Model-based testing without a model:
Assessing portability in the Seattle testbed

Justin Cappos
University of Washington
Seattle, Washington USA

Abstract

Despite widespread OS, network, and hardware hetero-
geneity, there has been a lack of research into quanti-
fying and improving portability of a programming en-
vironment. We have constructed a distributed testbed
called Seattle built on a platform-independent program-
ming API that is implemented on different operating sys-
tems and architectures. Our goal is to show that applica-
tions written to our API will be portable.

In this work, we use an instrumented version of the
programming environment for testing purposes. The in-
strumentation allows us to gather traces of actual pro-
gram behavior from a running implementation. These
traces can be used across different versions of the im-
plementation exactly as if they were test cases generated
offline from a model program, so we can commence test-
ing using model based testing tools, without constructing
a model program.

Such offline testing is only effective in scenarios
where traces are expected to be reproducible (determin-
istic). Where reproducibility is not expected, for instance
due to nondeterminism in the network environment, we
must resort to on-the-fly testing, which does require a
model program. To validate this model program, we
can use the recorded traces of actual behavior. Validat-
ing with captured traces should provide greater coverage
than we could achieve by validating only with traces con-
structed a priori.

1 Introduction

While most programmers understand the concept of
portability, there has been surprisingly little research
into how to quantify and improve this aspect of a pro-
gramming environment. The result of this is that the
state-of-the-art in portability is “write once, debug ev-
erywhere” [5, 9, 4], as is provided by Java and .NET.
Portability is an important problem both for platform de-
velopers and application programmers.

We confront the portability problem in our practically

Jonathan Jacky
University of Washington
Seattle, Washington USA

deployed peer-to-peer network research testbed called
Seattle [3, 17]. Researchers write applications in a
Python [7] subset that runs on the Seattle testbed to per-
form tasks like measuring the Internet, running peer-
to-peer software on representative end hosts, evaluating
overlays, and studying real user availability and mobil-
ity patterns. We provide implementations of the Seattle
testbed that run on many diverse platforms, including a
wide variety of desktops, laptops, and phones. For ex-
ample, the operating systems currently supported include
Windows XP, Windows Vista, Linux, BSD, Mac OS X,
as well as some mobile variants.

It is our goal that researchers’ applications should be
portable: the same application code should run and be-
have the same on all the platforms that Seattle supports.
It is infeasible to require that each application program-
mer port and test their program on every platform where
it might run. We strive to provide strong assurances that
applications that run on Seattle will behave the same on
the different platforms.

For each platform, there is a different Seattle imple-
mentation. Each implementation includes code that, in
effect, translates application calls to the Seattle API into
calls to the platform-specfic operating system APIs, then
translates the results back to the values returned by the
Seattle API. These translations deal in part with syntax:
the API calls, the numbers and types of their arguments
and results. They also deal with semantics, or behavior:
the actual values of the arguments and results, and the
ordering and timing of calls.

Another complicating factor is nondeterminism that
arises from differences in the network environment.
Even in a situation where two systems are completely
identical in hardware and software configuration, their
network characteristics will differ. The systems will have
different IP addresses, will have different packet loss
/ delay characteristics, and may contact different DNS
servers. Each of these types of heterogeneity may im-
pact the behavior of an executing program and cause it

to behave differently.

We anticipate that, despite our efforts, our Seattle im-
plementations might exhibit portability bugs: differences
in behavior on different platforms.The platform-specific
APIs are complicated and some are closed, so we can-
not rely on inspection or analysis to prevent such errors.
We must resort to testing. Testing is the only assur-
ance method that actually executes the implementation
in an environment similar to where it will be used, so it
checks our assumptions about the execution environment
— which are exactly what is at issue here.

We needed a testing technology that could generate
lots of tests automatically and deal with nondetermin-
ism, so we chose model-based testing. Model-based test-
ing is an automated testing technology that uses an ex-
ecutable specification called a model program as both a
test case generator and an oracle [20, 13]. As a bonus, the
model program can also serve as a formal specification of
the Seattle API, expressing the well-defined semantics to
which we aspire. Then can use the framework’s analysis
tools (including a kind of model checker) to check prop-
erties of our design, using the same models that we use
for testing. Since the Seattle testbed is written in Python,
we use the PyModel framework [16].

It is necessary to validate a model program — to show
that it describes the intended behaviors. The usual ap-
proach is to check the model program with short samples
of behavior which are known a priori (from a written or
implicit specification) to be allowed or forbidden. It can
be difficult to know whether a collection of such samples
provides adequate coverage, exhibiting the range of be-
haviors that implementations will exhibit “in the wild”.

Our situation is a bit unusual because we have to test
several implementations, not just one. Moreover, an im-
portant requirement is that the several implementations
must behave the same as each other, not just that all con-
form to the same specification. (It would be possible to
write a specification loose enough that several implemen-
tations would conform, yet still behave so differently that
they violate reasonable expectations of portability).

We can turn this situation to our advantage. We can
(provisionally) choose any one implementation to be the
reference implementation, considering it to be an exe-
cutable specification to which the others must conform.
It is not unsound for us to use one (possibly erroneous)
implementation to check another, because our purpose
here is to assess portability, rather than to check confor-
mance to a specification. We are trying to expose dif-
ferences in behavior between different implementations.
Any difference is unexpected and requires investigation.
It is not necessary at this stage to identify which imple-
mentation is correct.

Considering an implementation to be an executable
specification places it in a role similar to a model pro-

gram. In fact, we can exploit this similarity to turn an
implementation into an offline test generator. We use the
existing Seattle interposition technology to collect sam-
ples of behavior called fraces in the same format that
the model-based testing framework’s offline test gener-
ator writes test suites. These traces can then be played
through the framework’s test runner in the same way, to
provide a kind of model-based testing without a model.

Captured traces complement the model program —
they do not replace it. We expect that the captured traces,
since they record actual system behavior “in the wild”,
may exhibit features and expose errors that are not cov-
ered by small test cases constructed by hand from a writ-
ten (or implicit) specification, or generated from a model
program based on those same sources. The model pro-
gram is still valuable as a formal specification that ex-
presses the intended semantics, for model-checking anal-
ysis, and it is essential for on-the-fly testing, which is
needed to handle nondeterminism.

Offline testing using stored traces, whether captured
or generated by a model, is only effective in scenarios
where traces are expected to be reproducible (determin-
istic). Where reproducibility is not expected, for instance
due to nondeterminism in the network environment, we
must resort to on-the-fly testing, which does require a
model program. To validate this model program, we can
still use the recorded traces of actual behavior. Validat-
ing with captured traces should provide greater coverage
— and more confidence — than we could achieve by val-
idating only with traces constructed a priori.

1.1 The innovations in this work

Our contribution (beyond applying model-based testing
to this kind of system) is to add two new techniques to the
model-based testing toolkit: using captured traces to val-
idate models and using traces as offline test suites. The
idea of using samples of observed behavior (traces) in
assurance activities has many precursors. The particular
engineering innovation here is integrating trace capture
and replay into an existing model-based testing frame-
work, using its interposition facility to capture the traces
and its test runner to execute them as test suites. This
makes testing with captured traces convenient and acces-
sible. We believe this makes a significant addition to the
software tester’s toolkit when portability is at issue.

This report describes the rationale and supporting
techology for our approach. At this time we have per-
formed some preliminary experiments to establish the
technical feasibility of this approach, but do not yet have
sufficient experimental data to report here. We are ea-
ger to learn whether testing with captured traces exposes
portability errors that are not detected by traces generated
from a model based on the written specification.

1.2 Roadmap

The remainder of the paper is organized as follows. First,
Section 2 describes the Seattle platform in more detail,
focusing on its programming API. In Section 3, we dis-
cuss how behavior is represented by traces. Then, in Sec-
tion 4 we precisely define portability in terms of traces.
Following this, Section 5 describes how a model-based
testing framework uses traces in offline and on-the-fly
testing. Validation for deterministic programs by utiliz-
ing multiple implementations is discussed in Section 6.
Then Section 7 discusses how we can utilize traces to
evaluate nondeterministic portions of the API. Section 8
shows how our technique relates to traditional on-the-fly
testing techniques. In Section 9, we discuss related work.
Section 10 concludes.

2 Seattle Testbed

In order to understand how evaluate the portability of
the Seattle API, one must first understand the program-
ming environment [10]. After examining the entire API
at a high level, a subset of the API is described in de-
tail. Programs using this subset will be used in examples
throughout in the paper. Then we describe the interposi-
tion mechanism which is used to gather API traces and
validate portability.

2.1 API Overview

A program that executes in Seattle is handled by two sep-
arate components, the interpreter and the sandbox ker-
nel. The computational portions of the program are han-
dled through access to a subset of the normal Python in-
terpreter [7]. Each Seattle program can freely use a set of
87 symbols mapped in by the Python interpreter for basic
computations such as comparison to None, type conver-
sion, and basic math and list operations. This portion
of the API is comprised of functionality that is simplistic
and computational in nature. The exposed portions of the
interpreter do not access complex resources like the file
system or network. As a result, any program that relies
solely on the interpreter is deterministic.

Operations that involve the operating system may only
be issued through the sandbox kernel. The sandbox ker-
nel exposes a set of 32 functions that behave in a plat-
form independent manner. These functions can be sum-
marized as follows:

e Six file I/O functions involving access to a sandbox-
specific directory on the file system. These deter-
ministic functions allow the user to open a file, read
at a location in the file, write at a location in the
file, close the file, delete a file, and list the files in
the sandbox. These functions are described in more
detail below.

e Three deterministic functions that manipulate lock

objects. The first function creates and returns a lock
object. The lock object has methods to acquire or
release the lock.

o Two deterministic functions that provide debugging
information. The first function returns a string to
describe the last error’s stack trace. The second
function lists the current thread’s name.

e Three thread-related functions: a function to create
a new thread of execution for a function, a function
to sleep the current thread, and a function to force
all threads to exit. These functions are determinis-
tic, but the creation of additional threads may lead
to data races if the underlying program has them.

e Two functions that validate and execute dynamic
code. This allows mechanisms like import and eval
to be constructed. The validation function is deter-
ministic, but the execution of dynamic code is de-
terministic when the code that is being executed is
also deterministic.

e Thirteen network functions, to perform DNS
lookups, obtain the local IP address, and send / re-
ceive TCP and UDP traffic. All of these functions
are non-deterministic. The non-TCP functions will
be described in more detail later.

e Two non-deterministic functions that provide ac-
counting information. One function returns re-
source utilization information and the other returns
the elapsed time since the program started.

o A function to return random bytes suitable for cryp-
tographic use. This function is obviously non-
deterministic.

It is important to note that the sandbox kernel is the
only interface by which a program can utilize resources
on a user’s machine. Using the above interface, we
have built standard libraries that reconstruct common
language functionality. Utilizing the minimal function-
ality provided by the sandbox kernel we were able to
provide access to large amounts of Python functional-
ity including print, eval, traceback handling, basic
file I/O, and many types of introspection. In addition,
all of the standard libraries are also implemented on top
of the sandbox kernel. This includes cryptographic li-
braries, XML parsing, RPC, serialization, NAT traversal,
HTTP client / server code, argument parsing, advanced
synchronization primitives, and a variety of encoding
schemes. The fact that a large number of programs all
use a small, well-defined interface makes Seattle a good
test environment for examining portability.

There are some portions of the sandbox state which
may be set before the program begins executing. The

sandbox can be given a set of command line arguments.
Additionally, the file system can be manipulated exter-
nally. This allows an external developer the ability to
add the file that should be executed. Similarly, the devel-
oper can upload, download, or remove other files in the
storage area of the sandbox. However, these facilities are
disabled while the sandbox is running. Thus, the storage
area of an executing sandbox will change only when the
sandboxed program modifies it.

2.2 API Subset

In order to make examples in the remainder of the pa-
per more concrete, we will describe a subset of both
the deterministic and non-deterministic portions of the
API in greater detail. The first six functions we describe
comprise the file system API. These functions can be de-
scribed as follows:

e listfiles() Returns a list of the filenames in the sand-
box’s storage area.

¢ removefile(filename) Removes a file from the sand-
box’s storage area. An exception is raised if the file-
name does not exist, is invalid, or if the file listed is
currently open.

o openfile(filename, createbool) Opens a file, possi-
bly creating the file if it does not exist. An exception
is raised if the filename is invalid, the file is already
open, or the file is not found but createbool is False.
Returns a simplefile object.

o simplefile.readat(sizelimit, offset) Returns up to
sizelimit bytes from the location offset in the file
(less may be read due to EOF). If size is None, the
entire file after the offset is read. If the offset or
size are negative or the wrong type an exception is
raised. An exception is also raised when offset is
past the end of the file or if the file is closed.

o simplefile.writeat(data, offset) Writes data bytes
at the location offset in the file. If the offset is neg-
ative or either argument is the wrong type an ex-
ception is raised. An exception is also raised when
offset is past the end of the file or if the file is closed.

o simplefile.close() Close the file. A closed file can-
not be read or written any more.

In addition to the deterministic file system functions,
we describe a portion of the non-deterministic API. This
portion of the API covers the UDP networking portion of
the system and also includes several helper networking
functions.

e gethostbyname(hostname) Provides the IP ad-
dress given a string containing a hostname. The

IPv4 address is returned as a string, such as
100.50.200.5. If the hostname is an IPv4 ad-
dress it is returned unchanged. A exception is raised
if the hostname is not a string or if the address can-
not be resolved for any reason.

o getmyip() Returns the localhost’s “Internet facing”
IP address as a string. It will raise an exception on
hosts that are not connected to the Internet.

e sendmessage(destip, destport, message, localip,
localport) Sends a UDP message to a destination
host / port using a specified localip and localport.
Returns the number of bytes sent which may be
less than the entire message. The IP addresses must
be strings containing valid IPs (not hostnames), the
message must be a string, and the ports must be in-
tegers between 1 and 65535. This function can raise
exceptions when the arguments are invalid or the lo-
calip argument isn’t a local IP.

o listenformessage(localip, localport) Registers a
callback that will be called upon receipt of an in-
coming UDP message on the specified IP and port.
If listenformessage is called multiple times
on the same ip and port without the first udpserver-
socket being closed, the second call will have an
exception. This function will raise an exception if it
would need to block while waiting for the previous
connection to be cleaned up, if the arguments are in-
valid, or if the localip isn’t a valid, local IP address.
This function returns a udpserversocket ob-
ject which is used by the next two functions.

e udpserversocket.getmessage() Receives a mes-
sage that was sent to an IP and port. If the
udpserversocket was previously closed, an
exception is raised. An exception is also raised if
the function would block.

e udpserversocket.close() Closes the
udpserversocket. Returns True on the
first call and False on any subsequent calls.

These functions are used by many libraries to
perform high-level network operations. For ex-
ample, our library that queries the time via NTP
will look up a time server’s IP using its hostname
(gethostbyname). Next, the node will acquire
its public facing IP address (getmyip) and send
a message with the NTP request to the NTP server
(sendmessage). Then the node will begin to listen for
the upcoming UDP reply (listenformessage)
and begin polling until it receives the reply
(udpserversocket.getmessage). Follow-
ing this, the server stops listening on the UDP server
socket (udpserversocket.close).

listfiles_start,

listfiles_finish,
removefile_start,
removefile_finish,

),

(["Jjunk.testfile"],

("junk.testfile",))
),

))

open_start, ("junk.testfile", True)),
open_finish, (fileobject0)),
(fileobject0O0, "hello world!!!"™, 0)),

filewriteat_finish,
filewriteat_start, (fileobjectO,
filewriteat_finish, ()),
filereadat_start, (fileobject0O, None,
filereadat_finish, ("hello worked!!"),
fileclose_start, (fileobjectO0))
fileclose_finish, ())

0)

"ked", 9)),

(

(

(

(

(

(
(filewriteat_start,
(

(

(

(0)),
(

(

(

Figure 1: Trace collected from an instrumented Seattle
API implementation, showing file system activity

2.3 API Interposition

The Seattle sandbox has a mechanism which allows a
programmer to interpose on calls to the sandbox kernel.
Essentially, a programmer may remap a user program’s
API to use a separate set of functions instead of directly
calling the sandbox kernel. This is used to enforce secu-
rity policies as well as perform debugging and forensic
logging. In this work, we utilize the interposition mech-
anism to validate the portability of the system as a pro-
gram executes. This is performed using a trace that is
generated by interposing on each of the kernel’s calls.
The trace logs the call type and call arguments and then
issues the call. Upon return, the return or exception in-
formation is also logged.

3 Traces

Traces describe samples of behavior. They are ubiqui-
tous in model-based testing; most activities either gener-
ate or use traces. In this work, we use traces both as test
cases and as standards for validation.

A trace is a sequence of units called actions. In this
project, the actions are calls and returns of the Seattle
API. Figure 1 shows a trace that records some calls to the
Seattle file system API discussed in section 2. This trace
is in the format written by our instrumentation, which is
also the format used for offline test suites by our model-
based testing framework. Each API call and return are
separate actions, indicated by start and finish in
the action names. Each action also includes arguments
in a (possibly empty) tuple. We must distinguish con-
trollable actions (the calls) from observable actions (the
returns). We split each API call into two actions this way
to account for the possibility that a call might not return,
and also to support threading. Notice that the return val-
ues of each API call (controllable action) appear as argu-
ments of the accompanying return (observable action).
The argument values of controllable actions are under
the tester’s control, while argument values of observable
actions are not.

This trace is deterministic, in the sense that persistent

(getmyip_start, ()),

(getmyip_finish, ("128.208.3.72",)),
(open_start, ("ntpservername", True)),
(open_finish, (fileobjectO)),
(filereadat_start, (fileobjectO, None, 0))
(filereadat_finish, ("time-a.nist.gov"),
(fileclose_start, (fileobject0)),
(fileclose_finish, ())

(gethostbyname_start, ("time-a.nist.gov",)),
(gethostbyname_finish, ("129.6.15.28",)),
(sendmessage_start, ("129.6.15.28", 123, \
"\x1b\x00...", "128.208.3.72", 12345)),
(sendmessage_finish, (48,)),

("128.208.3.72", 12345)),

(udpserversocket0,)),

(udpserversocket0,) , None),
("129.6.15.28", 123, \

(listenformessage_start,
(listenformessage_finish,
(udpsockgetmessage_start,
(udpsockgetmessage_finish,
"\xlc\x01...")),
(udpsockclose_start,
(udpsockclose_finish,

(udpserversocket0,)),

(True,))
Figure 2: Trace collected from an instrumented Seattle
API implementation, showing network activity

data is assigned in controllable actions, and is therefore
under the tester’s control, so it can be made repeatable.
For example, notice how hello in the argument of the
controllable action writeat_start later reappears in
the return value (that is, the argument) of the observable
action readat_finish. If the program that generated
this trace was run on a different Seattle node, the same
trace will be generated again.

Figure 2 shows a trace that records the NTP sce-
nario discussed in section 2. This trace is non-
deterministic, in the sense that persistent data first ap-
pears in observable actions, and is therefore not un-
der the tester’s control, so it cannot be made re-
peatable. For example, notice how the IP addresses
128.208.3.72 and 129.6.15.28 appear in the return val-
ues (that is, the arguments) of the observable actions
getmyip_finish and gethostbyname_finish,
respectively, are later used in the arguments of the con-
trollable action sendmessage_start. If the program
that generated this trace was run again, especially on a
different Seattle node, it is likely that different IP ad-
dresses would appear.

4 Understanding Portability

This section discusses portability in order to convey the
property we would like to obtain and then defines a prop-
erty called practical portability that we will ensure Seat-
tle meets.

A program P (such as the Seattle API) can be
said to be perfectly portable between environments
Fi,FEs,... E, if every input to P (a trace includ-
ing particular controllable actions) produces an iden-
tical trace (including the same observable actions) on
Fy, Es, ... E,. This means that an executed program
will behave the same on each run in the supported en-
vironments. However, this definition is unverifiable for
two reasons.

e Input Verification. In practice it is impractical to
test every possible input for a program.

e Nondeterministic Calls. The requirement of strict
trace matching will not work for programs that use
nondeterministic calls: controllable actions where
the following observable actions are expected to
vary across different executions. Nondeterministic
calls are those affected by network behavior, hard-
ware randomness, the local time, or scheduling (for
a program which has data races).

We can define a looser property to allow us to analyze
programs in practical scenarios.

Definition 1 A program P is practically portable if in ev-
ery given trace where the response to every nondetermin-
istic call is the same as in the reference implementation,
the entire trace is the same.

There are two key parts to this definition. First, the
definition limits the set of inputs to be those that the pro-
gram is run with. This allows the verification to avoid
reasoning about every possible program input. Second,
the nondeterministic calls are allowed to vary across dif-
ferent runs. However, subsequent processing of the val-
ues that nondeterministically appear in observable ac-
tions is the same.

S Model-based testing

Model-based testing is an automated testing technology
that uses an executable specification called a model pro-
gram as both a test case generator and an oracle [20, 13].
Model-based testing works with traces, as appear in Fig-
ures 1 and 2. Model-based testing can only test the items
that appear in the traces: the calls in the Seattle APIL.
Model-based testing does not test the process that creates
the traces: the application program and the interpreter
that executes it (except for the interpreter’s processing of
the calls to the Seattle API).

5.1 Model programs

A model program is a kind of executable specification.
Developers or test engineers must write a model pro-
gram for each implementation program (for example, the
Seattle API) that they wish to analyze or test. By using
various tools from the model-based testing framework,
the same model program can support analyses by a tech-
nique similar to model-checking, can generate test suites
(collections of traces) offline or on-the-fly, can act as an
oracle (it can check traces).

A model program models the implementation as a col-
lection of guarded update rules. For each action in the
implementation (for example, listfiles_start,
listfiles_finish, removefile_start, etc.
in Fig. 1) there are two functions in the model program:

a guard and an update rule. There are also some state
variables. The guard (also called an enabling condition)
is a Boolean function of the action arguments and state
variables that returns True when that action is enabled
in that state with those arguments. The update rule can
update the state variables, possibly using the values of
the action arguments. To generate a trace (a test run),
the test generator starts in the initial state, chooses an en-
abled action, executes the update rule, then chooses an
action which is enabled in the new state, etc. In general,
several actions are enabled in each state; the generator
uses a programmable strategy to select one. To check a
trace, the oracle successively checks whether each action
in the trace is enabled in the current state, and if so, up-
dates the state by executing the update rule; otherwise,
it indicates the action is forbidden, rejects the trace, and
exits. To analyze the model, the analyzer uses a method
similar to model checking called exploration: it builds a
finite state machine (FSM) from the model program by
selecting several enabled actions in each state (by some
programmable criteria), computing all their next states
(backtracking as needed), continuing until some stopping
condition is reached. The generated FSM can then be
searched to check various properties. In practice, prop-
erties to be checked can often be coded in a way that can
be used during exploration to efficiently limit and direct
the search, using a method called composition that is a
generalization of computing the intersection of finite au-
tomata.

5.2 Offline testing

Offline testing proceeds in two stages. In the first stage,
the framework’s offline test generator produces a trace
from a model program. In the second stage, the frame-
work’s tester or test runner causes the implementation
to execute each controllable action in the trace (it calls
the Seattle API), and checks whether the implementation
performs each observable action in the trace (it checks
the return values). When the implementation returns a re-
sult which is different from the one in the captured trace,
the test runner indicates a test failure. This second stage
does not require a model because all the needed infor-
mation is in the traces. Offline testing is effective where
traces are expected to be reproducible (deterministic).

5.3 On-the-fly testing

On-the-fly testing is needed in scenarios where repro-
ducibility is not expected, due to nondeterminism (in the
network environment, for example). To perform on-the-
fly testing, the test runner does not use a pre-computed
trace, instead it uses the model program to generate the
trace as the test run executes. The test runner executes the
model program during the test run in order to choose con-
trollable actions to execute in the implementation, and

also executes the model program to check the results (ob-
servable actions) from the implementation. The test run-
ner captures data from observable actions and uses that
data in subsequent controllable actions. When the imple-
mentation executes an observable action that should not
be enabled in the current state (according to the model),
the test runner indicates a test failure. The test runner
records the trace of the on-the-fly test run as it executes,
so test failures can be investigated.

5.4 Validation

It is necessary to validate a model program: to show that
it exhibits the intended behaviors. The usual way to do
this is to use the model program as and oracle and see if
it accepts (or rejects) sample traces the are allowed (or
forbidden), constructed a priori, guided by a written or
implicit specification. An innovation of this work is to
also check models with traces captured from an instru-
mented platform.

6 Deterministic API Evaluation

We can validate the portability of deterministic pro-
grams, such as the trace of file system activity in Fig-
ure 1. Recall that the API calls in this trace are deter-
ministic, in the sense that persistent data is assigned in
controllable actions, and is therefore under the tester’s
control, so it can be made repeatable.

We can test the deterministic calls in the Seattle API
by using traces like these as offline test suites with our
model-based testing framework. We select a particular
implementation (on one particular platform) to be the
reference implementation for purposes of testing porta-
bility. We use our interposition instrumentation to col-
lect traces from the reference implementation while it is
running various application programs “in the wild”. In
effect, we use the instrumented reference implementa-
tion as our offline test generator, so we do not need a
model program for these tests. This allows us to utilize
trace data from real programs that are longer and more
complex than we would generate a priori.

Then we execute these captured traces as offline tests
in another implementation. We call this variant of offline
testing by the name trace replay. Portability problems
are indicated by test failures during trace replay. Each
test failure is an incident where the implementation un-
der test behaves differently than the reference implemen-
tation.

Note that there is nothing special about the reference
implementation. In many cases we run the program we
want to verify across a variety of systems with different
heterogeneity properties. This ensures that the behavior
is deterministic across all tested implementations.

7 Nondeterministic API Evaluation

For programs that have non-determinism, such as the
trace of UDP activity in Figure 2, we cannot leverage the
same techniques as for deterministic programs. Recall
that the API calls in this trace are non-deterministic, in
the sense that persistent data first appears in observable
actions, and is therefore not under the tester’s control, so
it cannot be made repeatable.

In general, offline testing, which uses pre-computed
traces, or (in our project) recorded traces, cannot be used
to test API calls that are not expected to be repeatable.

To test these calls, we must resort to on-the-fly test-
ing, which does require a model program. We write the
model program, based on the written and implicit speci-
fication (similar to the description in section 2 here). To
validate this model program, we can use our captured
traces of actual behavior from the reference implementa-
tion. We use the framework’s analyzer to check whether
the captured traces are accepted by the model program.
The model should accept all of the traces captured from
the reference implementation when it is executing appli-
cations “in the wild”. If necessary, we revise the model
program until it accepts all of these traces. We call this
empirical validation. This provides greater confidence
in the portability of the Seattle testbed than we could
achieve by relying solely on constructed traces, which
we now call a priori validation. (We also ensure that
the model is not too permissive by confirming it does not
accept forbidden traces we produce by altering captured
traces).

Then we use the model program to execute on-the-fly
tests with the empirically validated model on a different
implementation. Portability problems are indicated by
test failures during on-the-fly testing. Since the model
was empirically validated on the reference implementa-
tion, which is considered the ultimate oracle for these
tests, a failure indicates that the behavior of the imple-
mentation under test may differ from the behavior of the
reference implementation. In general an on-the-fly test
run is not reproducible on the reference implementation,
so we must investigate the trace of each failing test run
to decide whether it indicates a portability problem.

8 Integration with model-based testing

A model-based testing framework provides a versatile
collection of tools that can be used in various model-
ing, validation, and testing activities. Here we present
a systematic classification of these techniques in order to
show how this project relates to other work.

The entries in Table 1 show model-based testing activ-
ities with their inputs and outputs. Each entry in the table
represents a particular activity that might be provided by
a tool in a framework. The entries marked with asterisks
show the activities which are the innovations reported in

Generates traces by Uses syn- | Uses captured
thesized traces for
traces for
Impl. Trace capture X Offline Trace replay ¥
only testing
Empirical validation >4
(check the model)
Model Offline test genera- | a priori | —————

only tion Validation Passive testing

(check the traces)

On-the-fly testing
(control some actions)

Impl. || —————
& Run-time verification
Model (observe all actions)

Table 1: Model-based testing activities. Areas covered
by this work are marked with a *

this paper.

Each row in the table represents the kind of program
that is the input to the activities in that row. An imple-
mentation is the program under test; in this work each
version of the Seattle API running on a particular plat-
form is an implementation. A model program is an exe-
cutable specification used as a test generator and test or-
acle. There are three rows in the table because an activity
may use one or the other, or both.

Each column in the table represents the generation or
use of traces by the activities in that row. Synthesized
traces are generated from a model program (or created
“by hand”). Captured traces are collected by instrumen-
tation from a running implementation. Activities in the
first column generate traces, those in the second column
use synthesized traces, and those in the third use captured
traces.

Let us briefly describe all the activities in the table, in
row order:

The first row describes activities that only require an
implementation, but not a model program. We perform
trace capture to collect traces from an instrumented im-
plementation. In offline testing, the framework’s test run-
ner tool uses synthesized traces to test an implementa-
tion. We perform trace replay, a variant of offline testing
that uses captured traces instead of synthesized traces.

The second row describes activities that only a require
a model program, but not an implementation. The frame-
work’s offline test generator creates a synthesized trace
from a model program. Another two activities use traces
to validate model programs. To perform a priori vali-
dation, the analyzer checks a model program with traces
constructed “by hand” from a written or implicit specifi-
cation. Empirical validation checks the model program
with captured traces. Empirical validation is similar to
passive testing, where log files are checked against a
model program. However, the purpose of empirical vali-
dation is to check the model program, while the purpose
of passive testing is to check the traces.

The third row describes activities that require both a
model program and an implementation. On-the-fly test-
ing executes the model program and the implementation
during the test run in order to choose actions and check
the returned results. Run-time verification is a variant
of on-the-fly testing which similar to passive testing. It
considers all actions to be observable, and checks the ob-
served behavior for conformance. Both activities gener-
ate a trace. The test outcome is computed during the test
run, but the trace is still useful for failure investigation.

The last two columns in the third row are empty. We
are not aware of any tools or activities that cover these
combinations.

It is informative to consider the table in column order.
Traditional offline testing and a priori validation occupy
the second column for synthesized traces, as is appro-
priate for checking conformance to a written or implicit
specification. Our trace replay and empirical testing oc-
cupy the third column for captured traces, as is appropri-
ate for checking portability.

9 Related work

The idea of using samples of observed behavior (traces)
in assurance activities has many precursors. As far as we
know, we are the first to use captured traces as offline test
suites in a model-based testing framework, or to use cap-
tured traces to validate model programs that are used for
on-the-fly testing. There are some similar predecessors
in the model-based testing community, which we review
here.

Most of the model-based testing literature (reviewed
in [20, 13]) emphasizes offline test generation, offline
testing, and on-the-fly testing; some also recommends
a priori validation. These techniques have been used
in many projects; a large example is by Grieskamp, et
al. [12], who used these methods to confirm that Win-
dows protocol implementations conform to their pub-
lished specifications.

Mariani [15] and Ulrich and Petrenko [19] report on
techniques similar to our trace capture followed by em-
pirical validation. Mariani even used trace data for subse-
quent tests, as we do in our trace replay. But both works
used information extracted from captured traces rather
than the traces themselves, and used purpose-built soft-
ware rather than a model-based testing framework.

Some work has explored the techniques at other en-
tries in our Table 1. Barnett and Schulte [1, 2] and Colin
and Mariani [6] report on run-time verification, using
technology similar to our interposition. Lee, et al [14]
discuss passive testing.

Xie and Notkin [21] proposed a model learning tech-
nique that uses test runs (like our captured traces) to infer
and iteratively improve a model used for automatic test
generation.

There are several popular programming languages
that attempt to provide platform independence includ-
ing Java, Flash, and JavaScript. Portability is most fre-
quently tested via a set of unit tests which an implemen-
tation must pass. The use of unit tests is clearly not ade-
quate. In the case of Java [11, 18], the portability issues
are well documented [5, 9, 4]. JavaScript and Flash / Ac-
tionScript both have to contend with a different source
of heterogeneity, the web browser. The functionality ex-
posed by the web browser leads to portability problems
which can be hard for developers or users to diagnose.
For instance, Windows users running Firefox had issues
playing videos when using versions earlier than Flash
10 [8]. Our approach to portability differs in that we use
traces gathered from real programs running on deployed
systems to validate the portability of the system. This al-
lows strong verification of the deterministic portions of
programs when running in real scenarios.

10 Conclusion

In this work, we used techniques from the model-based
testing community to evaluate portability of implementa-
tions within the Seattle testbed. We define a goal called
practical portability and then verify that programs we
run meet this standard using program traces. We val-
idate that any entirely deterministic program generates
the same program trace across different implementations.
This trace validation mechanism allows us to validate the
sandbox’s API either concurrently or independently from
the interpreter behavior.

For programs that have non-deterministic calls, we de-
scribe techniques for using traces that can be used to val-
idate the program behavior. We use traces gathered in
production to drive the construction and validation of a
model of the nondeterministic portion of the API. This
model can be used across different implementations for
on-the-fly testing.

This report describes the rationale and supporting
techology for our approach. At this writing we have
performed some preliminary experiments to establish the
technical feasibility of this approach, but we do not yet
have sufficient experimental data to report here. We are
eager to learn whether testing with captured traces ex-
poses portability errors that are not detected by traces
generated from a model based on the written specifica-
tion.

References

[1] BARNETT, M., AND SCHULTE, W. Spying on components: A
runtime verification technique, 2001. OOPSLA 2001 Workshop
on Specification and Verification of Component-Based Systems.

[2] BARNETT, M., AND SCHULTE, W. Runtime verification of NET
contracts. Journal of Systems and Software 65, 3 (2003), 199-
208.

(3]

[4]

(51

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

CAPPOS, J., BESCHASTNIKH, I., KRISHNAMURTHY, A., AND
ANDERSON, T. Seattle: a platform for educational cloud com-
puting. SIGCSE Bull. 41,1 (2009), 111-115.

CHANEZON, P. Write Once, Run Anywhere: the devil is in the
details, Oct 2006. http://wordpress.chanezon.com/
?p="7.

CHARNY, B. Write once, run anywhere not working for phones,
Jul 2005. http://mcall.com.com/Write-once,
—-run—-anywhere-not-working-for-phones/
2100-1037_3-5788766.html.

COLIN, S., AND MARIANI, L. Run-time verification. In Model-
Based Testing of Reactive Systems (2004), M. Broy, B. Jonsson,
J.-P. Katoen, M. Leucker, and A. Pretschner, Eds., vol. 3472 of
Lecture Notes in Computer Science, Springer, pp. 525-555.
Python Programming Language. http://www.python.
org/.

Flash 10 Released - Finally, Flash Videos In Firefox Work
Again! http://www.readwriteweb.com/archives/
flash_10_released_finally_ flash _works_in_
firefox_again.php. Accessed Jun 3, 2010.

FRUHLINGER, J. LWUIT: Write once, run anywhere (mobile)
(hopefully), Aug 2008. http://www.javaworld.com/

community/node/1113.

FutureRepyAPI - Seattle. https://seattle.cs.
washington.edu/wiki/FutureRepyAPI. Accessed
April 15, 2010.

GOSLING, J., Joy, B., STEELE, G., AND BRACHA, G.
Java (TM) Language Specification, The (Java (Addison-Wesley)).
Addison-Wesley Professional, 2005.

GRIESKAMP, W., KICILLOF, N., MACDONALD, D., NANDAN,
A., STOBIE, K., AND WURDEN, F. L. Model-based quality
assurance of Windows protocol documentation. In ICST (2008),
IEEE Computer Society, pp. 502-506.

JACKY, J., VEANES, M., CAMPBELL, C., AND SCHULTE, W.
Model-based Software Testing and Analysis with C#. Cambridge
University Press, 2008.

LEE, D., CHEN, D., HAao, R., MILLER, R. E., WU, J., AND
YIN, X. Network protocol system monitoring: a formal approach
with passive testing. IEEE/ACM Trans. Netw. 14,2 (2006), 424—
437.

MARIANI, L. Behavior capture and test for verifying evolving
component-based systems. In /CSE (2004), IEEE Computer So-
ciety, pp. 78-80.

PyModel: Model-based testing in Python. http://staff.
washington.edu/jon/pymodel/www/. Accessed March
23, 2010.

Seattle: Open Peer-to-Peer Computing. http://seattle.
cs.washington.edu/. Accessed April 3, 2010.

Sun Java J2EE — Compatibility & Java Verification. http://
java.sun.com/j2ee/verified/.

ULRICH, A., AND PETRENKO, A. Reverse engineering models
from traces to validate distributed systems - an industrial case
study. In ECMDA-FA (2007), D. H. Akehurst, R. Vogel, and
R. F. Paige, Eds., vol. 4530 of Lecture Notes in Computer Sci-
ence, Springer, pp. 184-193.

UTTING, M., AND LEGEARD, B. Practical Model-Based Test-
ing: A Tools Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2006.

XIE, T., AND NOTKIN, D. Mutually enhancing test generation
and specification inference. In FATES (2003), A. Petrenko and
A. Ulrich, Eds., vol. 2931 of Lecture Notes in Computer Science,
Springer, pp. 60-69.

