γ{r 7→ w} (if o is r)
(Ψ′′, Γ, σ) where ∆, C |= i = Γ(r) ∆, C |= C′

∆, C ⊢ Ψ = {i 7→ 〈. . . , wd, . . .〉 if C′}Ψ′

Ψ′′ ≡ {i 7→ 〈. . . , w, . . .〉 if C′}Ψ′

(if o is [r + d])
(Ψ, Γ, σ′) where σ = . . . :: wd :: . . .

σ′ = . . . :: w :: . . . (if o is [sp + d])

Figure 12: Auxiliary functions for typing rules

∆, C, Φ, ii, 1 ⊢ I

∆, C, Φ, ii, ig ⊢ block ; I
(BLOCK)

∆, C ⊢ Φ→ Ψs ∆, C, Φ, ii, 0 ⊢ I

∆, C, Φ, ii, ig ⊢ unblock ; I
(UNBLOCK)

Figure 13: Typing rules for atomic memory operations

that the interrupt flag set is set to the removed word type.

Unlike pop, popf does not modify the heap type. How-

ever, it is necessary to check whether the heap type of the

shared memory between the interrupt handler and the in-

terrupted program Ψb is included in the heap type Ψ if it

cannot be proved that the interrupt flag type is equal to 0
because popf updates the interrupt flag. The rule IRET

is basically a combination of the rule RET and POPF.

The rule PACK first checks whether the type of the

operand o is equal to the type which is instantiated from

the existential type specified in pack by substituting the

type variables (∆′) with the types c̄. Next, it checks

whether the heap type Ψ1 specified in the instruction is

included in the heap type Ψ. Finally, it checks the fol-

lowing instructions with the store type which excludes

Ψ1 under the assumption that the operand o has the spec-

ified existential type. The rule UNPACK first checks

whether the operand o has an existential type. Then, it

unpacks the constraints, the heap type and the tuple type,

and checks the following instructions with them.

5 Memory Consistency

Although the formalization of Sec. 4 contains the notion

of atomic memory operations, it does not consider mem-

∆, C, Φ, 0, ig ⊢ I

∆, C, Φ, ii, ig ⊢ cli ; I
(CLI)

∆, C ⊢ Φ→ Ψb ∆, C, Φ, 1, ig ⊢ I

∆, C, Φ, ii, ig ⊢ sti ; I
(STI)

∆, C, (Ψ, Γ, ii :: σ), ii, ig ⊢ I

∆, C, (Ψ, Γ, σ), ii, ig ⊢ pushf ; I
(PUSHF)

∆, C, (Ψ, Γ, σ), i′, ig ⊢ I
∆, C 6|= i′ = 0⇒ ∆, C ⊢ Ψ ⊇ Ψb

∆, C, (Ψ, Γ, i′ :: σ), ii, ig ⊢Ψs
popf ; I

(POPF)

∆, C ⊢ (Ψ, Γ, σ) ≤ Φ
∆, C 6|= i1 = 0⇒ ∆, C ⊢ Ψ ⊇ Ψb

∆, C |= C′ ∆, C |= i1 = i2 ∧ ig = i′g

∆, C, (Ψ, Γ, (C′, Φ, i2, i
′
g) :: i1 :: σ), ii, ig

⊢ iret

(IRET)

Figure 14: Typing rules related to the interrupts

Φ ≡ (Ψ, Γ, σ) τ ≡ ∃∆′.C′.Ψ′.τ ′

∆, C ⊢ Ψ = Ψ1Ψ2 ∆, C ⊢ Ψ1 = Ψ′[c̄/∆′]
i ≡ get type(∆, C, (Ψ, Γ, σ), o)
∆, C ⊢ Ψ2 = {i 7→ τ ′[c̄/∆′]}Ψ′

2

Φ′ ≡ ({i 7→ τ}Ψ′
2, Γ, σ)

∆, C |= C′[c̄/∆′] ∆, C, Φ′, ii, ig ⊢ I

∆, C, Φ, ii, ig ⊢ pack [c̄|Ψ1] o as τ ; I
(PACK)

Φ ≡ (Ψ, Γ, σ) i ≡ get type(∆, C, Φ, o)
∆, C ⊢ Ψ = {i 7→ ∃∆′.C′.Ψ′.τ ′}Ψ′′

Ψ1 ≡ {i 7→ τ ′′}Ψ′′ C′′ ≡ C′[∆′′/∆′]
Ψ2 ≡ Ψ′[∆′′/∆′] τ ′′ ≡ τ ′[∆′′/∆′]

∆∆′′, C ∧ C′′, (Ψ1Ψ2, Γ, σ) ⊢ I

∆, C, Φ, ii, ig ⊢ unpack o with ∆′′; I
(UNPACK)

Figure 15: Typing rules related to the existential types

ory consistency (except for the sequential consistency).

Roughly speaking, in the relaxed consistency models, ef-

fects of memory operations performed by one processor

can be observed in a different order by the other pro-

cessors. Thus, memory barrier operations have to be

used explicitly for ensuring consistency of shared mem-

ory. For example, the release consistency model, which

is adopted by the many recent CPUs, is equipped with

two barriers: acquire, which ensures that all the proces-

sors do not observe effects of all its succeeding opera-

tions, and release, which ensures that all the processors

observe effects of all its preceding operations [1].

From the viewpoint of the release consistency, all we

have to do is to figure out when the two barriers are nec-

essary. More specifically, acquire has to be performed

when the unpack operation extracts memory regions

from existential types in shared memory, and release has

8

to be performed when the pack operation encapsulates

them to shared memory. For example, in Fig. 1, acquire

is necessary between line 7 and 8, and release is neces-

sary between line 20 and 21. Please note that the barriers

are unnecessary at line 9 and 19 because no memory re-

gions are encapsulated or extracted. In addition, please

also note that the acquire and xchg operations, and the

release and mov operations can be performed atomically

in the recent CPUs (e.g., the Intel Architecture [11]).

6 Related Work

Although there exist several works [6, 12, 8, 7] that deal

with synchronization mechanisms at the level of high-

level programming languages, their main goal is to pre-

vent race conditions, deadlocks and so on, and they as-

sume the synchronizationmechanisms as language prim-

itives. Therefore, they cannot be used for implementing

the synchronization mechanisms themselves, while our

TAL can be used to implement the mechanisms only re-

lying on atomic instructions of CPU. Cyclone introduced

a swap operation for pointers as a language primitive in

order to keep track of aliases by ensuring uniqueness of

pointers [9]. Our TAL is more expressive in the sense

that the swap operation can be implemented as a combi-

nation of block , unblock and memory operations.

Vasconcelos et al. presented a variant of TAL for sup-

porting synchronization locks in the SMP/multi-core en-

vironments [17]. However, their TAL treats the locks

and the lock operations as the language primitives, so it

cannot be used for implementing the locks themselves

and ensuring their memory safety. On the other hand,

our TAL is expressive enough to directly implement the

locks and their lock operations as shown in Sec. 3. More-

over, in their TAL, thread cloning is also provided as the

language primitives, while we are able to implement the

multi-thread management facility in our TAL (by incor-

porating our previous works [14, 15]).

Feng et al. [4] showed an approach of manually ver-

ifying properties of synchronization primitives under

the existence of the interrupts by using a proof assis-

tant. While our approach verifies simple type safety (the

memory safety and the control-flow safety) mechanically

through type checking, their approach can be applied to

verification of a more wide range of properties. However,

SMP is not considered explicitly in their approach.

7 Conclusion

This paper presented a typed assembly language which is

expressive enough to implement synchronization primi-

tives in the SMP/multi-core environments with the CPU

hardware interrupts. This paper also illustrated how to

implement the spin locks, which are essential for imple-

menting OS kernels. Our future work is to formalize

memory consistency models (by utilizing, e.g., [3, 5])

and implementmore complex synchronization primitives

(e.g., readers-writer locks and read-copy-update).

References

[1] ADVE, S. V., AND GHARACHORLOO, K. Shared memory con-

sistency models: A tutorial. IEEE Comp. 29, 12 (1996), 66–76.

[2] BERSHAD, B. N., SAVAGE, S., PARDYAK, P., SIRER, E. G., FI-

UCZYNSKI, M., BECKER, D., EGGERS, S., AND CHAMBERS,

C. Extensibility, safety and performance in theh SPIN operating

system. In Proc. of SOSP’95 (1995), pp. 267–284.

[3] BOUDOL, G., AND PETRI, G. Relaxed memory models: an

operational approach. In Prof. of POPL’09 (2009), pp. 392–403.

[4] FENG, X., SHAO, Z., DONG, Y., AND GUO, Y. Certifying low-

level programs with hardware interrupts and preemptive threads.

In Proc. of PLDI’08 (2008), pp. 170–182.

[5] FERREIRA, R., FENG, X., AND SHAO, Z. Parameterized Mem-

oryModels and Concurrent Separation Logic. Programming Lan-

guages and Systems, LNCS 6012 (2010), 267–286.

[6] FLANAGAN, C., AND ABADI, M. Object types against races. In

Proc. of CONCUR’99 (1999), pp. 288–303.

[7] FLANAGAN, C., AND FREUND, S. N. Type inference against

races. Sci. Comput. Program. 64, 1 (2007), 140–165.

[8] GROSSMAN, D. Type-safe multithreading in cyclone. In Proc.

of TLDI’03 (2003), pp. 13–25.

[9] HICKS, M., MORRISETT, G., GROSSMAN, D., AND JIM, T.

Experience with safe manual memory-management in cyclone.

In Prof. of ISMM’04 (2004), pp. 73–84.

[10] HUNT, G. C., LARUS, J. R., ABADI, M., AIKEN, M.,

BARHAM, P., FÄHNDRICH, M., HAWBLITZEL, C., HODSON,

O., LEVI, S., MURPHY, N., STEENSGAARD, B., TARDITI, D.,

AND ZILL, T. W. B. An overview of the Singularity project.

Tech. Rep. MSR-TR-2005-135, Microsoft Corporation, 2005.

[11] INTEL CORPORATION. Intel R© 64 and IA-32 Architectures Soft-

ware Developer’s Manuals. http://www.intel.com.

[12] IWAMA, F., AND KOBAYASHI, N. A new type system for jvm

lock primitives. In Proc. of ASIA-PEPM’02 (2002), pp. 71–82.

[13] MAEDA, T. Writing an Operating System with a Strictly Typed

Assembly Language. PhD thesis, University of Tokyo, 2006.

[14] MAEDA, T., AND YONEZAWA, A. Writing practical memory

management code with a strictly typed assembly language. In

Proc. of SPACE’06 (2006).

[15] MAEDA, T., AND YONEZAWA, A. Writing an OS Kernel in

a Strictly and Statically Typed Language. Formal to Practical

Security, LNCS 5458 (2009), 181–197.

[16] MORRISETT, G., WALKER, D., CRARY, K., AND GLEW, N.

From system F to typed assembly language. ACM Transactions

on Programming Languages and Systems 21, 3 (1999), 528–569.

[17] VASCONCELOS, V. T., AND MARTINS, F. A multithreaded

typed assembly language. In Proc. of TV’06 (2006), pp. 133–141.

[18] WALKER, D., AND MORRISETT, G. Alias types for recursive

data structures. In Proc. of TIC’00 (2000).

[19] XI, H., AND PFENNING, F. Dependent types in practical pro-

gramming. In Proc. of POPL’99 (January 1999), pp. 214–227.

[20] YANG, J., AND HAWBLITZEL, C. Safe to the Last Instruction:

Automated Verification of a Type-Safe Operating System. In

Proc. of PLDI’10 (2010).

9

