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Abstract

We propose a system for detecting scanning-worm
infected machines in a local network. Infected ma-
chines are detected after a few unsuccesful connection
attempts, and in cooperation with the border router,
their traffic is redirected to a honeypot for worm iden-
tification and capture. We discuss the architecture
of the system and present a sample implementation
based on a Linux router. We discuss future improve-
ments for increasing the detection abilities and cov-
erage of the sensor. While the system was developed
based on the Billy Goat worm-detection system, it
can easily be used with other honeypot systems.

Keywords: intrusion detection, Internet worms,
information security, honeypot.

1 Introduction

One of the greatest threats to security of networked
systems comes from automatic self-propagating at-
tacks, including viruses and worms. The presence of
these attacks is not new, but the damage that they
are able to inflict and the speed with which they can
propagate have become paramount. Increases in con-
nectivity and complexity only threaten to exacerbate
their virulence.

This paper describes an approach to detection and
containment of local infections by network-scanning
worms. The process is triggered by monitoring for
error conditions resulting from failed connection at-
tempts such as ICMP Unreachable messages, refused
connections and timeouts.

When a threshold of similar incompleted connec-
tions of local origin is detected, the local router is
reconfigured to redirect all traffic corresponding to
those connections to a local honeypot system, such
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as a Billy Goat [7]. The infected machine thus be-
lieves that it has successfully connected to a remote
system, when it is actually connected to a local hon-
eypot that can diagnose its activities to determine
the nature of the infection, and to potentially raise
alarms or take other actions. Regardless of the activ-
ities performed by the honeypot system, the redirec-
tion of the traffic, by itself, has the effect of reducing
unwanted infection-spreading traffic leaving the local
network.

2 Related work

The detection of local worm-infected machines is
a problem that has been explored extensively. Most
of the schemes proposed focus on monitoring connec-
tions established from the local network to determine
which machines are scanning the outside, and possi-
bly limit those connections [e.g. 8, 10], but do not
attempt to identify or further diagnose the nature of
the infection.

Honeypots and honeynets have been used to look
for worms, and to trick them into revealing their na-
ture or even their code. Examples of such systems in-
clude Billy Goat [7], Nepenthes [3], HoneyStat [6] and
the Potemkin Virtual Honeyfarm [9]. These systems
have better diagnosis abilities, but require traffic to
be sent to them for analysis. This is commonly done
by statically routing unused sections of the network
to the honeypot system.

The use of ICMP error messages to detect worm-
infected machines has been proposed by Berk et al.
[4, 5]. They propose an Internet-wide monitoring
system that depends on many instrumented routers
throughout the network to collect information that is
then analyzed at a central location. While Internet-
wide detection is useful from the perspective of global
awareness and analysis, it does little to help network
administrators with local infections and to limit fur-
ther propagation.
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3 Design and architecture

Router-based Billy Goat (RBG) [7] is a mechanism
that adds dynamic discovery of external unused or
unreachable IP addresses and redirects traffic to them
to a honeypot for processing and response. This dy-
namic assignment vastly extends the monitoring abil-
ities of the honeypot.

In our work we have used Billy Goat, a special-
ized worm-detecting honeypot, as the device to which
traffic is redirected. However, the detection and redi-
rection mechanism is generic and can be used with
other honeypot devices, such as Nepenthes [3].

The benefits offered by our solution include:

• It allows the Billy Goat to dynamically spoof
unused IP addresses outside the local network,
instead of relying on static assignment of unused
address blocks. This allows for much larger ad-
dress coverage, leading to more efficient detec-
tion of infected machines.

• Local infections are detected locally, providing
timely information to network administrators
and eliminating the need for complex alarm re-
distribution mechanisms.

• It is able to counter advance scanning strate-
gies, such as those necessary for scanning IPv6
networks. Such techniques include: detection
of connections to existing addresses and scan-
ning the local network around them, or scanning
for additional services on detected existing ma-
chines. These techniques are not normally de-
tected by honeypots, since they scan allocated
address ranges.

• It helps in automatically preventing infected
hosts from scanning outside the network, thereby
reducing unwanted outgoing traffic.

3.1 Requirements

We defined the following high-level requirements
for the RBG design and implementation:

• Consider failure modes, which is particularly im-
portant in a system that modifies the usual be-
havior of the network, to ensure it does not in-
terfere with critical infrastucture. We have con-
sidered ways in which the system may induce
failure, and mechanisms by which these failures
can be avoided or mitigated. One such mecha-
nism is the use of white and black lists for both
source and destination addresses.

• Ensure extensibility, by keeping clear separations
of duty and designing with well-designed inter-
faces.

• Ensure security, since RBG has a critical place
on the network. Special care has been given to
security aspects at the design and implementa-
tion levels to avoid race conditions, system com-
promise and Denial of Service attacks.

• Use open source software, to make it easier and
less expensive to build, extend and maintain the
system.

3.2 Triggering mechanisms

The idea of RBG is to trigger traffic redirection
upon detection of failed connection1 attempts. Such
attempts can be detected by the following mecha-
nisms:

• Receipt of ICMP-Unreachable messages. The
disadvantage of using only this mechanism is
that not all routers produce such messages. Berk
et al. [5] performed a test of random IP addresses
on the Internet which indicated that in only 6.2%
of the cases were ICMP Unreachable messages
received.

• Timed-out initial connections. In this scheme,
the instrumented router keeps track of initial
packets in each connection (for example, TCP
SYN packets). Traffic redirection is triggered
when no response is seen for a packet after a
certain period of time. This mechanism was also
described by Berk et al. [4] as a way to dramat-
ically increase the coverage.

• Detection of refused connections. While this
mechanisms does not indicate an unused address,
it can be used to perform finer-grained per-port
redirection of traffic.

3.3 Overall solution behavior

Under normal conditions, when a host tries to con-
tact an unreachable destination or service, one of the
three error conditions mentioned in Sec. 3.2 occurs.

When using RBG, the error condition is inter-
cepted. For example, in the case of an ICMP error
message, the following sequence (illustrated in Fig. 1)
takes place:

1. The internal host sends the first packet of the
connection.

1By connection, we do not imply only TCP connections.
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Figure 1: The “unreachable destination” behavior using the
RBG architecture

2. The external router sends back an ICMP Un-
reachable message. The local router intercepts it
and automatically generates a rule to route fu-
ture packets to this unreachable destination, to
the honeypot and also sends the original packet
to the honeypot.

3. The Billy Goat system receives the packet and
replies to it, spoofing the destination host. The
internal host gets the reply he wanted and will
consider the destination host as being up.

3.4 Placement in the network

The ideal place to put the RBG logic and mecha-
nisms is in a border router. We have used this ap-
proach in our implementation using a Linux-based
router. However, it would also be possible to imple-
ment RBG as a bridge placed in front of the router,
monitoring traffic and remotely reconfiguring routes.
This mode of deployment would make it easier to
adopt RBG without modifying deployed routers.

3.5 Routing rules

In response to the error conditions detected, the
RBG has to create routes to redirect the appropriate
traffic to the honeypot. We could create one routing
rule for each host to redirect, but this would quickly
create a large routing table and introduce latency in
the routing process for every packet.

We chose policy-based routing as a more scalable
solution. Modern routers have the ability to mark
packets or connections, and to make routing decisions
based on those marks using a single rule. This keeps

overhead to a minimum, and uses the built-in func-
tionality of the router instead of crafting a specialized
mechanism.

4 Implementation

We have implemented and tested a prototype of our
RBG system. The system consists of the following
main components:

Filtering and routing device: We used Linux as
our implementation platform, relying extensively
on the Linux Advanced Routing project and the
Netfilter Framework.

Control components: The user-space components
control the overall logic and flow of the system,
providing management of the filtering and rout-
ing rules, policy decisions and configuration, and
administrative control. We chose to implement
these components in Perl [2].

Our current implementation handles only trigger-
ing on receipt of ICMP Unreachable packets and re-
lies upon TCP automatic retransmission.

4.1 Implementation architecture

The resulting architecture is described in Fig. 2.
(0) ICMP Unreachable packets are caught by Netfil-
ter, (1) checked for correctness and rate limited, then
(2) passed to the control program, which (3) gener-
ates the appropriate packet-marking rules for ipta-
bles. Using the policy-based routing facilities of the
Linux kernel, (4) the router sends marked packets to
Billy Goat while unmarked packets continue on the
standard path. This solution keeps the needed cus-
tomization level of the router very low, by using many
preexisting and widely tested components.

4.2 Detailed design characteristics

We can distinguish three main sections in the whole
process: static filtering, static routing, and the con-
trol module.

4.2.1 Static filtering

We use the MARK and CONNMARK iptables ex-
tensions which enable the marking of packets as well
as whole connections. The filtering has to be done
before routing, so we use the PREROUTING chain.
The defined static filtering policy is as follows:
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Figure 2: Final RBG architecture

1. We let already established connections pass, ex-
cept ICMP packets. If one of the packets of the
connection is α-marked2, then all future packets
of the same connection will also be marked.

2. A set of “whitelisted” hosts is matched in a sep-
arate chain and allowed to pass.

3. Incoming ICMP Unreachable packets are redi-
rected to the RBG CAP chain, where they are
rate-limited, state-checked and sent to the con-
trol module via the QUEUE target. State check-
ing is done using the iptables state extension,
which allows us to accept only ICMP packets re-
lated to a pre-existing connection, automatically
dropping forged packets.

4. At this point, only packets initializing a connec-
tion remain in the PREROUTING chain.

(a) A set of “blacklisted” hosts is matched in a
separate chain where they are MARKed.

(b) Packets are sent to the RBG MARK chain
where they are matched against the rules
produced by the control module. Those
that match are MARKed.

After passing through the PREROUTING chain, re-
maining packets enter the routing process.

4.2.2 Static routing

Packets marked at the filtering level need to fol-
low a specific route. To achieve this, we add to the
existing routing environment:

2Using the MARK and CONNMARK iptables extensions,
packets are marked using a user-given unsigned long integer

value. As we only need one kind of mark, and for legibility
purposes we will use the α mark.

Figure 3: Userland Module internals

• A new routing table, with a default route to the
Billy Goat.

• A new rule in the default table, sending α-
marked packets to the above table.

4.2.3 Control module

The control module is split into simple, indepen-
dent, self-recovering and general-purpose modules. It
is responsible for:

• Capturing packets queued by the iptables
RBG CAP chain using the QUEUE iptables ex-
tension.

• Analyzing these packets and deciding if a rule
needs to be generated, according to the policy.

• Creating and handling the set of redirection rules
in the RBG MARK chain.

These tasks have been implemented as a set of run-
ning processes connected in a chain, as described in
Fig. 3.

Components of the Userland Module

STP module (Simple Text Protocol): This
module provides a generic way for all the
modules to communicate. It relies on Unix
domain sockets to communicate and uses an en-
tirely text-based, human-readable and writable
protocol.

Capture module: Responsible for getting packets
from the iptables QUEUE extension. After
decoding, relevant information is sent to the
Analysis module.

Analysis module: Receives information about
packets, and processes them according to the
policy. If a rule needs to be created, the
necessary information is sent to the Reaction
module.
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Figure 4: Reaction module internals

Reaction module: Receives commands to apply to
the rule sets. It does atomic operations to the
whitelist, blacklist and packet marking rule sets.
It controls lower-level actuators via a generic rule
management API, to interact with different fil-
tering mechanisms (iptables, IOS, ipf, etc.). The
IPTables Actuator module is an implementation
of this API. The internal structure of the Reac-
tion module is shown in Fig. 4.

Cleanup module: Removes expired rules from the
lists.

Administration console: Allows a human admin-
istrator to start/stop the system, add/remove
rules in the different lists, check the state of the
system, etc.

4.2.4 Implementation of the rule sets

The rule sets (the α-marking, whitelist and black-
list sets) are stored in a PostgreSQL table. We use
Postgres’ table-locking facilities to ensure ordered,
atomic operations on the tables. They all share the
same table structure:

pktname: The name of the rule.

capsrc: The mechanism by which the error condition
was detected.

srcip, dstip: Source and destination IP addresses.

expire: Rule expiry time. This field can be increased
according to the policy.

die: Rule death time. This field cannot be increased
once the rule is created, providing a simple mech-
anism to ensure rules do not remain forever.

4.2.5 Extended functionalities

Multiple matching: When duplicate unreachable
packets are received, the expire field of the cor-
responding rules is increased according to policy.

Figure 5: Testing setup

Source flooding: When the same source address
generates more than a predefined number of
rules, it is isolated by setting a rule that sends all
its traffic to Billy Goat for a given time. This in-
creases the amount of traffic captured and slows
down the spread of the worm outside the local
network.

Destination flooding: When a predefined number
of rules with the same destination address are
generated, an aggregate rule is generated for that
destination.

4.3 Experimental results

We constructed a test environment using the User
Mode Linux [1] virtualization system. It emulates
a deployment of the RBG architecture as shown in
Fig. 5. We performed the following tests to ensure
the functionality of the system:

Ping: Sending ICMP Echo Request packets from the
internal host to non-existent hosts in the exter-
nal network, which causes the router to return an
ICMP Host Unreachable packet to the request-
ing host, in turn causing RBG to generate the
appropriate redirection rules.

Forged ICMP Unreachable messages: A host
from the internal (or external) network sends
forged ICMP Unreachable messages at a high
rate (we used 10 packets/sec). The goal is to
stress test the system by trying to generate a
large number of useless rules. ICMP packets
are rate-limited (by default 5 packets/sec), and
in addition packets that are not related to an
already established connection are discarded, so
no bogus rules are generated (Sec. 4.2.1).

TCP connection: This test tries to establish a
TCP connection from the internal host to an
unreachable host. In the implementation, TCP
connection redirection works flawlessly, thanks
to the TCP retransmission features.

UDP scanning: This test assumes the internal host
is infected a worm that propagates or scans us-
ing ICMP or UDP messages. In this situation,
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only one packet per destination is sent. RBG
will not catch the first packet sent to each host,
but it will create one rule for each unreachable
host. When the source-scanning threshold (5 by
default) is reached, RBG will create a rule redi-
recting all the traffic from the worm-infected ma-
chine to Billy Goat. Our tests show that this
behavior can be very effective if an entire un-
reachable network is scanned, as it will generate
a large number of rules in a short period of time,
and thus reaching the source scanning limit very
quickly.

Worm capture and diagnosis capabilities in all
cases can be improved by the addition of router-based
retransmission of captured packets, as described in
Sec. 6.1.

5 Conclusions and limitations

We have introduced a general purpose mechanism
that shows promising results to increase coverage,
speed and accuracy of honeypot-based worm detec-
tion systems. It offers the significant benefit of de-
tecting local infections locally, providing a valuable
tool to network administators, and it helps perform
local containment of worm infections, thereby pre-
venting unwanted traffic from leaving the local net-
work. It also allows capturing advanced scanning
techniques, such as those needed to scan IPv6 net-
works.

5.1 Limitations

We now describe the limitations of the current im-
plementation of RBG, and their workarounds if exis-
tent.

Detection of scanning worms only: By design,
RBG will only detect and redirect traffic pro-
duced by hosts that are scanning nonexistent
IP addresses. Hitlist worms, email worms and
other types of malware that direct their attacks
against existing machines and services will not
be detected by RBG.

IP spoofing: Using IP address spoofing, an attacker
inside the local network could abuse RBG and
make it isolate a local IP address from the out-
side, using the source flooding detection feature
of RBG. This attack may be mitigated using
MAC address checking and filtering.

Liveness checking problem: RBG breaks net-
work diagnostic methods that rely on reacha-
bility testing (for example, by pinging a remote

host). We have included whitelists in the design
to address this concern.

White and blacklists: Large white or blacklists
could have a negative impact in routing per-
formance. The number of entries in these lists
should normally be kept small, both to mini-
mize the performance impact and to maximize
the coverage of RBG.

6 Future work

We describe some possible extensions to the current
RBG implementation.

6.1 Packet ring buffer

Currently the largest gap between our conception
and the implementation is the lack of router-based re-
transmission of the initial packet of a connection. To
address this limitation, a production system should
implement a “first-packet ring buffer”. The router
would push the first packet of each connection into
a ring buffer. When a connection to an unreachable
host or service is detected, RBG could search in this
buffer for the first packet of the connection, and if
found, retransmit it to Billy Goat after creating the
redirection rule, to ensure that the full connection is
captured by Billy Goat.

6.2 Capturing additional packet types

The current implementation of RBG only inter-
cepts ICMP Unreachable messages, but it would be
fairly simple to capture any other kind of packets, to
detect other error conditions as described in Sec. 3.2.
For example, one could catch ICMP Port Unreach-
able messages to detect connections on closed UDP
ports, or TCP Reset packets to detect connections on
closed TCP ports.

Adding these extensions would require writing new
Capture modules and implementing the correspond-
ing logic in the Analysis module.

6.3 Other detection mechanisms

RBG could also use events from different sources
as triggers to generate redirection rules. For exam-
ple, it could read events from an IDS and generate
redirection rules to isolate hosts using RBG.

This way, we would combine the power of an IDS
with the RBG architecture to exploit the advanced
capabilities of a WDS like Billy Goat, or to produce
a appropriate response. It would also allow malicious
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activity other than worms to be redirected to appro-
priate capture and analysis devices.

6.4 Multiple actuators

RBG has been designed to be used with different
types of routing devices. Our current implementation
has an actuator for a Linux-based router using ipta-
bles, but it would be easy to write actuator modules
for other routing devices.

6.5 Blocking initial traffic

In case of a high-volume worm infection, the time
until the RBG detects and redirects the traffic could
still allow a significant number of infection attempts
to leave the local network. A solution to this problem,
at the expense of largely increased resource usage in
the router, would be for the router to keep track of
addresses from which legitimate responses have been
seen (i.e., valid existing addresses). When a connec-
tion to a new address is seen, the initial packet is
allowed through, but all other traffic to that address
would be queued or dropped until a response is re-
ceived, or until a certain timeout occurs.
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